
Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

Space Engineering
Standards

Recommendations for CAN Bus in
Spacecraft Onboard Applications

ECSS Secretariat
ESA-ESTEC

Requirements & Standards Division
Noordwijk, The Netherlands

This document is a proposal of ECSS draft standard circulated for
review and comments.
It is therefore subject to change and may not be referred to as and
ECSS Standard until published as such.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 2

Printed in the Netherlands.
Copyright 1996 © by the European Space Agency for the members of ECSS

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 3

Foreword

This standard is one of the series of ECSS Standards intended to be applied
together for the management, engineering and product assurance in space
projects and applications. ECSS is a cooperative effort of the European Space
Agency, National Space Agencies and European industry associations for the
purpose of developing and maintaining common standards.
Requirements in this standard are defined in terms of what must be
accomplished, rather than in terms of how to organise and perform the
necessary work. This allows existing organisational structures and methods to
be applied where they are effective, and for the structures and methods to
evolve as necessary without rewriting the standards.
The formulation of this standard takes into account the existing ISO 9000
family of documents.
This standard has been prepared by the ESTEC CAN Working Group charged
with the analysis and development of the CAN (Controller Area Network) data
bus for spacecraft applications.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 5

Contents List

Foreword..3
Contents List ...5
1 Scope ...8
2 References ..9

2.1 Normative References ..9
3 Definitions, abbreviations, and conventions ..10

3.1 Definitions...10
3.2 Abbreviations..12
3.3 Conventions ..12

3.3.1 Bit Numbering Convention...12
3.3.2 Requirement identification...13

4 Overall description (informative)..14
4.1 An overview of the CAN bus ..14
4.2 An overview of spacecraft onboard data characteristics..18

4.2.1 Future Trends in Onboard Bus Use...19
4.2.2 Summary of Onboard Bus Requirements..20

4.3 Content of the standard ...20
4.4 The CAN bus physical layer specification...21
4.5 CANopen higher layer protocol ...21

4.5.1 Object dictionary ...22
4.5.2 Electronic Data Sheets..22
4.5.3 Communication objects ...22
4.5.4 Device profiles ...28

4.6 Synchronous data transfers over CAN bus...28
4.6.1 General protocol for synchronous data transfers ..28
4.6.2 Communication slot organization ..28

4.7 Transfer of large data units ...29
4.8 Time distribution..30
4.9 CAN object identifier assignments..30
4.10 Redundancy management ..31

5 Physical layer (normative) ..32
5.1 Introduction ..32

5.1.1 Scope ..32
5.2 Topology ..32

5.2.1 Physical topology (R) ...32
5.2.2 Maximum bus length and drop length (R)...33
5.2.3 Minimum number of network devices (R) ...33

5.3 Medium ...34

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 6

5.3.1 Cable requirements...34
5.3.2 Connector ...34
5.3.3 Shield Grounding – system specific (R) ...35

5.4 Transceiver Characteristics...35
5.4.1 Transceiver electrical characteristics (M)..35
5.4.2 Resistance to electrical CAN bus faults (R)...35
5.4.3 Optical isolation (R) ..35
5.4.4 Transceiver implementation based on RS-485 transceivers (O) ..36

5.5 Bit Timing ...36
5.5.1 Bit rate 1 Mbps (M) ...36
5.5.2 Other bit rates (O)...37
5.5.3 Bit Timing (M) ...37

5.6 Electromagnetic (EMC) Compatibility (R)..37
5.7 Data Link Layer (M) ..37

5.7.1 ISO 11898 Compliance (M)...38
5.7.2 Fault confinement (M) ..38

6 CANopen higher layer protocol (normative) ..39
6.1 General (M) ...39
6.2 Communication Objects ...39

6.2.1 Service Data Objects (M) ..39
6.2.2 Process Data Objects (O)...39
6.2.3 Synchronisation object (O)..40
6.2.4 Emergency object (O) ..40
6.2.5 Network management objects (M) ...40

6.3 Electronic Data Sheets (M) ..41
6.4 Device & Application Profiles (O)..41
6.5 Object Dictionary (M) ...41

7 Synchronous data transfers (normative)..42
7.1 Synchronous communications (O) ...42

8 Transfer of large data units (normative)..43
8.1 Introduction ..43
8.2 Identifier encoding (D) ...43

8.2.1 Function ID field (D) ...44
8.2.2 Priority field (D) ..44
8.2.3 Frame Type Field (D)..44
8.2.4 Source address field (D) ..45
8.2.5 Destination address field (D)..45
8.2.6 Protocol ID field (D)...45
8.2.7 Toggle Bit field (D) ..45

8.3 Protocol control frames (O) ..45
8.3.1 Acknowledge frame (O) ...46
8.3.2 Stop frame (O) ...46
8.3.3 Resume frame (O)..46
8.3.4 Abort frame (O)..46

8.4 Selective acknowledgement for unsegmented transfers (O)..46
9 Time distribution (normative)...48

9.1 Time objects (O) ..48
9.1.1 Time code formats (D) ...48
9.1.2 Spacecraft elapsed time objects (D)..48
9.1.3 Spacecraft universal time coordinated objects (D)..49

9.2 Time distribution and synchronization protocols (O)...50
9.2.1 Time distribution protocol (D) ..50
9.2.2 High-resolution time distribution protocol (O)..51

10 CAN bus object identifier assignments (normative) ..53
10.1 CAN bus version (M)...53
10.2 COB-ID assignment (M) ...53

11 Redundancy Management (normative) ..55
11.1 General (O) ..55

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 7

11.2 Node internal bus redundancy architectures (D) ...55
11.2.1 Selective bus access architecture (D) ...55
11.2.2 Parallel bus access architecture (D)...56

11.3 Bus monitoring and reconfiguration management (D) ..57
11.3.1 Bus redundancy management parameters (D) ...57
11.3.2 Startup procedure (D) ...58
11.3.3 Bus montoring protocol (D)...59
11.3.4 Bus selection process...60

Annex A Recommended connectors and pin assignments (normative) ...62
A.2.1 MIL-C D38999 configuration B: Dual CAN bus...62
A.2.2 MIL-C D38999 configuration D: Single CAN bus ..63
A.3.1 Micro-miniature D Shell: Dual CAN bus..63
A.3.1 Micro-miniature D Shell: Single CAN bus ...63

Annex B Guidelines for implementing bus redundancy management (informative).............................65
B.1 Bus monitoring and reconfiguration management...65

B.1.1 Bus redundancy management parameters ..65
B.1.2 Startup procedure (D) ..66
B.1.3 Bus monitoring protocol (D) ..67
B.1.4 Bus selection process ...67

Annex C Minimalist implementation of CANopen (informative) ..68
C.1 Communication Objects ...68

C.1.1 Service Data Objects ..68
C.1.2 Network management objects ...68

C.2 Object Dictionary ..68
Annex D Process for adoption of COB-Ids (informative) ..69
Annex E CAN system design issues (informative) ...73
Annex F PHY Layer design considerations (informative)..79
Annex G Compliance pro-forma (informative) ...80
Bibliography ..81

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 8

1

Scope

This standard is aimed at spacecraft development projects that opt to use the
CAN bus for spacecraft onboard communications and control. This standard
specifies the protocols and services that are to be provided on top of the basic
CAN bus specification, and indicates how those protocols and services can be
implemented on a CAN bus.
This standard does not modify the basic CAN bus specification in any way.
Instead the CAN bus is used exactly as defined in ISO 11898-1/-2:2003. This
standard merely defines how spacecraft specific requirements can be achieved
using protocol extensions running over the CAN bus.
The intention of the standard is to meet the vast majority of the onboard data
bus requirements for a broad range of different mission types. However, there
may be some cases where a mission has particularly constraining requirements
that might not be met by this standard. In those cases it is recommended that
this standard should still be used as the basis for the use of CAN bus, with
extensions and special amendments only being applied as absolutely needed.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 9

2

References

2.1 Normative References
This ECSS standard incorporates by dated or undated reference, provisions
from other publications. These normative references are cited at the
appropriate places in the text and publications are listed hereafter. For dated
references, subsequent amendments to or revisions of any of these apply to this
ECSS standard only when incorporated in it by amendment or revision. For
undated references, the latest edition of the publication referred to applies.

ISO 11898-1:2003 Road vehicles – Controller Area Network (CAN)
Part 1: Data link layer and physical signalling

ISO 11898-2:2003 Road vehicles – Controller Area Network (CAN)
Part 2: High-speed medium access unit

CiA Draft
Standard 301
Version 4.02

CANOpen Application Layer and Communication
Profile, CAN in Automation e. V.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 10

3

Definitions, abbreviations, and conventions

3.1 Definitions
For the purposes of this standard, the definitions given in ECSS-P-001 Issue 1
apply. The following terms and definitions are specific to this standard and
shall be applied.
The specification of data type and encoding rules according to CANopen shall
apply.

COB-ID The Communication Object Identifier

is the 11- or 29-bit identifier in the
arbitration and control field of the
CAN frame.

Cold redundant bus A redundant bus system where data is
only transmitted on one of the
available buses.

Dominant bit level A logical level that when applied to a
bus forces the entire bus to the same
logical level.

Hot redundant bus A redundant bus where data is
transmitted simultaneously on all of
the available buses.

Large Data Unit Any data unit that requires
segmentation to be transferred over
the CAN bus, i.e. a data unit of more
than eight octets.

Local SCET: A time counter implemented and
maintained in a node, that is
correlated with the SCET.

NMT Master: The node in a CANopen network,
responsible for managing all other
nodes on the bus using the NMT
services.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 11

NMT Slave: The nodes in a CANopen network that
are managed by the NMT Master using
the NMT services.

Recessive bit level A logical level that when applied to a

bus only has effect on the level of the
bus if there is no driver that
simultaneously applies a dominant bit
level.

Redundancy master A dedicated node responsible for
managing the bus redundancy. In
particular this includes controlling the
switching from a nominal to a
redundant bus in a cold redundant bus
system.

Redundant bus A bus system that consists of two or
more identical physical communication
channels to increase the bus reliability
or availability.

Redundant node A node that provides identical
functionality as another node
connected on the same physical bus.

Spacecraft Elapsed Time (SCET): A central time reference that is
maintained onboard the spacecraft.
The SCET may be correlated to the
ground time, and may be distributed to
other onboard nodes.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 12

3.2 Abbreviations
The following abbreviations are defined and used within this standard.

Abbreviation Meaning

CAN Controller Area Network
CCSDS Consultative Committee for Space Data Systems
COB-ID Communication Object Identifier
ECSS European Cooperation for Space Standardisation
EDS Electronic Data Sheet
EMC Electromagnetic Compatibility
FIFO First In First Out
LDUT Large Data Unit Transfer
LSB Least Significant Bit
MSB Most Significant Bit
NMT Network Management
OSI Open Systems Interconnection
PCB Printed Circuit Board
PDU Protocol Data Unit
PDO Process Data Object
RPDO Receive PDO
RTR Remote Transmission Request
SAP Service Access Point
SCET Spacecraft Elapsed Time
SDO Service Data Object
SYNC Synchronisation Object
TPDO Transmit PDO

3.3 Conventions
3.3.1 Bit Numbering Convention.

The most significant bit of an n-bit field shall be:
 - numbered bit n-1,
 - the first bit transmitted,
 - the leftmost bit on a format diagram.
The least significant bit of an n-bit field shall be:
 - numbered bit 0 (zero),
 - the last bit transmitted,
 - the rightmost bit on a format diagram.
This is illustrated in Figure 1.
Note: This convention is the opposite of most ECSS and CCSDS documents. Its
choice is dictated by the bit numbering convention used in the CAN bus
specification.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 13

Bit n-1 (MSB) Bit 0 (LSB)

First Bit Transmitted

n-bit Data Field

Figure 1: Bit numbering convention

3.3.2 Requirement identification
Requirements specified within this standard fall into one of three categories,
namely mandatory, M, optional, O, or option dependent, D. Mandatory
requirements must be implemented by all systems that comply with this
standard. Optional requirements can be applied at the discretion of the
implementer or at the insistence of the system specifying system requirements.
Dependent requirements are requirements that must be applied when a
particular optional requirement is selected.
This standard also includes recommendations, which do not bear the weight of
requirements but should indicate the preferred implementation to be used.
Each requirement or recommendation in the standard has an associated letter
indicating its type. Mandatory requirements are indicated by an (M), optional
requirements by an (O), dependent requirements by a (D), and
recommendations by an (R).
In order to standardise the way spacecraft CAN bus implementations are
characterised, a compliance pro-forma is provided in Annex G. This lists all the
requirements and recommendations in the standard, and allows requirement
dependencies to be traced. By completing this pro-forma, the implementer not
only states his compliance to the standard but also characterises his
implementation by indicating which options have been selected.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 14

4

Overall description (informative)

This standard contains recommendations for the use of the CAN (Controller
Area Network) data bus in spacecraft onboard applications. These
recommendations extend the CAN bus specification to cover aspects that are
required to satisfy special needs that have been identified as being commonly
required onboard spacecraft.
At the time of preparation of this standard there was limited experience with
the use of the CAN bus as the principle onboard data bus for spacecraft
applications. However, this limited experience has been taken fully into
account during the development of these recommendations. By contrast, there
is very extensive experience of the use of CAN bus in terrestrial applications,
such as automobiles and factory process control. Often these applications have
demanding safety and reliability requirements, and operate in hostile
environments that have similarities to spacecraft onboard applications. This
experience has also been taken fully into account in the preparation of this
standard.

4.1 An overview of the CAN bus

The ISO11898 Part 1 standard specifies the Data Link Layer and Physical
Signalling for CAN. Parts 2 and 3(draft) of ISO11898 specify ‘high-speed’ and
‘low-speed’ Medium Access Units for CAN respectively. The protocol
specifications describe the data-link layer and physical layer requirements for
CAN as illustrated in Figure 2. The remaining higher layer implementations
have up until now been left to the designers’ discretion and as illustrated a
number of commercial specifications have evolved at the application level.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 15

ISO / OSI

Layer Model1

CAN Bus Layer

Layer 8
Example User
Applications

CANopen CAN
Kingdom DeviceNet

Smart
Distributed

System (SDS)

Layer 7
Application

Layer

CAL: CAN
Application

Layer
& CANopen

CAN
Kingdom

DeviceNet
Specifications

SDS
Specifications

Layer 6
Presentation

Layer
Not explicitly defined

Layer 5
Session
Layer

“Time-Triggered CAN” ISO 11898-4 (Draft)

Layer 4
Transport

Layer
Not explicitly defined

Layer 3
Network

Layer
Not explicitly defined

Layer 2
Data Link

Layer2

ISO 11898-1
LLC: Logical Link Control

Acceptance Filtering
Overload Notification
Recovery Management

MAC: Medium Access Control
Data En-/Decapsulation

Frame Coding (De-/Stuffing)
Medium Access Management
Error Detection and Signalling

Acknowledgement
De-/Serialisation

Specification Variations:

CAN 2.0A, Standard CAN (11 bit identifier field)
CAN 2.0B, Extended CAN (29 bit identifier field)

ISO 11898-1
Physical Signalling
Bit En-/Decoding

Bit Timing
Synchronisation

IS

O
 O

SI
 P

ro
to

co
l

St
ac

k

Layer 1
Physical
Layer3

“Low Speed CAN”
ISO 11898-3 (Draft) (up

to 125kbit/s)

“High-Speed CAN”
ISO 11898-2 (up to

1Mbit/s)

D

efined ISO
 C

A
N

 Layers

Layer 0

Transmission Medium
Some of the mediums on which CAN has been used:

Twisted Pair, Shielded Twisted Pair, Single Wire, Fibre
Optic, Co-Axial Cable, Radio Band, Infrared

Figure 2: CAN stack mapped to the ISO, OSI reference model [23]

1 A liberty has been taken in the inclusion of Layer 0 and Layer 8 which are not defined in the International
Standards Organisation Open system Interconnection ISO 7498.
2 The Data Link Layer is specified in accordance with ISO 8802-2
3 The Physical Layer is specified in accordance with ISO 8802-3

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 16

Starting with CAN’s physical layer the network topology is a line-drop
configuration, whereby all nodes are connected by means of stubs to the
network bus. The network medium itself is specified to be a pair of electrical
wires. These two wires are referred to as ‘CAN High’ and ‘CAN Low’ as
illustrated in Figure 3 and which show the physical signals on the lines for
logic zero and logic one bit levels. The transceiver electrical configuration is
such that the network medium performs a wired-and logical function, when two
or more nodes try to drive a bit level on the network. This is why a logic zero is
also referred to as a dominant level, and a logic one as a recessive level.

Driver

Receiver

Vcc +5V

TxD

RxD

120 R

Node
2

Node
3

120 R

Node
n

Host
Microcontroller

VdiffVdiff

3.5 V

1.5 V

CAN_L

CAN_H

DominantRecessive Recessive
Logic "1" Logic "1"Logic "0"

Li
ne

 V
ol

ta
ge

Node 1

Vcc +5V

CAN
Transceiver

High Speed Network (ISO 11898)

Figure 3: High speed CAN network [23]

Like many serial communications protocols, the CAN protocol transmits frames
of data as a temporal sequence of bit time durations, whereby information is
encoded by alternating the medium between two possible voltage levels.
However, CAN also differentially encodes the Non-Return-to-Zero (NRZ) bit
stream such that the electrical potential difference between the ‘CAN High’ and
‘CAN Low’ lines flips in polarity between the two alternative bits values. This
technique contributes considerable additional tolerance to the low signal-to-
noise ratios experienced in automotive and industrial applications.
The CAN protocol defines a number of fixed frame formats for the following
messages types:
• Data Frames

• Remote Transmission Request Frames

• Active Error Frames

• Passive Error Frames

• Overload Frames

Figure 4 illustrates the data frame format for Standard and Extended CAN.
The only difference between these two protocol variants lies in the control field
portion of the frame. The significant difference exists in the length of the
identifier sequence, being 11 bits in Standard CAN (version 2.0A, refer to [1])
and 29 bits in Extended CAN (version 2.0B, refer to [1]). The identifier field
itself serves two significant functions, one being to reflect the content of the
data frame and the other being to determine the priority of the frame during
bus conflict situations.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 17

CAN uses a content based addressing scheme, which supports both peer-to-
peer and broadcast communication. The identifier field indicates the data type
contained in the data frame and this is seen by all nodes attached to the
network. If a node is interested in the data content as indicated by the
identifier, it will process the data frame as appropriate.

Data Frame

7 bits

Interframe
Space

or
Bus Idle

Start Of
Frame Bit

(SOF)

1

Data
Length
Code

Data Field

0...8 bytes 15 bits

Acknowledge
Field

1

0

0/1

Arbitration & Control
Field

Cyclic Redundancy Check
CRC Field

CRC-Delimiter
AcK - Slot

AcK - Delimiter

Remote
Transmission
Request

r0

IDentifier
Extension Bit

11 bit Identifier
ID-10 .. ID-0

4 bit
DLC

11 bit Identifier
ID-28 .. ID-18

18 bit Identifier
ID-17 .. ID-0

4 bit
DLC

IDentifier
Extension
Bit IDE

Remote
Transmission
Request RTR

r0
 r1

Arbitration & Control Field
STANDARD CAN 2.0A

Arbitration & Control Field
EXTENDED CAN 2.0B

Substitute
Remote
Request SRR

Data Length
Code DLC

Interframe
Space

or
Overload

Frame

Dominant Bit

Recessive Bit

End Of Frame
 EOF Field

Figure 4: Standard and Extended CAN frames [23]

The CAN protocol realises a multi-master architecture, whereby any node may
arbitrarily transmit a message on the network, provided that the network is
free at the time when the transmission commences. Unlike other protocols such
as Ethernet, when two nodes on the network simultaneously transmit a
message the messages are not destroyed. CAN uses a technique known as non-
destructive bitwise arbitration to resolve such bus conflicts.
In this method, during the arbitration phase of message transmission, the
value of the CAN frame identifier field determines which frame is allowed to
transfer on the network and which frames ‘yield-right-of-way’ postponing their
attempt to transmit. The lower the numeric value of the identifier field the
higher the priority of the frame during the arbitration process.
If two or more nodes transmit a frame simultaneously the first to transmit a
zero bit within its arbitration field, while another attempts to transmit a one,
will win control over the network. The winning node will then complete its
transmission while the unsuccessful node backs-off and attempts to re-transmit
again when the network becomes idle. Figure 5 illustrates the process with an
example.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 18

SO
F

0 1 1

ID
-28

ID
-27

ID
-26

ID
-25

ID
-24

ID
-23

ID
-22

ID
-21

ID
-20

ID
-19

0 0 0 1 0 0

0 1 1 0

0 1 1 0 0 0 1 1

Sending
Node A

Sending
Node B

Sending
Node C

0 1 1 0 0 0 1 0 0Signal on
the Bus

1

1
Contention detected, B backs off

Contention detected, C backs off

0

0 1

Bus Idle

Bitwise Arbitration Process

Node A wins outright control of the Bus

Figure 5: Network Arbitration [23]

4.2 An overview of spacecraft onboard data characteristics

The spacecraft onboard bus is used for three principal functions:
• The acquisition of data from simple sensors and the commanding of

simple actuators,
• The transfer of packets of data between onboard instruments and control

computers,
• The distribution of time information.

The acquisition of data from simple sensors and the commanding of
simple actuators was the original role of the spacecraft onboard bus.
Typically, the bus comprised a central controller with a number of remote
terminals attached. Each remote terminal implemented a certain number of
interfaces to simple sensors and actuators, such as thermistors and on/off
switches.
To read a given sensor, the bus controller issued a command to the remote
terminal to which that sensor was attached, and the remote terminal then read
the sensor and transmitted the result back to the bus controller. Similarly, to
write to a device, e.g. to operate a switch or relay, the bus controller issued a
command to the appropriate remote terminal, which then wrote to the device
itself.
The commands issued by the bus controller were generally very short, typically
using only 16 bits, and responses from remote terminals were usually also
short. Addressing and control information was needed in addition to the
command and response data, but even with this, commands and their
associated responses usually occupied 32 bits or less.
The need to transfer packets of data across the spacecraft bus has arisen
as more capable microcontrollers and microprocessors become available for use
in remote terminals. Firstly, this enables larger and more complex commands
to be sent to the remote terminals, where they can then be decoded and may

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 19

result in the acquisition of data from several sensors, or the execution of a
series of actuator commands. Secondly, it becomes possible to run software
applications in the remote terminals. These applications can perform simple
automatic operations, such as the periodic acquisition and formatting of data
from several sensors without waiting for a command from the bus controller.
Another growing requirement is for the initial programme loading of remote
terminals, and occasional loading of configuration tables during operations.
Finally, the need for the distribution of time information is a consequence
of the increasing autonomy and capabilities of the remote terminals, and the
devolution of control functions to them. Such a devolved system can be
considered as a set of independent, asynchronous processes. However, for
operational purposes it is necessary that all of those processes can access a
common, coherent time reference. One obvious need for this is in the time
stamping of locally acquired data so that a complete event time-line can be
reconstituted from the spacecraft telemetry. Another example is in the
synchronisation of control actions, such as synchronisation of a spacecraft
attitude control manoeuvre with the acquisition of an image.
Time distribution involves the transfer of time data with the appropriate
precision, and the distribution of a time reference pulse or tick that indicates
exactly when the time data is valid. While all onboard buses have the
capability of transferring the time data, they vary considerably in their ability
to transfer the reference pulse. If it is not possible to distribute the reference
pulse with sufficient accuracy through the onboard bus, it becomes necessary to
use an external means of transferring this pulse, e.g. by adding a dedicated
time distribution bus, which increases the spacecraft harness.

4.2.1 Future Trends in Onboard Bus Use
As the capability of spacecraft microprocessors increases, there is a growing
trend for distribution of the spacecraft control applications amongst remote
terminals on the bus. This trend is seen both in payloads, which are
increasingly autonomous and handle more of their own data processing, and in
the spacecraft sub-systems such as the power management system. This leads
to two main effects.
Firstly, there is an increase in the proportion of data packet traffic on the
onboard bus. Secondly, as remote terminals become more “intelligent”, they
expect better services from the onboard bus. In particular, they expect to be
able to access the bus to transfer data packets on demand, and many modern
software architectures are based on messaging capabilities, where applications
communicate with each other variable length messages that are generated
asynchronously.
Another trend is the steadily increasing volumes of data, especially from
payloads. Any given bus has a limit to its data throughput capacity, making it
more and more difficult to devise bus scheduling tables that accommodate all of
the asynchronous bus traffic while meeting the deadlines required by
synchronous transfers. One answer to this is to use more than one bus, or to
use dedicated high speed links for high volume data paths. However, this
introduces its own problems of bus control and management, particularly when
data has to be transferred across more than one bus.
The steadily increasing “intelligence” in remote terminals, their demands for
more comprehensive communication services, and the need to support more
elaborate, multi-bus architectures, results in an increased use of higher level
protocols across the onboard bus. This in turn may increase the volume of
traffic, particularly asynchronous traffic, but more importantly emphasises the
need for a symmetric medium access service to be provided by the onboard bus.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 20

While there is a steady increase in the asynchronous packet traffic across
spacecraft buses, there is no decrease in the number of simple sensors and
actuators that must be serviced through the bus. In fact, there is clear evidence
to suggest that the number of such simple devices is also steadily increasing.

4.2.2 Summary of Onboard Bus Requirements
Given the foregoing discussion, the requirements that must be met by the
spacecraft onboard bus can be summarised as:

1. Ability to acquire data synchronously and in real time from sensors,
2. Ability to transmit commands synchronously and in real time to

actuators,
3. Ability to transfer asynchronous data packets between nodes,
4. Provide a symmetric medium access control service to nodes (i.e. each

node can access the bus on demand),
5. Provide accurate distribution of time data and time reference pulse.

4.3 Content of the standard
The normative part of this standard defines:

o The CAN bus physical layer specification for spacecraft applications,
o A generic higher layer protocol (CANopen) for use over CAN bus in

spacecraft applications,
o Techniques for synchronous data transfers over CAN bus for real time

control applications based on CANopen,
o Techniques for the transfer of large data units, e.g. packets, over CAN

bus using a protocol complementary to CANopen,
o Time distribution over CAN bus for spacecraft applications based on

CANopen,
o CAN bus frame identifier assignments,
o CAN bus redundancy management.

Each of these aspects is addressed in a separate normative section of the
standard. The remainder of this clause provides brief introductory descriptions
of each of these aspects.
In addition to these normative sections, annexes are provided describing

o Recommended connectors and pin assignments,
o Guidelines for implementing bus redundancy management,
o Minimalist implementation of CANopen,
o Process for adoption of COB-IDs,
o CAN system design issues,
o Physical layer design considerations,
o Compliance pro-forma.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 21

4.4 The CAN bus physical layer specification
The CAN physical layer specification in this document aims to be suitable for
the overwhelming majority of spacecraft missions. However, extreme mission
environment conditions may require a specific mission-driven physical layer
implementation that is not covered by this standard.
The physical layer specification inherits as much as possible from commercial
industry, primarily the automotive and related industries.
The specification aims to ensure device-on-bus electrical compatibility and
device-across-the-industry electrical compatibility by full adherence to ISO
11898-1:2003 and ISO 11898-2:2003 as the physical layer electrical reference
requirement. This includes full compliance with ISO 11898-2 section 7.6, Bus
Failure Management. ‘Low- speed’ CAN as specified by ISO 11898-3 Draft
(previously by 11519-2) has not been considered in this specification.
Optionally, and in order to ensure the primary objective to be suitable for the
majority of spacecraft missions, implementations of the physical layer based on
RS-485 transceivers can be considered. Connecting these transceivers in a
special way, it is possible to emulate the behaviour of ISO11898 transceivers,
as it has already been the case in some space missions.
The physical layer defined in this standard includes specifications that can be
met using off-the-shelf components that are either space qualified or likely to
be qualifiable in terms of component performance and regarding radiation
tolerance and other key space environment concerns.
The physical layer for spacecraft onboard applications is specified in clause 5.

4.5 CANopen higher layer protocol
The ISO 11898 standard specifies the CAN bus physical and data link layers.
However, for the application layer there are several higher layer protocols
defined as can be seen in Figure 2.
This standard recommends the use of CANopen, as basis for the higher layer
communication protocol over the CAN bus.
CANopen is an open standard widely used in automation and industrial
applications, including safety critical and maritime applications implementing
redundant communication buses.
The most important part of a CANopen device is the Object Dictionary. It
describes the data types, the communication functionality and the application
data used in the device. It is also the interface between the application and the
CAN bus.
CANopen defines standard communication mechanisms to transport data over
the CAN bus by means of communication objects. These objects are defined in
the CANopen communication profile area of the Object Dictionary and they
provide a set of services for device configuration, data transfer, some special
functions such as synchronization, time stamping, emergency notification and
network management.
CANopen also specifies application data objects that are manipulated by the
device’s application program. These application objects are defined in the
device profiles area of the Object Dictionary. They describe the default behavior
and optional functionality of the devices.

A key feature of CANopen is the scalability. While the range of objects and
services is broad the number of mandatory requirements in the CANopen
standard is reasonably low and allows for simplified implementations in nodes
not requiring the full CANopen capability.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 22

4.5.1 Object dictionary
The object dictionary is essentially a grouping of objects accessible via the
network in an ordered pre-defined fashion. Each object is addressed using an
index and a sub index.
The object dictionary provides access to all data types used in the device; to the
communication objects and the application objects.
The overall layout of the standard Object dictionary is summarized in Table 1.

Table 1: Organisation of the object dictionary

Index Object
0000 Not used
0001-001F Static data types
0020-003F Complex data types
0040-005F Manufacturer specific data types
0060-007F Device profile static data types
0080-009F Device profile complex data types

Data types

00A0-0FFF Reserved
1000-1FFF Communication profile area Communication

parameters
2000-5FFF Manufacturer specific profile area
6000-9FFF Standardized profile area

Application data

A000-FFFF Reserved

The communication profile is common to all devices connected to the network
(with different values). It defines the communication objects and the associated
parameters. The device profile part is specific to each device. It contains the
used application objects.
The knowledge of the object dictionary of a device is sufficient to know the
behavior of a device on the network.

4.5.2 Electronic Data Sheets
The description of the object dictionary of a device is provided in the form of an
electronic data sheet (EDS), which is an ASCII file with a strictly defined
syntax. The EDS is a standardized way to describe a device, it facilitates the
exchange of information. It can be used in various configuration tools and helps
for designing networks with CANopen devices. The use of EDS can be part of
the COB-ID allocation process described in Annex D.

4.5.3 Communication objects
Two general categories of communication objects can be identified: the objects
responsible for application data transfer and objects for network management.
Service data objects provide indexed access to all objects in a device via the
object dictionary and process data objects provide direct access to application
objects making it possible to implement real time data exchange mechanisms.
The network management communication objects are used to control the
initialization and the communication state of nodes and they enable continuous
supervision of the communication status of nodes.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 23

4.5.3.1 Service Data Objects (SDO)
The CANopen Service Data Objects (SDOs) are used to access the object
dictionary of a device. Since the object dictionary entries may contain data of
arbitrary size and type, an SDO can be used to transfer data of any type
(variables, programs, etc.) and any size. SDOs are especially used for the
configuration of devices.
SDO communication follows a client/server model and is used to establish a
peer-to-peer connection between two nodes. The node requesting the access to a
remote object dictionary is the client and the owner of the accessed OD is the
server. The client can request data download to the server, data upload from
the server, and both can abort a transfer. The download/upload services are
confirmed, which means client and server uses 2 dedicated CAN-messages (one
for request, the other for reply).
When more than 7-octets of data are to be transferred, the data is segmented
and transferred in several CAN frames. The data field of the SDO request and
reply frames always contains 8 octets (even if it contains no meaningful data).

4.5.3.2 Process Data Objects (PDO)
The CANopen Process Data Objects (PDOs) are used for transmitting real time
process data. PDOs transfer up to 8 octets of data without protocol overhead
using unconfirmed service.
PDO communication follows a producer/consumer model. A PDO is transferred
from a single device (producer) to one or more devices (consumers). The
producer can request the unconfirmed Write PDO service to send data to
consumer(s); consumer(s) can request the Read PDO service by issuing a
Remote Transmit Request. The producer sends a Transmit PDO (TPDO) with
pre-defined COB-ID and contents corresponding to those defined in the Receive
PDO (RPDO) of one or more consumers.
The content of a PDO is precisely defined by means of the PDO mapping
parameters. The mapping parameters indicate which application objects in the
object dictionary are to be mapped into the PDO and what are their attributes
(type, size in bit, etc.). This mapping can be defined statically or configured by
means of SDO messages if the device supports “variable mapping” capability.
Typically, the PDO can be used for the acquisition of values (e.g. thermistor
values). For example, a PDO can be used to transfer 64 bits of digital data, or 4
analogue inputs of 16 bits each.
The communication behavior and priority of a PDO are defined by means of the
PDO communication parameters in the Object Dictionary of the device. They
define the COB-ID, transmission type and optionally a minimum time between
two consecutive PDOs and an event timer. The transmission type parameter
specifies the conditions under which the TPDO content is updated as well as
the criteria for PDO transmission.
PDO transmission can be synchronized by means of a synchronization object or
it can be event driven and thus asynchronous. The transmission type
parameter specifies for RPDO the condition under which the received message
is passed to the application. TPDOs and RPDOs have a number of transmission
types summarized in Table 2.

Table 2: PDO transmission types

TPDO
Transmission mode Triggering conditions

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 24

Cyclic SYNC Object only. At reception of the SYNC
object the content of PDO is updated and it is
sent.

Acyclic SYNC Object + Event. The content of the PDO
is updated by the occurrence of a device specific
event (e.g. a change of a value of a specific
parameter) and the PDO is transmitted
synchronously after reception of the next SYNC
object. Sy

nc
hr

on
ou

s
After RTR SYNC object + RTR. The content of the PDO is

updated at the reception of each SYNC object;
and the PDO is transmitted only after reception
of a remote transmit request.

After RTR RTR only. At the reception of a remote transmit
request the content of the PDO is updated and it
is transmitted.

A
sy

nc
hr

on
ou

s

On event Event only. The PDO content is updated and it
is sent by the occurrence of a device specific event
or a timer event.

RPDO
Reception mode Update condition

Synchronous SYNC object. The data of a synchronous RPDO
received after the occurrence of a SYNC is passed
to the application at reception of the next SYNC
message.

Asynchronous None. The data of asynchronous RPDOs is
passed directly to the application when received.

Figure 6 illustrates the cyclic transmission mode seen from the producer side.
In this example the PDO1 is defined as cyclic and PDO2 is defined as cyclic with
a period of two.

PDO1(N-1)

SYNC (N-1) SYNC (N) SYNC(N+1)

Update of PDO1(N-1)
and PDO2 (N-1)content

Update of PDO1(N)
content

Update of PDO1(N+1)
and PDO2 (N+1)content

PDO2(N-1) PDO1(N) PDO1(N+1) PDO2(N+1)PDO1(N-1)

SYNC (N-1) SYNC (N) SYNC(N+1)

Update of PDO1(N-1)
and PDO2 (N-1)content

Update of PDO1(N)
content

Update of PDO1(N+1)
and PDO2 (N+1)content

PDO2(N-1) PDO1(N) PDO1(N+1) PDO2(N+1)

Figure 6: Cyclic transmission mode (Producer).

Figure 7 illustrates the synchronous and asynchronous reception modes seen
from the consumer side. PDO1 is defined as synchronous and PDO2
asynchronous reception mode.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 25

PDO1(N-1)

SYNC (N-1) SYNC (N) SYNC(N+1)

Content of PDO1(N-2)
passed to application

Content of PDO1(N-1)
passed to application

Content of PDO1(N)
passed to application

PDO2(N-1) PDO1(N) PDO1(N+1) PDO2(N+1)

Content of PDO2(N-1)
passed to application

Content of PDO2(N+1)
passed to application

PDO1(N-1)

SYNC (N-1) SYNC (N) SYNC(N+1)

Content of PDO1(N-2)
passed to application

Content of PDO1(N-1)
passed to application

Content of PDO1(N)
passed to application

PDO2(N-1) PDO1(N) PDO1(N+1) PDO2(N+1)

Content of PDO2(N-1)
passed to application

Content of PDO2(N+1)
passed to application

Figure 7: Synchronous and asynchronous reception mode (Consumer).

Figure 8 illustrates the acyclic synchronous transmission of a PDO based on an
application specific event.

SYNC (N-1) SYNC (N) SYNC(N+1)

Update of PDO3 (N-1)
content

Device event

Update of PDO3 (N)
content

Device event

PDO3(N-1) PDO3(N)

SYNC (N-1) SYNC (N) SYNC(N+1)

Update of PDO3 (N-1)
content

Device event

Update of PDO3 (N)
content

Device event

PDO3(N-1) PDO3(N)

Figure 8: PDO with acyclic transmission mode (Producer)

Figure 9 illustrates the synchronous updating of the content of a PDO.

SYNC (N-1) SYNC (N) SYNC(N+1)

Update of PDO4 (N-1)
content

Update of PDO4 (N)
content

Update of PDO4 (N+1)
content

PDO4(N)

Remote
Transmit
Request

SYNC (N-1) SYNC (N) SYNC(N+1)

Update of PDO4 (N-1)
content

Update of PDO4 (N)
content

Update of PDO4 (N+1)
content

PDO4(N)

Remote
Transmit
Request

Figure 9: PDO with synchronous RTR transmission mode (Producer)

4.5.3.3 Synchronization object (SYNC)
The CANopen SYNC object is used to synchronize devices connected to the
network.
The SYNC object is periodically issued by a SYNC producer which provides the
synchronization signal for the SYNC consumers. Upon reception of the signal
the latter carry out their synchronous tasks. It could be application specific
actions, or standard actions such as triggering of the transmission of PDO as
shown in the previous section.
In order to guarantee timely access to the CAN bus the SYNC object is given a
very high priority identifier. By default, the SYNC object does not carry any
data.
There can be a time jitter in the transmission of the SYNC object. Typically the
jitter would be caused by another message being transmitted on the bus just
before the SYNC object. As such the uncertainty in the delay in the

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 26

transmission of the SYNC object would be in the order of one CAN message. A
time jitter may also be introduced in case of priority inversion.
The SYNC object does not provide any dedicated mechanism to allow for
detection of double frames.
Priority inversion and double frames are further described in Annex E.

4.5.3.4 Emergency object (EMCY)
The CANopen emergency object is used to transmit information about the
status of a device. A device can use emergency objects to notify other devices
when it encounters an internal error situation.
The emergency object contains the content of an error register, the
standardized error codes defined in the communication profile, as well as
device specific error codes specified in device profile.
The emergency object is optional and if a node supports it, it must at least
implement two error codes (Error Reset/No Error and Generic Error). A device
supporting the emergency object will be in one of two states, Error Occurred or
Error Free. Emergency messages will be transmitted when the node (re)enters
either of the two states.

4.5.3.5 Network management objects (NMT)
The Network Management (NMT) Objects provide services for network
initialization, control of the communication state of each node as well as error-
and device status control.
The network management follows a master-slave structure. One device within
the network fulfils the function of the NMT master, controlling all the slave
nodes.
The CANopen NMT services include the services listed below. The applicability
of these services are specified in the normative clause 6.

Module Control Services
The communication state of a node is based on the state diagram of a CANopen
node and indicated in Figure 10. The state diagram defines the state of a node
with regard to its communications capability. In Figure 10 the active
communication objects are indicated for each state.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 27

Initialisation finished – enter
PRE-OPERATIONAL automatically

Start_Remote_Node indication

Stop_Remote_Node indication

Enter_Pre-Operational_State indication

Reset_Node or Reset_Communication indication

Trigger for state transition

Initialisation

Boot-Up Object

Pre-Operational

SDO, SYNC,
EMCY, NMT

Stopped

NMT

Operational
SDO, PDO, LDUT,

SYNC, EMCY, NMT

Power on

Initialisation finished – enter
PRE-OPERATIONAL automatically

Start_Remote_Node indication

Stop_Remote_Node indication

Enter_Pre-Operational_State indication

Reset_Node or Reset_Communication indication

Trigger for state transition

Initialisation finished – enter
PRE-OPERATIONAL automatically

Start_Remote_Node indication

Stop_Remote_Node indication

Enter_Pre-Operational_State indication

Reset_Node or Reset_Communication indication

Trigger for state transition

Initialisation

Boot-Up Object

Pre-Operational

SDO, SYNC,
EMCY, NMT

Stopped

NMT

Operational
SDO, PDO, LDUT,

SYNC, EMCY, NMT

Power on

Figure 10: State Diagram of a CANopen device.

The state transitions are controlled by the NMT master by means of the
Module Control Services: Start Remote Node, Stop Remote Node, Enter Pre-
Operational state, Reset Node and Reset Communication.

Error Control Services
The Error Control Services provide mechanisms to detect failures in a CAN
based network. The Error Control Services include Node Guarding, Life
Guarding and Heartbeat services. The Node Guarding and Life Guarding
services are based on requests issued by an NMT Master.
In Node Guarding, the NMT Master issues a request to an individual node and
expects a reply within a certain time. In Life Guarding, a remote node expects
guarding requests from the NMT Master within a certain time.
The Heartbeat service is not based on requests. Instead each node transmits a
heartbeat message autonomously with a certain periodicity. One or several
nodes on the network will listen to this heartbeat and take action if the
heartbeat message is not received within the defined time. The Heartbeat
message can be produced or consumed in all NMT states except the
Initialisation.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 28

Bootup Service
When a node enters the Pre-Operational state from the Initialising state, the
node transmits a Bootup Event message to notify an NMT Master of the
bootup.

4.5.4 Device profiles
A device profile defines the basic functionality every device within a device
class must support. It also defines the way the functionality is made accessible
through the CAN bus and what CANopen communication objects are needed to
access this functionality.
Devices profiles are built on top of the CANopen communication profile. They
specify supported application objects (input and output signals, device
configuration parameters, device functions, etc.), additional data types,
additional error codes, and default value of communication objects (default
PDO mapping and communication parameters).
The exchangeability of devices from different manufacturers is supported by
the specification of standard device profiles. Profile for Inputs/Outputs modules
and encoders are two examples that are exiting in the industrial community.
Standardization gives an understandable and unique behavior of devices on the
CAN network, enabling for example easy configuration of devices over the bus.
There is also the possibility to define manufacturer specific device profile for
manufacturer specific functions. For example considering an I/O device, the
basic read analogue inputs function is defined in the I/O standardized device
profile, and specific ADC configuration function can be defined in manufacturer
specific device profile.
This standard does not specify device profiles. It is however recommended that
the device profiles specified by the industrial community are considered when
specifying and designing CAN devices.

4.6 Synchronous data transfers over CAN bus
4.6.1 General protocol for synchronous data transfers

The command and control applications on spacecraft require the ability to
perform synchronous data transfers. Synchronous transfers are those with
rigorous timing constraints, and are typically used for periodic data acquisition
from sensors and precisely timed commanding of actuators for real time control
functions, e.g. attitude control, power management and thermal regulation and
for periodic housekeeping acquisitions.
This standard specifies how to perform synchronous data transfers over CAN
bus. The specified scheme uses the CANopen process data objects in
conjunction with the SYNC object to achieve synchronous data transfers.
The SYNC object is produced periodically and the concerned nodes react upon
the reception of the synchronizing message by issuing synchronous PDOs.

4.6.2 Communication slot organization
Some buses used onboard spacecraft, like MIL-STD-1553 or OBDH, use fixed
timing structures to organize the bus traffic in communication slots. Activities
to be performed within each slot time interval can then be pre-defined. The

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 29

timing structure may be defined with slots and possibly sub-slots depending
the timing granularity required as shown in Figure 11.

Time Slot i+1Time Slot iTime Slot i-1

Sub-Slot i, j+1Sub-Slot i, jSub-Slot i, j-1

time

Time Slot i+1Time Slot iTime Slot i-1

Sub-Slot i, j+1Sub-Slot i, jSub-Slot i, j-1

time

F
igure 11: Framing organisation.

Since the CAN bus is inherently asynchronous, there is no notion of slots.
However, a synchronous slotting scheme can be implemented by means of
CANopen communication objects.
If a slotted communication scheme is desirable the slot structure can be defined
by the periodical transmission of SYNC objects. However, slot number
information cannot be carried by the SYNC object because it conveys no data.
Instead PDOs can be used to periodically broadcast the number of the
upcoming slot before the reception of the next SYNC object.
While a detailed scheme for such communication is out of scope for this
standard, it can be easily implemented using configurable features of
CANopen.

4.7 Transfer of large data units
A common requirement on modern spacecraft is to transfer formatted data
units such as packets or messages between onboard applications. Where the
applications reside on different onboard nodes, these data units must be
transferred across the onboard bus. Systems that implement CANopen can use
the techniques defined within that standard to transfer large data units.
However, this standard specifies an alternative large data unit transfer
technique that can be used without requiring CANopen segmented-SDO
mechanisms to be implemented and can co-exist with CANopen on a single bus.
The independence of CANOpen and LDUT is illustrated in Figure 12.

ISO - 11898 Physical Layer

N
ode

M
anagem

ent

CAN ISO-11898 Data Link Layer

LDUT

CANOpen

LDUT
SAP

CANOpen
SAP

Figure 12: Relationship between CANOpen and LDUT

The CAN bus limits the maximum number of data octets to eight per frame, so
any data unit larger than this must be segmented and transferred in several

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 30

frames. Any data unit requiring segmentation is considered to be a large data
unit.
To make the transfer of large data units reliable requires the exchange of
protocol control information that indicates the relationship of the segments
making up the large data unit, and assists in the receiving process. This
protocol control information must be encoded into CAN bus frames. The
encoding technique that is proposed here makes use of the 29-bit identifier of
the CAN 2.0B extended frame format, so that up to eight octets of segment
data can be carried in each frame. The encoding scheme has been selected to
enable this protocol to co-exist with CANopen on a single CAN bus.
The large data unit transfer scheme is defined in clause 8.

4.8 Time distribution
Virtually all space missions require that the spacecraft provide the capability
to maintain and distribute time information on board. The time information is
used for a variety of functions including time stamping of measurement data
and control and scheduling of delayed execution of telecommands.
The on board time is implemented as a centralized time reference. However,
there are typically many items of onboard equipment that also need to
maintain local time information. A mechanism to distribute the central time
and to keep the local times synchronized with the central time reference is
therefore required.
This standard specifies two protocols that allows for time distribution and
synchronization over the CAN bus. The accuracy of the time distribution and
synchronization depends on the bit rate of the CAN bus as well as on the actual
implementation of the protocols.
A time distribution protocol is specified that does not provide any special
means to control the accuracy of the time distribution. As such the accuracy is
application and implementation dependent. Accuracy in the millisecond range
can be achieved using this protocol.
In addition, a high-resolution time distribution protocol is specified. The high-
resolution time distribution protocol provides the best possible synchronization
accuracy that can be achieved when distributing time over the CAN bus.
Disregarding implementation uncertainties and delays the specified protocol
allows for synchronization accuracy in the microsecond range. The high-
resolution time distribution protocol is based on the CANopen High Resolution
Synchronization protocol.
It should be noted that CANopen specifies two optional protocols and time
formats for time distribution and synchronization using the so-called TIME
object. Neither of these is directly suitable to be applied for space applications
due to differences in the data types used for representing the time in CANopen
compared to existing standards for spacecraft on board time formats.
The recommended time distribution techniques are defined in clause 9.

4.9 CAN object identifier assignments
The CAN object identifiers (COB-IDs) determines the priorities of the
communication objects. The assignment of the COB-IDs to the different
communication objects (CAN frames) has consequently a direct impact on the
real- time characteristics of the bus communication.
All implementations of the CAN bus uses either 11-bit or 29-bit identifiers. 11-
and 29-bit identifiers can be used simultaneously in the same system.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 31

In order to allow for system optimizations and to minimize the impact of
system modifications, it is important that all devices provide some possibility to
modify the COB-IDs. This standard specifies the minimum requirements
needed to allow for late modifications to COB-ID assignments.
CANopen specifies a mandatory pre-assignment of COB-IDs known as the pre-
defined connection set. The purpose of this pre-assignment is to guarantee off-
the shelf compatibility before system integration. At system integration time
updated COB-IDs can be stored, e.g. in a non-volatile memory, in each device if
the device supports this capability. This standard considers the use of the pre-
defined connection set as optional, and proposes how to perform COB-ID
assignment.
This standard also addresses how to perform COB-ID assignment for systems
implementing two or more identical devices that are connected to the same
physical bus and operates simultaneously in hot redundancy.
The requirements for identifier assignment are specified in clause 10.

4.10 Redundancy management
Spacecraft onboard communication buses are typically implemented using a
redundant physical media topology that is resilient to single point failure on
cabling or connectors faults.
Neither the CAN bus specification ISO 11898 nor the CANopen standard
defined redundancy management at the moment of the preparation of this
recommendation. However, both specifications define capabilities that are
suitable when implementing a highly reliable bus system.
A redundant communication system requires redundant communication
channels and also a redundancy management scheme. Components that may
be redundant are the bus i.e. the physical connection, the bus transceiver and
the bus controller.
This standard specifies a selective bus access architecture that allows a node to
communicate on one bus at a time. In addition, a parallel bus access
architecture is specified that allows a node simultaneous communication on
both a nominal and a redundant bus.
A redundancy management scheme for a cold redundant bus system is
specified compatible with the defined bus interface architectures. Redundancy
management for hot redundant bus systems as well as node level redundancy
management are very application specific and therefore outside of the scope of
this document.
The redundancy management scheme defined in this standard uses the
CANopen Heartbeat object as a means to monitor and control the bus system.
The redundancy management is discussed in clause 11. Additionally some
implementation guidelines are included in Annex B.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 32

5

Physical layer (normative)

5.1 Introduction

5.1.1 Scope

The CAN physical layer is comprised of the electrical, mechanical and
performance characteristics of the cabling, connectors, termination resistors,
CAN transceivers, and optional optical couplers that may be used in a
spacecraft application.
The philosophy of this document is to make reference to ISO 11898-1 and
ISO11898-2 wherever possible; detailing only the specific deviations or
additions required to satisfy the requirements for spacecraft applications.
For convenience, the Data Link layer description is included in this document
within the physical layer clause. The Data Link conforms to ISO 11898-1,
which is based on the Bosch CAN 2.0B (1991) specification, [1].

5.2 Topology

5.2.1 Physical topology (R)

Two physical topologies are recommended:
• Linear multi-drop
• Daisy chain

Multi-drop devices, Figure 13, feature only one bus connector per CAN bus and
are linked to the main bus via a drop cable stub.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 33

 Can bus

Device 1 Device 2 Device n

T-Coupler

Figure 13: Linear Multi-drop Topology

Daisy chain devices, Figure 14, feature one input bus connector and one output
bus connector and are connected in series.
 Can bus

Device 1 Device 2 Device n

Figure 14: Daisy Chain Topology.

The two topology options can be employed exclusively or in combination.
a. Devices supporting the daisy-chain topology shall be capable of use in the
multi-drop topology, utilising only the daisy chain input bus connector.
 NOTE: It is recommended that equal cable lengths between devices are
avoided to minimise standing waves. Similarly drop (stub) cable lengths should
generally not be equal.

NOTE: Nominally, a single 120-ohm (or ideally, split – matched pair nominal
60-ohm resistors if employing a transceiver that supports a split bus
configuration) terminating resistor should be installed at each extreme end of
each bus segment.
NOTE: The precise values of terminating resistors should be calculated,

based on the particular CAN bus implementation, length, and
topology. It is recommended that the issues raised in [5] are
considered.

5.2.2 Maximum bus length and drop length (R)
It is recommended that the maximum bus and drop lengths are implemented
as per ISO 11898-2.
Additional considerations and requirements are addressed in 5.5.3.

5.2.3 Minimum number of network devices (R)
It is recommended that the CAN interfaces of each node is designed such that
it can be incorporated in a system with at least 64 network nodes.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 34

NOTE: The maximum number of network devices in a system is a function
of the electrical properties of the devices and circuits of the CAN
transceivers. Requirements for the CAN transceivers are specified
in clause 5.4.

5.3 Medium
5.3.1 Cable requirements

5.3.1.1 CAN primary bus (M)
a. Each CAN node shall implement provision to carry one CAN bus in

accordance with the physical medium specification of ISO 11898-2.

5.3.1.2 CAN redundant bus (M)
a. If implemented, the second (redundant) CAN bus shall also be carried in

accordance with the physical medium specification of ISO11898-2.

5.3.1.3 CAN bus cable (M)
a. The CAN bus cable shall be compliant with ISO 11898-2.
NOTE: The specific CAN bus cable selection is left to the system engineer.

5.3.1.4 Shield – system specific (R)
a. It is recommended that all implementations employ shielded cables.
NOTE: The specific details of each implementation are left to the system

designer to satisfy specific system requirements. However, the
recommendation is to shield each CAN signal pair with individual
shields. In most spacecraft applications it is desirable to include an
overall cable shield.

5.3.2 Connector

5.3.2.1 Connector type – system specific (R)
It is not practical to define a connector to suit all applications. Therefore, this
specification maintains a list of recommended connector configurations in
Annex A. When a suitable connector from Annex A is selected, device-on-bus
compatibility can be maintained by implementing the recommended
configuration and signal pin-out for that connector.

5.3.2.2 Receptacles (M)
a. Receptacles shall be used on board and unit assemblies.
b. Receptacles shall be equipped with male contacts.
c. Receptacles with flying leads shall be used for connection to a PCB rather

than PCB mounting connectors to improve mechanical shock and vibration
resistance of the unit.

d. Soldering shall conform to ECSS-Q-70-08.
e. Crimping shall conform to ECSS-Q-70-26.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 35

5.3.2.3 Plugs (M)
a. Plugs shall be used on cable assemblies.
b. Plugs shall be equipped with female contacts as follows:
 1. The conductors shall be directly soldered or crimped to the contacts.
 2. The overall shield shall be connected to the shell via an EMI backshell.
c. Soldering shall conform to ECSS-Q-70-08.
d. Crimping shall conform to ECSS-Q-70-26.

5.3.2.4 Reserved pins (M)
a. Any pins designated as ‘Reserved’ in Annex A are not for use by system

designers, as they may be assigned a specification in the future. They shall
not be used for any purpose.

5.3.2.5 Bus terminators (M)
a. Bus terminators shall be implemented according to ISO11898-2.
b. Terminating resistors shall not be incorporated inside equipments.
NOTE 1: Terminating resistors may be incorporated inside a CAN bus cable

harness or CAN bus cable connector.
NOTE 2: A termination resistor implemented outside the equipments eases

tuning of the actual resistor value in a particular system
configuration.

5.3.3 Shield Grounding – system specific (R)

a. There shall be a connection of the CAN signal shield at the digital ground
of each device’s interface circuitry.

NOTE: Each implementation will have specific requirements that shall be
taken into account by the system designer.

5.4 Transceiver Characteristics

5.4.1 Transceiver electrical characteristics (M)

a. Transceivers shall satisfy the physical medium attachment sub-layer
specification of ISO 11898-2.

5.4.2 Resistance to electrical CAN bus faults (R)

a. Full compliance with ISO 11898-2 section 7.6, Bus Failure Management, is
required.

5.4.3 Optical isolation (R)

To minimize electrical disturbances it is recommended that an optical isolation
of the CAN signal is implemented between the CAN transceiver and the CAN
controller. For such implementations an isolated power supply should power
the components on the bus-side of the optical couplers.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 36

Figure 15 illustrates the principles of optical isolation. The detailed
specification or design of the optical isolation is however outside the scope of
this standard.

CAN Lo

CAN Controller

CAN
Transceiver

Isolated
Power
Supply

CAN Hi

Figure 15: Principle of optically isolated bus interface

a. Equipments implementing an optically isolated bus interface shall comply

with the specifications of this standard.
NOTE 1: This ensures that it is possible to connect both optically isolated

and non-isolated nodes to the same network.
NOTE 2: Opto-isolators will impose an additional propagation delay that

could restrict the maximum possible bus length. The design of the
bus interface should thus be made such that the maximum round
trip interface delay time for a device is still compliant with the bit
timing requirements of section 5.5.

5.4.4 Transceiver implementation based on RS-485 transceivers (O)
Optionally, and in order to ensure the primary objective to be suitable for the
majority of spacecraft missions, implementations of the physical layer based on
RS-485 transceivers can be considered.
a. ISO11898 and RS-485 devices shall never be used on the same bus.
b. This choice shall be made on a project basis, only if ISO11898 compliant

components do not fulfil the specific mission requirements.
NOTE: Please note that this option precludes the highly desirable “device-
across-the-industry electrical compatibility” so this option should be avoided
whenever possible.

5.5 Bit Timing

5.5.1 Bit rate 1 Mbps (M)

a. All devices shall support the 1 Mbps high-speed CAN bit rate.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 37

NOTE: ISO 11898 specifies high-speed CAN as 125 Kbps to 1 Mbps.

5.5.2 Other bit rates (O)
A device may optionally support one or more other high-speed CAN rates.
a. If a device supports more bit rates than specified in clause 5.5.1 it shall

support one or more of the following rates:
• 500Kbps
• 250Kbps
• 125Kbps

b. A device may implement bit rates not specified in this standard if the
device also implements all bit rates specified in this standard.

5.5.3 Bit Timing (M)
Bit timing parameters are specified to maintain compatibility with devices
implementing parameters specified in the CANOpen specification. Further
information about bit timing parameters are available in [5].
It is important that the oscillator or any other source used for deriving the
nodes’ bit timing support reliable 1Mbps data communication. The choices
made are critical for stable, reliable and error-free CAN bus operation
considering frequency drift due to: aging, temperature instability, jitter, etc.
a. For the 1Mbps option, the bit sample point shall be between 75% and 99%

of the bit time.
NOTE: It is strongly recommended to use a sampling time of 80% or later.
b. For the 250 Kbps option, the bit sample point shall be between 88% and

99% of the bit time.
c. For the 500Kbps and 125Kbps options, the bit sample time shall be

determined by consulting [5].
d. The synchronisation jump width shall be 1 time quanta.
e. Synchronisation shall be performed on ‘recessive to dominant’ edges only.
f. For the 1Mbps bit rate, each device’s CAN interface round trip propagation

time shall be less than 210ns.
g. For the 250Kbps option, each device’s CAN interface round trip

propagation time shall be less than 300ns.
h. For the 500Kbps and 125Kbps options, the round trip propagation time

shall be determined by consulting [5].

5.6 Electromagnetic (EMC) Compatibility (R)
The specification of requirements for EMC is out of scope for this standard. The
specification of EMC related requirements are the responsibility of the
equipment and system designers.
ECSS-E-20A Space engineering, Electrical and electronic [21] specifies general
requirements for EMC control.

5.7 Data Link Layer (M)

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 38

5.7.1 ISO 11898 Compliance (M)
a. The CAN Data Link layer shall comply with ISO 11898-1.
The ISO 11898-1 document inherits data link layer definitions from the Bosch

specification, [1].

5.7.2 Fault confinement (M)
a. The Data Link layer shall implement fault confinement, as specified in ISO

11898-2 section 7.6, Fault Confinement.
The ISO 11898-2 document inherits fault confinement definitions from the
Bosch specification, [1]. It is left to the system engineer how to best utilize the
fault containment mechanisms provided for in section 7.6 of the ISO reference.
The ISO 11898-1, specifies that Bus Off and Normal Mode indications shall be
provided to the application. In addition to these indications it is recommended
that indication of Error Active and Error Passive are also provided to the
application.
It is further recommended that implementers provide read access to the error
counters to allow assessment of the quality of the bus.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 39

6

CANopen higher layer protocol (normative)

6.1 General (M)
a. The implementation of the application layer protocol shall be according to

CANopen.
NOTE: This is an overall general requirement. It shall be noted that this

standard also specifies additional details or constraints in addition
to those specified by CANopen. The following sections detail these
requirements further.

6.2 Communication Objects

6.2.1 Service Data Objects (M)
a. All devices shall implement at least one server SDO.
b. The SDO shall be implemented as specified in CANopen.
NOTE 1: This is in order to ensure access to the device Object Dictionary. In

systems only requiring configuration on ground, the Client SDO
can be implemented in a PC or similar. SDOs could be used for
configuration of the CAN nodes in-flight. This choice is left to the
particular application and out of scope for this standard.

NOTE 2: An SDO can be used to transfer large data units. Optionally the
Large Data Unit Transfer protocol specified in clause 8 can be used
instead.

6.2.2 Process Data Objects (O)
CANopen restricts the number of different PDOs to 512 Transmit PDOs and
512 Receive PDOs per node. A device can implement an arbitrary number of
PDOs up to the limit defined by the CANopen standard.
a. PDOs shall be implemented according to the CANopen specification.
NOTE: Optionally, variable PDO mapping and multiplexed PDOs can be

implemented and used.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 40

6.2.3 Synchronisation object (O)
a. All devices requiring synchronous communication shall implement a SYNC

object.
NOTE: A device might be a SYNC producer or SYNC consumer depending

on its functionality.
b. The SYNC object shall be implemented according to CANopen.

6.2.4 Emergency object (O)
CANopen specifies an optional emergency object. This standard specifies an
optional use of the Emergency object within the bus redundancy management
scheme. In addition the Emergency object can be used for other error reporting.
a. Error reporting shall be done by means of the Emergency object.
b. The Emergency object shall be implemented as specified in CANopen.
NOTE: CANopen specifies a number of error codes covering a wide range

of error cases.

6.2.5 Network management objects (M)
CANopen specifies services for management of nodes (NMT) connected to the
network. These services are based on communication objects for starting,
resetting and stopping a node as well as for monitoring node status via the
network.

6.2.5.1 Module Control Services (M)
a. All devices shall implement the following CANopen NMT Module Control

Services:
• Start Remote Node
• Stop Remote Node
• Enter Pre-Operational
• Reset Node
• Reset Communication

b. The NMT Module Control Services shall be implemented as specified in
CANopen.

6.2.5.2 Error Control Services (M)
CANopen specifies that it is mandatory to implement either the Node/Life
Guarding or the Heartbeat services and protocols. This standard is more
restrictive and specifies the Heartbeat service and protocol as mandatory.
a. All devices shall implement the Heartbeat service as specified in CANopen.
NOTE: This implies that, as a minimum, all nodes shall provide the

capability to generate Heartbeat messages. In case the Heartbeat
is used in a particular system, there need to be at least one
Heartbeat consumer. It is left to the system designer to specify the
need for a Heartbeat consumer.

b. All devices implementing the redundancy scheme defined in the clause 11
of this standard shall implement a Heartbeat consumer.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 41

NOTE: The bus redundancy management scheme defined in this standard
requires all the slave nodes to consume the redundancy master
Heartbeat message.

6.2.5.3 Bootup Service (M)
a. All devices shall implement the Bootup service as specified in CANopen.

6.2.5.4 Node state diagram (M)
a. All devices shall implement the NMT state diagram as specified in

CANopen.
NOTE: The NMT state diagram is further indicated in Figure 10 (page 27).

6.3 Electronic Data Sheets (M)
a. For each device, the device manufacturer shall provide an Electronic

Data Sheet in line with the CANopen standard.

6.4 Device & Application Profiles (O)
The detailed definition of CANopen Device and Application profiles is outside of
the scope for this standard.
a. When a device profile is to be defined, the device profile designer shall

coordinate the allocation and definition of the profile with CiA for
inclusion in their database.

NOTE: This is in order to ensure that any device profile defined within the
space community is compatible with the CANopen device profile
requirements.

b. Each device that implements a built-in self-test functionality shall
provide the means to start the test by means of access to an object in the
device object dictionary.

c. The result of the test shall be accessible in a dedicated object.

6.5 Object Dictionary (M)
a. All devices shall implement an object dictionary according to CANopen.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 42

7

Synchronous data transfers (normative)

7.1 Synchronous communications (O)
a. Synchronous data transfers shall be performed using synchronous PDOs.
NOTE: Synchronous PDOs’s transfers are synchronized by receipt of

SYNC object.
b. The SYNC producer shall be capable of sending the SYNC object according

to CANOpen.
NOTE: One device within the network acts as SYNC producer by issuing

periodically the SYNC object.
c. SYNC consumers implementing the SYNC capability shall react on SYNC

object’s reception according to CANOpen.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 43

8

Transfer of large data units (normative)

8.1 Introduction
In order to support the transfer of large data units, i.e. data units that consist
of more than eight octets, it is necessary to implement a frame spanning
mechanism over the basic CAN bus. CANOpen provides SDOs to perform large
data unit transfers, but for nodes that do not implement the CANOpen
segmented-SDO mechanism, the Large Data Unit Transfer (LDUT) protocol
specified in this section can be used instead.
Frame spanning allows a sending node to segment a large data unit and
transmit it as a series of CAN frames. The receiving node can then reassemble
the large data unit from these frames.
This protocol uses the extended COB-ID of the CAN 2.0B frame format to
convey protocol control information, thereby enabling a full cargo of 8-octets to
be transferred in every segment. The protocol preserves the inherent priority
based scheduling of CAN bus and combines this with node addressing to
support traditional messaging requirements. The protocol engines required for
the proposed protocol could be implemented in hardware or software4.
The protocol can co-exist with CANopen on a single CAN bus network, provided
that the assignment of COB-IDs is correctly profiled to allow this. The protocol
uses a single CANopen PDO pre-defined connection set function code value
that must not be used by any CANopen node. In general, if this protocol is
used, it must be ensured that no COB-ID values that could conflict with this
protocol are assigned for other purposes.

8.2 Identifier encoding (D)
a. The elements of protocol control information that shall be conveyed are:

• The function ID,
• The priority indicator,
• The frame type,
• The source address,

4 Software implementations of CAN bus protocols will always be relatively demanding of processor resources
because of the small size of the CAN frame. However, prototype implementations in software are none the less
feasible.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 44

• The destination address,
• The Protocol ID,
• A Toggle Bit.

b. Each segment of the data unit shall be transmitted in sequence.
c. The encoding of the protocol control information in the 29-bit COB-ID field

shall be as shown in Figure 16.

Figure 16: LDUT COB-ID encoding

8.2.1 Function ID field (D)
The function ID field is the most significant field for bus medium arbitration.
Therefore all messages transferred using this protocol will have a well defined
priority with respect to any CANopen services being operated on the bus.
a. The value assigned to the function ID field shall, on a given CAN network,

be unique to the large data unit transfer protocol and not used for any
other purpose.

NOTE 1: This ensures that there will be no other frames on the CAN
network that will have the same COB-IDs as the large data unit
transfer protocol.

NOTE 3: It is possible to assign more than one value to the function ID field
thus implementing more than one large data unit transfer service.

8.2.2 Priority field (D)
The 1-bit priority field is the next most significant bit in bus medium
arbitration, and the value used in this field therefore determines the priority of
handling of the frame within this service. This bit allows selecting between
expedited and non-expedited data transfer.

• ‘0’: Expedited
• ‘1’: Non-Expedited

8.2.3 Frame Type Field (D)
The frame type field permits to distinguish among the different types of frames
used by the LDUT protocol.
The protocol control frames types are detailed in section 8.3.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 45

Using different encoding for first, continuation, last and unsegmented data
provides a fully delimited transfer protocol. This enables unsegmented data to
be interleaved with segmented data from a given source node.
The use of a fully delimited protocol implies also very simple protocol engines
at both the sending and receiving ends of a transfer while allowing a variety of
transfer errors to be detected.
a. The frame type field encoding shall be as defined in Figure 16.

8.2.4 Source address field (D)
a. The 7-bit source address field shall indicate the source of the data segment.
b. The 7-bit source address fields shall correspond to the CANopen node ID.
NOTE: Carrying the source node identifier in the protocol control

information allows a receiving node to distinguish between
sequences of segments simultaneously arriving from different
nodes on the network.

8.2.5 Destination address field (D)
a. The 7-bit destination address field shall indicate the destination of the data

segment.
b. The 7-bit destination address fields shall correspond to the CANopen node

ID.

8.2.6 Protocol ID field (D)
The 4-bit Protocol ID field serves to label the content of the Large Data Unit
Transfer in order to distinguish among 16 different types of service data to be
carried over LDUT. The actual definition of the meaning of these bits is left for
the upper layers.

8.2.7 Toggle Bit field (D)
This toggling bit mechanism allows the receiver to detect missing and
duplicated segments.
a. This bit shall be toggled every two consecutive messages of the same LDUT

transmission.
NOTE: By using the segment count field it is possible to detect if double

frames are received.

8.3 Protocol control frames (O)
Optionally, the large data unit transfer protocol can use a simple
stop/resume/abort mechanism to implement flow control and error recovery in
order to provide a reliable data transfer service at the data link layer.
The extremely low probability of a frame being dropped over the CAN bus,
coupled with the fact that higher layer spacecraft protocols implement
acknowledgement and retry services, mean that there is no requirement to
acknowledge the receipt of each segment. Therefore this protocol does not
provide for it.
It shall be noted that this standard does not specify response/reaction times for
the protocol control frames. Care must thus be taken to ensure that a fast

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 46

frame producer could not send too many frames to a consumer before the
producer receives a control frame to stop transmitting.

8.3.1 Acknowledge frame (O)
a. Once a complete data unit has been successfully received, the receiver shall

transmit an acknowledgement frame to the sender
NOTE: This enables the sender to clear its transmit buffer for this

transfer.
b. The acknowledge frame format shall be according to Figure 16, with the

ACK frame type.

8.3.2 Stop frame (O)
a. If the receiver detects that it cannot receive the complete data unit, it shall

transmit a stop frame back to the sender.
NOTE: This could happen e.g. due to limited buffer space, or detection of

an error in the sequencing of segments.
b. The sender shall stop transmitting segments for this transfer on receipt of

the stop frame.
c. The format of the stop frame shall be according to Figure 16 with the STOP

frame type.

8.3.3 Resume frame (O)
a. When the receiver is able to accept more segments, or to recover from a

sequencing error, it shall transmit a resume frame back to the sender.
b. The resume frame shall indicate in the segment could field the segment

number the sender should resume from.
c. The resume frame format shall be according to Figure 16 with the

RESUME frame type.
NOTE: This standard does not specify retry policy issues, such as the

number of retries that shall be attempted, or whether time-outs
are used at the sending end.

8.3.4 Abort frame (O)
a. In the event that a receiver cannot receive the data unit, or wants to stop

the sender from transmitting further segments for this transaction, it shall
transmit an abort frame back to the sender.

b. On receipt of an abort frame, the sender shall clear its transmit buffer for
this data unit and notify the user that the data unit could not be
transferred.

c. The format of the abort frame shall be according to Figure 16 with the
ABORT frame type.

8.4 Selective acknowledgement for unsegmented transfers (O)
For unsegmented transfers, i.e. for data units of less than 8 octets, the protocol
provides a selective acknowledgement mechanism as follows:
a. If the unsegmented transfer is to be acknowledged, the sender shall set all

bits in the segment count field to 1.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 47

b. On receipt of an unsegmented data transfer with all bits in the segment
count field set to one, the receiver shall transmit an acknowledge frame
back to the sender.

c. If the unsegmented transfer is not to be acknowledged (default), the sender
shall set all bits in the segment count field to 0.

d. On receipt of an unsegmented data transfer with all bits in the segment
count field set to zero, the receiver shall not transmit an acknowledge
frame.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 48

9

Time distribution (normative)

9.1 Time objects (O)

9.1.1 Time code formats (D)
The definition of the Spacecraft Elapsed Time (SCET) and the corresponding
absolute Spacecraft Universal Time Coordinated (UTC) is addressed in PSS-04-
106, Issue 1 [22].
The time code format of the SCET is the CCSDS Unsegmented Time Code
(CUC) format. The CUC is an unsegmented binary count of seconds and binary
powers of sub-seconds. The SCET is thus a free running counter with a MSB of
up to 232 seconds and LSB sub-second representations down to 2-8, 2-16 or 2-24.
If the spacecraft provides the optional service of maintaining the UTC on
board, the format of the UTC shall be that of the CCSDS Day Segmented time
code (CDS). The CDS is a 16 or 24 bit binary representation of number of days
elapsed from a predefined epoch, 32 bits represent the number of ms and an
optional 16 or 32 bit field represents the sub-milliseconds.
This standard allows for either of the time code formats to be used as long as
all devices in the network support the selected time code format. There are
however, some limitations in terms of resolution and size of the fields.
a. Each device on the network that maintains time information shall comply

with the time object specifications in this section.
NOTE: It is not permitted to use both the Spacecraft elapsed time objects

defined in 9.1.2 and the Spacecraft universal time coordinated
(UTC) objects defined 9.1.3 on the same CAN bus.

9.1.2 Spacecraft elapsed time objects (D)
a. The Spacecraft elapsed time objects (SCET) shall be implemented in all

devices that maintain time information.
b. Each device shall implement one Local SCET Set and one Local SCET Get

object in the device Object Dictionary.
c. The Local SCET Set object shall allow setting the local time of the node via

the CAN bus.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 49

d. The Local SCET Get object shall allow reading the local time of the node
via the CAN bus.

e. The Local SCET Set and Local SCET Get objects shall be of a compound
data type according to the following SCET definition:

 STRUCT OF
 Unsigned 32 Coarse Time
 Unsigned 24 Fine Time (sub seconds)
 “SCET”
f. The Local SCET Set and Local SCET Get objects shall be mapped into the

CAN frame according to Figure 17.

Octet

Fine Time

1 2 43 5 6

SCET

Coarse Time

7

Figure 17: Format for objects containing the SCET
It is up to the implementation to decide the implemented size of the Fine Time
counter in a particular device.
g. If a device supports less than 24 bits of fine time, the unused least

significant bits shall be set to zeroes whenever the SCET is transmitted
from a device

h. If a device supports less than 24 bits of fine time, the unused least
significant bits shall be interpreted as don’t-care whenever a device
receives the SCET.

9.1.3 Spacecraft universal time coordinated objects (D)
a. The Spacecraft universal time coordinated (UTC) objects are optional.
b. Each device supporting UTC shall implement one Local UTC Set and one

Local UTC Get object in the device Object Dictionary.
c. The Local UTC Set object shall allow setting the local time of the node via

the CAN bus.
d. The Local UTC Get object shall allow reading the local time of the node via

the CAN bus.
e. The Local UTC Set and Local UTC Get objects shall be of a compound data

type according to the following UTC definition:
 STRUCT OF
 Unsigned 16 Day
 Unsigned 32 ms of day
 Unsigned 16 submilliseconds of ms
 “UTC”
f. The Local UTC Set and Local UTC Get objects shall be mapped into the

CAN frame according to Figure 18.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 50

Octet

ms of DaySubmilliseconds
of ms

1 2 43 5 6

Spacecraft UTC

Day

7 8

Figure 18: Format for objects containing the Spacecraft UTC
It is up to the implementation to decide if the “submilliseconds of ms” field is
used in a particular device.
g. If a device does not support the “submilliseconds of ms” field, the unused

least significant bits shall be set to zeroes whenever the time object is
transmitted from a device.

h. If a device does not support the “submilliseconds of ms” field, the unused
least significant bits shall be interpreted as don’t-care whenever a device
receives the time object.

9.2 Time distribution and synchronization protocols (O)
The time distribution and synchronization protocols specified below distributes
a sample of the central time to devices maintaining a local time.
The time distribution protocol provides a mechanism to transfer and read back
the time with no specific requirements on accuracy. The optional high-
resolution time distribution protocol allows for the best possible time
synchronization via the CAN bus. It is possible to use both protocols on the
same CAN bus.
This standard makes no assumptions on the relationship or maximum time
error between the central time and the local time. In particular, the frequency
of local time updating and any associated mechanisms for adjusting the local
time without loss or duplication of time codes are device and application
specific and outside the scope of this standard.
a. Each device on the network that maintains time information shall be

compliant to the Time distribution protocol (9.2.1) specification in this
section.

9.2.1 Time distribution protocol (D)
This protocol is based on a single PDO transmission from the Time producer to
one or several Time consumers. Read-back of the local times are facilitated by
means of dedicated PDOs. There are no specific features in this protocol to
control the accuracy of the time distribution.
a. The Time Producer shall map the Local SCET Get object (9.1.2) or the

Local UTC Get object (9.1.3) to a dedicated Spacecraft Time PDO transmit
PDO.

b. The Time Producer shall use the Spacecraft Time PDO to convey its local
time to the time consumers.

c. The Time Consumers shall map the Local SCET Set or Local UTC Set
objects to the Spacecraft Time PDO receive PDO.

d. There shall be only one Spacecraft Time PDO in a particular system.
e. Each Time consumer shall map the Local SCET Get object (9.1.2) or the

Local UTC Get object (9.1.3) to a dedicated Local Time PDO.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 51

f. The Time consumers shall use its Local Time PDO to convey its local time
on the CAN bus.

g. There shall be one Local Time PDO for each node maintaining local time.
NOTE 1: The various transmission types defined in CANopen makes it

possible to use a number of different methods to transmit the
Spacecraft Time PDO and Local Time PDOs. However, the details
are application specific and out of scope for this standard.

NOTE 2: If there is a need to distribute time during pre-operational state
(before entering the operational state) it can be done by updating
the time objects in the OD of the slaves by means of SDOs.

9.2.2 High-resolution time distribution protocol (O)
This protocol uses the SYNC object to achieve the highest possible
synchronization accuracy when distributing time over the CAN bus. Read-back
of the local times are facilitated by means of dedicated PDOs. The actual
accuracy of the time distribution is implementation dependent. Accuracy in the
microsecond range can be achieved with a bit rate of 1 Mbps.
a. The Time Producer shall map the Local SCET Get object (9.1.2) or the

Local UTC Get object (9.1.3) to a dedicated Spacecraft Time PDO transmit
PDO.

b. The Time Producer shall use the Spacecraft Time PDO to convey its local
time to the time consumers.

c. The value of the Spacecraft Time PDO shall correspond to the spacecraft
time when the last preceding SYNC object was successfully transmitted.

d. The High Resolution Time Distribution protocol shall be implemented
according to the CANopen High Resolution Synchronisation Protocol with
the following exceptions:
• The SYNC Producer and the Time Producer can be implemented as

separate entities.
 NOTE: The text in $9.3.2 in the CANopen specification implies that

the SYNC producer is identical to the Time Producer. This
standard does not impose such limitations.

• In cases where the SYNC Producer and the Time Producer are
separate entities the Time Producer shall implement the Spacecraft
Time PDO with a transmission type of 1-240.

 NOTE: Transmission types 1-240 imply that the Time Producer will
sample its local time on successful receipt of the SYNC object
and thereafter send the Spacecraft Time PDO.

• The Spacecraft Time PDO defined in a. above shall be used for
conveying the time information, i.e. the Time object as specified in
CANopen shall not be used.

e. The Time Consumers shall map the Local SCET Set or Local UTC Set
objects to the Spacecraft Time PDO receive PDO.

e. Each Time consumer shall map the Local SCET Get object (9.1.2) or the
Local UTC Get object (9.1.3) to a dedicated Local Time PDO transmit PDO.

f. Each Time consumer shall use its Local Time PDO to convey its local time
on the CAN bus.

g. There shall be one Local Time PDO for each node maintaining local time.
h. The value of the Local Time PDO shall correspond to the local time when

the last preceding SYNC object was successfully received.
The detailed mechanisms for transmission of the Local Time PDOs are out of
scope for this standard.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 52

It is left to the implementer to define if the sampling of the local time at the
occurrence of the SYNC object are to be implemented in H/W or S/W in order to
achieve the required accuracy. It is nevertheless recommended that generic
H/W implementations always provide the possibility to signal, e.g. by means of
an interrupt that the SYNC object has been successfully transmitted/received.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 53

10

CAN bus object identifier assignments

(normative)

10.1 CAN bus version (M)
a. The implementation of the CAN bus shall be compliant to ISO 11898-

1:2003.
NOTE: This implies that both 11-bit and 29-bit identifiers could be used on

the CAN bus

10.2 COB-ID assignment (M)
a. All devices shall allow COB-ID assignment as specified by CANopen.
b. COB-IDs restricted for a specific purpose in CANopen must not be used

other than for that particular purpose.
c. It shall be possible to change any non-restricted COB-ID of a device at any

time up to completion of system level test without need for a re-
qualification of the device.

NOTE: The COB-ID reassignment capability can be implemented by using
SDOs but also other means such as PROM boxes, straps in
connectors, S/W updates or similar could be considered if
acceptable for the particular application.

d. Each node connected on the CAN bus shall have a unique CANopen Node
ID.

NOTE: The CANopen Node ID is used by the NMT services.
e. Each hot redundant node connected to the same physical CAN bus shall

use different COB-IDs.
NOTE: In cases where two or more hot redundant nodes are connected and

actively operates on the same physical CAN bus, the
communication objects of each redundant node must be uniquely
identifiable.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 54

f. For each device, the default COB-ID allocation to be implemented before
delivery of the device shall be agreed between the customer and the
supplier.

NOTE: The COB-ID assignment upon device delivery is thus not restricted
to the CANopen pre-defined connection set. A recommended flow
for the COB-ID adoption process is presented in Annex D.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 55

11

Redundancy Management (normative)

11.1 General (O)
This clause specifies the implementation and protocol requirements related to
redundancy management at bus level. The redundancy management scheme is
based on the assumption that there is always one dedicated node responsible
for the bus redundancy management. In the following this node is denoted
Redundancy Master. The nodes not managing the bus redundancy are denoted
Slave nodes.
a. In any system implementing bus redundancy there shall be one and only

one active node assigned to be the Redundancy master.
b. The Redundancy Master shall be identical to the CANopen NMT master.

11.2 Node internal bus redundancy architectures (D)
This standard specifies two alternative architectures for the implementation of
the bus interfaces in the CAN nodes.
The selective bus access architecture allows communication on only one bus at
a time whereas the parallel bus access architecture allows simultaneous
communication on both a nominal and a redundant bus. Both architectures can
be used simultaneously in the same system.
a. Each CAN node interfacing redundant CAN buses shall be implemented

according to one of the two schemes specified in this section.
b. The Redundancy Master node shall implement the parallel bus access

architecture as specified in 11.2.2.
NOTE: This is to allow the bus Redundancy Master to passively listen for

messages on the redundant (not active) bus.

11.2.1 Selective bus access architecture (D)
The selective bus access architecture implements a single CAN controller and
interfaces the redundant CAN bus via two transceivers as illustrated in Figure
19. A bus selection mechanism is implemented between the CAN controller and
the transceivers allowing the application to select the bus to be used for
communication. This architecture allows communication on only one of the two
buses at a time.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 56

a. Nodes implementing the selective bus access architecture shall provide a
mechanism allowing the application to select which bus to use.

NOTE 1: The details of this selection mechanism is implementation specific
and out of scope for this standard.

NOTE 2: This scheme is not recommended for hot redundant bus
implementations since only one bus can be active at a time.

Enable
TX

Enable
TX

Bus B

CAN
Controller

Transceiver
B

Transceiver
A

Channel
selection

Bus A

Multiplexer &
Transceiver
Control

Figure 19: Selective bus access architecture

11.2.2 Parallel bus access architecture (D)
The parallel bus access architecture interfaces a redundant CAN bus through a
pair of CAN controllers as illustrated in Figure 20. This implies that each CAN
bus is fully and independently accessible via a dedicated CAN controller. The
detailed mechanisms for communication on the two buses are highly
application specific and out of scope for this standard.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 57

Enable
TX

Enable
TX

Bus A

CAN Controller
A

Transceiver BTransceiver A

CAN Controller
B

Bus B
Figure 20: Parallel bus access architecture

11.3 Bus monitoring and reconfiguration management (D)
The bus monitoring and reconfiguration management protocol defined in this
standard makes use of CANopen NMT objects (and in particular the CANopen
Heartbeat message) to determine the active bus.
The Redundancy Master defines which bus shall be considered active by
periodic transmission of CANopen Heartbeat messages on the active bus. The
slave nodes monitor the presence of the Heartbeat message from the master to
determine the active bus.
In addition to the Master Heartbeat messages the slave nodes also detects if
another CANOpen NMT message is received from the master. If so, the bus on
which the NMT message was received is considered the active one.
Nodes implementing the selective bus access architecture are not capable of
monitoring both buses simultaneously. Therefore, the protocol allows nodes to
toggle between the nominal and redundant bus when searching for the
Heartbeat of the Redundancy Master.

11.3.1 Bus redundancy management parameters (D)
This section specifies the parameters that define the characteristics of the
reconfiguration protocol.
a. Each slave node shall implement the objects listed in Table 3 in its object

dictionary.
Table 3: Parameters for bus redundancy management

Parameter Remark
Master Consumer
Heartbeat Time
Index: 1016h

The Master Consumer Heartbeat Time parameter
is specified by CANopen. The parameter defines
the maximum time allowed between two

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 58

Subindex: 01h subsequent Master Heartbeat messages. In case
the Master Consumer Heartbeat Time elapsed a
slave node takes actions as specified in this
document.

Ttoggle
Index: TBD
Subindex: TBD

Parameter used during bus selection when
searching for a Master Heartbeat or an other NMT
message.
Ttoggle specifies the number of Master Consumer
Heartbeat Time during which the node shall listen
for an NMT message on a particular bus before
switching to the other bus.

Ntoggle
Index: TBD
Subindex: TBD

Defines the number of togglings between the
Nominal and Redundant bus in case of no NMT
message detected.
Each switch from one bus to the other shall be
considered as one toggling.
After Ntoggle togglings, in case no NMT message
has been detected on any bus, the node stops
toggling and stays on the latest selected bus.
The value of Ntoggle shall be an even number to
ensure that after a sequence of togglings the bus
selected will be the one defined by the Bdefault
parameter.
In case Ntoggle is set to 0 no bus toggling shall be
performed and the bus defined by the Bdefault
parameter shall be used as the active bus.

Ctoggle
Index: TBD
Subindex: TBD

Counter of Ntoggles. Shows the count of the
number of toggles that have already been done by
the device.

Bdefault
Index: TBD
Subindex: TBD

Defines the bus to be considered active after a
node power-on, node hardware reset and after
maximum number of bus togglings have been
performed.

b. The objects defined in Table 3 shall be programmable by means of SDOs.
NOTE 1: This is to allow for various in system configurations of the object

dictionaries as a result of failure investigations on system level.
Recommended values and procedures for setting of the above
parameters are found in Annex B.

NOTE 2: This also makes it possible to implement a command to order any
slave to switch bus by configuring the default bus on its object
dictionary, setting Ntoggle to 0 and resetting the slave.

11.3.2 Startup procedure (D)
a. After a node power-on or after hardware reset, the node shall use the bus

defined by the Bdefault parameter as the active bus.
NOTE: This implies that the CANopen Boot-up message will be

transmitted on the default bus.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 59

b. When in CANopen Pre-operational state, each slave node shall listen for
NMT message, alternatively on the two buses according to the toggling
mechanism specified in section 11.3.3.

The nodes start-up procedure is illustrated in Figure 21. The start-up
procedure ends with an entry to the bus selection process specified in 11.3.4.

Power On or
Hardware Reset

Select
Default Bus

Transmit BootUp
on the Default Bus

Bdefault Bus Selection
Process

Bootup state Pre-Operational stateInitialising Sub-state

Power On or
Hardware Reset

Select
Default Bus

Transmit BootUp
on the Default Bus

Bdefault Bus Selection
Process

Bootup state Pre-Operational stateInitialising Sub-state

Figure 21: Node start up procedure

11.3.3 Bus montoring protocol (D)
a. The Redundancy Master shall periodically produce CANopen Heartbeat

messages on the active bus.
NOTE: This implies that in case the Redundancy Master wishes to switch

bus it stops transmitting heartbeat messages on the active bus and
starts transmitting on the previously passive bus. This makes the
previously passive bus the active one.

b. Each Slave node shall be a consumer of the Master Heartbeat message sent
by the Redundancy Master.

c. Each Slave node shall implement the possibility to periodically transmit
CANopen Heartbeat messages on the bus it considers being the active.

NOTE: If suitable for the application, the Redundancy Master can be a
consumer of the heartbeat messages from the slaves as a means to
detect bus or node malfunctions. However, the detailed use of the
slave heartbeat messages are application specific and out of scope
for this standard.

d. In case a slave node misses Ttoggle times the Master Heartbeat on the
assumed active bus it shall enter the CANopen Pre-operational state,
switch to the assumed inactive bus and optionally start producing
heartbeat on this bus.

NOTE: The CANopen Pre-operational state affects the communication on
the CAN bus in the sense that PDOs are no longer transmitted by

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 60

the node. However, the mode of the application in the node is not
necessarily affected.

NOTE 2: The Pre-operational state shall be entered to prevent issuing of
PDOs during bus switching. Consequently, the master will need to
start any slave node that has performed a bus switching and
entered pre-operational state before normal operations can be
resumed.

e. Optionally, in case a node misses the Master Heartbeat the node can send
an EMCY message on the active bus before switching bus.

Figure 22 illustrates the bus monitoring protocol.

Pre-Operational stateCurrent state (Operational, Pre-
Operational or Stopped)

Normal Operation

Master
Consumer Heartbeat Time

elapsed?

Consumer
heartbeat

Time

Switch bus

start sending
Heartbeat
(optional)

Bus Selection
Process

Bus Switching
enable?

Ntoggle

Send EMCY
Message (optional)

no

yes

yes

no

MNT message
received?

Normal Operation

no

yes

Pre-Operational stateCurrent state (Operational, Pre-
Operational or Stopped)

Normal Operation

Master
Consumer Heartbeat Time

elapsed?

Consumer
heartbeat

Time

Switch bus

start sending
Heartbeat
(optional)

Bus Selection
Process

Bus Switching
enable?

Ntoggle

Send EMCY
Message (optional)

no

yes

yes

no

MNT message
received?

Normal Operation

no

yes

Figure 22: Bus monitoring protocol

11.3.4 Bus selection process
a. When a NMT message has been detected on a particular bus, the slave

shall consider this bus the active one.
b. In case Ttoggle elapsed and no NMT message has been received on the

selected bus a slave node shall switch to the other bus (while still in Pre-
operational), optionally start producing heartbeat on this bus, and listen for
NMT messages.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 61

c. A slave node shall perform bus toggling as specified in b. for a predefined
number of times (Ntoggle).

d. If no NMT message has been detected after Ntoggle togglings the node
stops toggling and shall remain listening on the bus which is, after an even
number of toggling, the one defined by the Bdefault parameter.

e. After the bus selection process ends if an active bus is found, the value of
the Bdefault parameter shall be updated to the new active bus.

Figure 23 illustrates the overall bus selection process.

Pre-Operational state

Bus Selection
Process

MNT message
received?

Set the selected
bus as active

Normal Operation
Toggling time

elapsed?

Switch bus

start sending
Heartbeat
(optional)

Maximal number
of bus Toggling

performed ?

Ttoggle
Ntoggle

yes

no

yes

no

yes

no

Update Bdefault

MNT message
received?

Normal Operation

yes

no

Pre-Operational state

Bus Selection
Process

MNT message
received?

Set the selected
bus as active

Normal Operation
Toggling time

elapsed?

Switch bus

start sending
Heartbeat
(optional)

Maximal number
of bus Toggling

performed ?

Ttoggle
Ntoggle

yes

no

yes

no

yes

no

Update Bdefault

MNT message
received?

Normal Operation

yes

no

Figure 23: Slave bus selection process, toggling mechanism

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 62

Annex A

Recommended connectors and pin

assignments (normative)

A.1 General
This annex specifies the connector types and pin allocations to be used for
connecting the CAN bus to the CAN nodes.

A.2 Circular connectors
 A.2.1 MIL-C D38999 configuration B: Dual CAN bus

a. The connector shall be compliant to specification: MIL-C D38999/ffeA35zA
Series 3.

NOTE: There is no restriction on fixing type ‘ff’ or exterior finish ‘e’.
c. The shell size shall be A and the pin layout shall be 35 (6 pin).
d. The key orientation shall be A.
e. The pin function shall be according to Table 4.

Table 4: Pin function for MIL-C D38999 configuration B
Pin No Function
1 CAN_H (PRIMARY)
2 CAN_L (PRIMARY)
3 Shield CAN (PRIMARY)
4 CAN_H (REDUNDANT)
5 CAN_L (REDUNDANT)
6 Shield CAN (REDUNDANT)

The appropriate gender selection ‘z’ is specified in section 5.3.2.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 63

 A.2.2 MIL-C D38999 configuration D: Single CAN bus
a. The connector shall be compliant to specification: MIL-C D38999/ffeA98zN

Series 3.
NOTE: There is no restriction on fixing type ‘ff’ or exterior finish ‘e’.
b. The shell size shall be A and the pin layout shall be 98 (3 pin).
c. The key orientation shall be N.
d. The pin function shall be according to Table 5.

Table 5: Pin function for MIL-C D38999 configuration D
Pin No Function
1 CAN_H (PRIMARY)
2 CAN_L (PRIMARY)
3 Shield CAN (PRIMARY)

The appropriate gender selection ‘z’ is specified in section 5.3.2.

A.3 Micro-miniature D Shell connectors

a. The connector shall be a nine contact micro-miniature D-type with
solder contacts, as defined in ESA/SCC 3401/071, or crimp contacts.

 A.3.1 Micro-miniature D Shell: Dual CAN bus

a. Connector shall be compliant to specification: micro-miniature D type.
b. The pin function shall be according to Table 6.

Table 6: Pin function for micro-miniature D-type with dual CAN bus
Pin No Function
1 CAN_H (PRIMARY)
2 Reserved
3 CAN_SHLD
4 Reserved
5 CAN_H (REDUNDANT)
6 CAN_L (PRIMARY)
7 CAN Ground (Required)
8 CAN Ground (Optional)
9 CAN_L (REDUNDANT)

The appropriate gender selection ‘z’ is specified in section 5.3.2.

 A.3.1 Micro-miniature D Shell: Single CAN bus
a. Connector shall be compliant to specification: micro-miniature D type.
b. The pin function shall be according to Table 7.

Table 7: Pin function for micro-miniature D-type with single CAN bus

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 64

Pin No Function
1 CAN_H (PRIMARY)
2 Reserved
3 CAN_SHLD
4 Reserved
5 Reserved
6 CAN_L (PRIMARY)
7 CAN Ground (Required)
8 CAN Ground (Optional)
9 Reserved

The appropriate gender selection ‘z’ is specified in section 5.3.2.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 65

Annex B

Guidelines for implementing bus

redundancy management

(informative)

B.1 Bus monitoring and reconfiguration management
Annex B intends to provide some guidelines for implementing bus redundancy
management. Clause 11.3 defines the mechanisms for bus switching from the
slave point of view; this annex provides clues about the master behaviour.

 B.1.1 Bus redundancy management parameters
This section provides recommendations on how to configure the parameters
involved in the reconfiguration protocol. These recommendations are the result
of simulation and implementation.

• Master Consumer Heartbeat Time
The value of the Master Consumer Heartbeat Time depends on the reactivity
required in case of errors.
The CANopen Framework for Maritime Electronics [15], that integrates safety
considerations, proposes the following values:
Master Consumer Heartbeat Time equals 1 to 1.5 seconds considering that the
Master heartbeat producer time equals 500ms.
It is reasonable to consider for non critical system values in the range of few
seconds for the Master heartbeat producer time and the double or third of this
value for the Master Consumer Heartbeat Time.
The following TBD values have been implemented on the demonstrator with
the TBD results.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 66

Description: Consumer Heartbeat Time is defined in CANopen Application
Layer and Communication Profile as an UNSIGNED16. The time has to be a
multiple of 1ms.

• Ttoggle
Ttoggle is a multiple of Master Consumer Heartbeat Time. Its value should be
long enough to enable the slaves to detect NMT messages before toggling to the
other bus. Nevertheless the time to recover from a fault may increase in case
this value is too high.
Values between 2 and 10 seem reasonable. Considering the values given above
for the Master Consumer Heartbeat Time, it would implies that a slave would
wait between 2 and 10 seconds on one bus before toggling to the other one.
Description: Ttoggle may be an UNSIGNED8, and then have up to 255 times
the value of Master Consumer Heartbeat Time.

• Ntoggle
Ntoggle determines the number of bus switching a slave node executes before
remaining on the default bus.
This parameter indicates the number of opportunities a slave node has to find
some activity on the bus.
The value 0 means no bus switching is enable. This value may be set in case
one of the bus is definitely out of service, to avoid the slaves to switch to this
bus even in case a Master Heartbeat is missed on the other one.
The value 2 gives only one opportunity to find the master on the redundant
bus. In case a major problem occurs that implies some reconfiguration, this
value may be too small.
The value is to be chosen depending on the time needed for a spacecraft
reconfiguration. In the case 1 minute is needed before communication can
resume on the bus, with Ttoggle=5 seconds, Ntoggle may be set to 15.
Description: Ntoggle may be an UNSIGNED8, this allows to toggle up to 255
times.

• Bdefault
Bdefault is the bus a node is first listening to after a power-on or hardware
reset. It is also the bus a node remains listening to after it performed the
maximum number of bus toggling (Ntoggle).
It shall be set to the Nominal Bus, and may be change during operation if the
nominal bus goes faulty for example.

 B.1.2 Startup procedure (D)
The clause 11.3.2 defines the start-up procedure from the slave node point of
view. This annex provides some elements about the master behaviour.
After power-on the master shall check that all the slaves are present on the
same bus before going to operational state. The basic boot-up procedure of the
Redundancy Master (which is also the NMT manager) is described in the
CANopen Framework for CANopen Managers and Programmable CANopen
Devices [16].
After the master powers on it issues its bootup message and go in Pre-
Operational, it then sends a “NMT Reset Communication all Nodes” command

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 67

to put the slaves in a state, where the setting of all parameters are well
defined. The master begins the boot up procedure for each slave.
If the master is a consumer of the Heartbeat of various slave nodes it can use
this information to know which slave is present on the bus. It may also use the
bootup message sent by the slave nodes before entering the Pre-Operational
state.
It is also possible for the master to detect the presence of a slave node on the
bus by simply trying to access the Device Type (object 1000h) via SDO. The
device type is one of the 3 mandatory objects of the Object dictionary.

 B.1.3 Bus monitoring protocol (D)
The clause 11.3.3 defines the actions to be taken by a slave node in case the
Master Consumer Heartbeat Time elapsed.
The master has also the capability to be a heartbeat consumer of each slave
node and it can use this feature to monitor the health of the bus and the health
of nodes. Missing a slave node heartbeat has for consequence a series of actions
that are application specific. It could be for example the transmission of a
“NMT stop all Nodes” command or “NMT Reset Node” command, or the action
to switch bus by stopping the transmission of the Heartbeat on the active bus
and starting its transmission on the previous inactive bus. The master could
eventually actively notify the slave nodes about its will of switching bus by
transmitting a dedicated “switch bus” command.

 B.1.4 Bus selection process
After the master power-on, if no activity is detected on the bus defined by
Bdefault in its object dictionary, it should switch to the other bus after a
certain amount of time
The Redundancy Master has the following parameters defined in the object
dictionary: Ttoggle, Ntoggle, and Bdefault. It enables the Redundancy Master
to toggle to determine the active bus.
Usually the active bus is set by the Redundancy Master. In an extreme case
where for example the nominal bus is faulty, an the redundant master is
powered on, if its Bdefault parameter is set to Nominal bus, it should be
possible for the redundant master to toggle to the redundant bus. It can do it
after Ttoggle elapsed.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 68

Annex C

Minimalist implementation of

CANopen (informative)

INCLUDE Annex with Matrix listing the features used from CANopen
(referencing the section in this standard and the one in CANopen
standard)

A key feature of CANopen is the scalability. While the range of objects and
services is broad the number of mandatory requirements in the CANopen
standard is reasonably low and allows for simplified implementations in nodes
not requiring the full CANopen capability.

C.1 Communication Objects
 C.1.1 Service Data Objects

All devices shall implement at least one server SDO.

 C.1.2 Network management objects
All the devices shall implement the NMT state diagram and all the CANopen
NMT objects. This includes:
- Module Control Services
- Error Control Services (via Heartbeat)
- Bootup Service

C.2 Object Dictionary
All devices shall implement an object dictionary according to CANopen. Only 3
entries are mandatory:
- Device type (1000h)
- Error register (1001h)
- Identity object (1018h)

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 69

Annex D

Process for adoption of COB-Ids

(informative)

D.1 Overview
In a CAN system the assignment of the CAN frame identifiers (COB-IDs) is a
very important task since the priorities of the individual messages has a direct
influence on the real-time behaviour of the system.
The system designer has the full knowledge of the entire system and thus only
the system designer is in a position to allocate unique identifiers to each
message that appears on the CAN network. The system designer will thus need
to be responsible for the scheduling of the CAN message communications as
this is a system level function and not possible with only a partial sub-system
overview.
A recommended methodology is to define in a system specification all specific
identifiers and communication properties that shall be implemented as default
values by each device supplier. This implies that when a device is delivered to
the customer for system integration, it will already contain agreed default
COB-IDs of all communication objects. The specification of the communication
characteristics of each device could be performed by means of Electronic Data
Sheets (EDS).
Note that during the individual device development phase, each device supplier
may be supplied with a complete communications matrix from the system
designer to assist in the development and test of the device. This could prove
useful since the entire network communication could be simulated using
suitable tools.
Since this standard requires that it shall be possible to reprogram the COB-ID
values of all devices, it will be possible for the system designer to modify the
COB-IDs during system integration should that prove necessary.
Figure 24 illustrates a recommended development methodology for CAN based
spacecraft devices/instruments.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 70

Manufacturer/Supplier Customer/System designer Comment

Instrument
"n"Instrument

.....Instrument
"B"Instrument

"A"
Specification

Complete Space Craft
Specification

Manufacturer
1

Manufacturer
k

Paper design
Costing
Production Schedule

Device Functionality
Mechanical Spec.
Operational Spec.
Device Profile.
Object Dictonary.

Manufacturer

X

Customer determines
mission requirements/
objectives.

Create specification for
S/C instrument/device
requirements.

This includes the
Device Profile / Object
Dictonary

Distribute
requirements
specification to
appropriate potential
suppliers.

Suppliers return paper
design, costing, etc.
for each device.

Customer selects a
supplier for each
device.

Physical
Device

"A"
Object
Dictonary

PDO
SDO

CANOpen
(Minimum implementation, as
per specification)

System
Data Base
for ID
assignment

Customer configures
each device, CAN ID
assignment,
schedule, etc.

Physical
Device
"A"

Physical
Device
"B"

Physical
Device
"n"

CAN Network

Contracted to
Supply Device "A"

Physical
Device

"A"
Configure ID
assignment
over CAN

ONLY the customer can
configure each device
with the appropriate CAN
identifiers, as ONLY the
customer has complete
knowledge of the final
system. The customer
may distribute the ID Data
Base to suppliers for
development reasons,
however only the
customer can create this
Data Base.

System Integration

Satellite Platform

Pr
oj

ec
t

 P
ro

gr
es

si
on

Final System
integration at
customer.

G. Leen / D. Heffernan (c) 2003 PEI / CSRC

Figure 24: CAN bus COB-ID allocation flow

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 71

D.2 CANopen Identifier Allocation

The CANopen communications profile specifies a default scheme for the
allocation of identifiers. This default allocation predefines a Master/Slave
connection set allowing the implementation of peer-to-peer communication
between an Application Master device and the Slave nodes without the need for
an identifier distribution process. This default configuration is available in
each device after the initialisation phase, when the device enters the
preoperational state.
These default message identifiers used by slave devices for communication with
the Application Master are divided into two parts, as illustrated in

ID 0ID 10

Module IDFunction
Code

ID 7 ID 6

Figure 25: Default identifier functional structure for an 11 bit identifier

The functional component of the identifier determines the message priority,
while the Module ID component helps distinguish physically distinct network
nodes using exchanging massages in the same functional group. Table 8
illustrates the default set of identifiers for communication between Application
Master and slaves.

Object Function Code

(binary)
Identifier
(decimal)

Emergency Object 0001 129-255
PDO1 transmit 0011 385-511
PSO1 receive 0100 513-639
PDO2 transmit 0101 641-767
PSO2 receive 0110 769-895
PDO3 transmit 0111 897-1023
PSO3 receive 1000 1025-1151
PDO4 transmit 1001 1153-1279
PSO4 receive 1010 1281-1407
SDO transmit 1011 1409-1535
SDO receive 1100 1537-1663
NMT 1110 1793-1919

Table 8: Default peer-to-peer identifier allocation

This allocation provides each device with eight PDO’s (four transmit and four
receive), one SDO (two identifiers are required for this purpose) and an
Emergency object. Also allocated is an identifier for NMT Error Control (Node

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 72

Guarding and Heartbeat) and Boot-up Services, which share the same
identifier.
In addition identifiers are allocated to allow the Application Master to
communicate with the slaves on a peer-to-peer basis. Finally an additional set
of identifiers is defined for message broadcast.

Object Function Code

(binary)
Identifier [decimal]

(hex)
NMT Module Control 0000 0
Synchronisation Object 0010 [128] (0x80)
Time Stamp 0011 [256] (0x100)

Table 9: Broadcast object predefined identifier allocation

If one starts with the default CANopen identifier allocation and subsequently
wishes to alter this allocation using a configuration tool for example, then
CANopen Communication Profile provides guidelines for doing so. These
guidelines are summarised in

Priority Communication Object

Highest (low identifier value) SYNC
 Emergency
 Network timing (Time Stamp)
 Synchronisation messages (other)
 Synchronous PDOs
 Asynchronous PDOs
Lowest (high identifier value) SDOs

Table 10: Guidelines for identifier allocation

The SYNC Objects are given the highest priority in order to minimise drift in
the communication cycle period. Emergency Objects are also assigned high
priority for error signal handling. Similarly Time Stamp messages are given a
high network priority, and so on.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 73

Annex E

CAN system design issues

(informative)

E.1 Overview
The CAN bus has characteristics that are significantly different from most of
the control buses traditionally used on-board spacecraft such as Mil-std-1553
OBDH. The CAN bus is an asynchronous multi-master bus where the Medium
Access Control is performed by means of a Non-Destructive Bitwise Arbitration
(NDBA) technique.
This annex highlights some areas where the characteristics of the CAN bus is
different from synchronous buses such as Mil-Std-1553 and OBDH. It shall be
noted that the information contained in this annex is not complete or
exhaustive. The intention is only to highlight a few areas where particular
attention might be required.
The topics discussed below are:
Message latency The CAN message latency section illustrates, with an

example, how the allocation of identifiers and the
network traffic generated by each network module
could affect the message latency.

Babbling idiot Due to the NDBA technique there is the possibility
that a high-priority message sent continuously could
block all other bus traffic.

Double frames In case of a bit error at the end of a frame there is the
possibility that the frame will be retransmitted,
causing two identical frames to be sent sequentially on
the network.

Priority inversion Priority inversion may occur when the CAN controller
implements only one transmit buffer. A low priority
message stored in the buffer could prevent a message
of higher priority from being transmitted over the bus.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 74

E.2 Message latency
The Non-Destructive Bitwise Arbitration (NDBA) technique utilised in CAN
need to be well understood by the system designer. In effect the NDBA
mechanism creates a distributed network-wide message queue whereby the
priority of the message placed in the queue defines precedence rather than any
temporal attribute, i.e. how long the message has been waiting in the queue.
Network messages with low relative priorities may be delayed by messages
with a higher relative priority. Each priority level (identifier value) is uniquely
assigned to a network frame on a network-wide basis. This feature leads to
possible situations where some frames, despite their immediate importance at
an application or system level, may experience delays resulting from ‘higher
priority’ messages present on the network.
Figure 26 illustrates an example situation where a message with identifier 8
becomes ready for transmission, and in order for the application requirements
to be fulfilled, it must be successfully transferred on the network before a
specific point in time known as its deadline.
In this example message 8 becomes ready for transmission, while at the same
instance in another node a message with identifier 6 becomes ready. The
NDBA mechanism ensures that message 6 is allowed to transmit while
message 8 is forced to wait for the bus to become idle. As the diagram
illustrates a pattern of events may occur whereby message 8 is prevented from
being transmitted and eventually misses its deadline.

6 23

8

1 5 7

Time

M
es

sa
ge

 R
ea

dy

Msg. 3 Msg. 6 Msg. 1 Msg. 2 Msg. 7

3

8

6

8 2

8

1

7

8

7

Msg. 8

Activity on the
CAN network

Deadline for
message 8

N
et

w
or

k
M

es
sa

ge
 Q

ue
ue

Msg. 5

8 8 8 8

Event Driven
Peak Load

8

5

2 5

7

8

Figure 26: Distributed queue on a CAN network

This example illustrates two points that need to be particularly considered
when using CAN: one being the possible missed deadline scenario, and the
other the indeterminable message transmission latency time which may be
experienced in a loosely coupled un-synchronised network.
Several analytical and scheduling techniques have been developed which place
an upper bound on such transmission latency times. However, all such
techniques fail to resolve the high degree of temporal tolerance experienced in
a frame transmission. Despite this, there are scheduling techniques that do
guarantee, for a given configuration and minimum message release period, that
message deadline constraints are satisfied. These scheduling techniques
usually sacrifice bandwidth achieving this objective.
There are many papers available on the subject of event-triggered CAN
networks, with regard to the best technique for scheduling such a network.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 75

Tindell's research focuses on fixed priority scheduling [1]. Shin [7] supports
Earliest Deadline (ED) scheduling. Zuberi et al. favour Mixed Traffic
Scheduling [8] where ED is used for high-speed messages and Deadline
Monotonic (DM) for low speed messages. Cena and Valenzano suggests Priority
Promotion (PP) and Distributed Priority Queue (DPQ) schemes [9]. Hong
presents a scheduling algorithm for mixed control and communication traffic
[10].
Much work has been done to establish the bounded response time of data
frames and remote frames in an event triggered Controller Area Network. For
example, Tindell et al. [11], Navet et al. presents an analysis for CAN networks
in the presence of errors [12], while Rudiger summarises many of these
techniques and introduces the notion of a cost function [13].
Current fully event-triggered CAN implementations have relatively low
network utilisation factors. For non-critical systems the network bus utilisation
factor rarely exceeds 50% [14]. For hard real-time systems, (e.g. engine
management and power train control) the utilisation factor is much lower at
around 20 - 30%. This low utilisation factor for hard real-time systems is
necessary to allow for the overhead produced when a transmission error occurs
and a retransmission is necessary. This factor sets a pessimistic upper bound
on the bandwidth utilisation factor. In this approach the utilisation factor is
strongly dependent on the ratio of the message length to the size of an error
frame as indicated in Equation 1.

FactornUtilisatio
SizeFrameErrorSizeMessagex

SizeMessage
=

+)2(

Equation 1: CAN bus utilisation factor

Despite this, high network utilisation factors may be attained in applications
where the probability of network errors is very low, as is typically the case on-
board spacecraft.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 76

E.3 Babbling idiot
CAN is a shared medium communication protocol whereby communication
bandwidth is assigned in its entirety to the transmitting nodes as determined
by CAN’s native bitwise arbitration mechanism. Essentially the
communication channel is multiplexed in the time domain between nodes
wishing to communicate based on the competing messages relative priority.
One particular class of fault known as “babbling idiot” may potentially occur in
any shared channel communication protocol including CAN whereby a faulty
node on the network monopolises the available communication bandwidth
exclusively for its own use. This failure arises when a faulty node continuously
tries to transmit a particular message (or messages) which is not intended
behaviour for a correctly functioning node.
This particular class of failure may be exhibited to varying degrees of severity
depending on the relative priority of the message being transmitted. A message
with a higher priority relative to other message attempting to gain access to
the medium will block those lower priority messages. The higher the priority of
the faulty message the more critical the problem becomes. The situation may
also be aggravated if the transmit message queues of the correctly operating
nodes do not priority order messages for transmission thus a blocking situation
may occur.
A number of strategies have been proposed to help prevent this failure mode,
such as a hardware bus guardian allowing a given node access to the medium
only at specifically defined time intervals and/or for a specific time duration.
Depending on the level of fault tolerance one desires this mechanism may need
to be implemented in a separate physical device whereby if the transmitter
attempts to transmit outside the synchronised time window allocated, an error
is flagged. However, this method will most likely require global synchronisation
of the nodes and transmission schedule.
Another solution is to monitor the frequency of message transmissions and to
compare this to the expected maximum release periods for the particular
messages.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 77

E.4 Double frames
On a CAN network, as with many other control networks, it may be possible,
under fault conditions, to send or receive a second copy of the same message.
CAN has been designed such that all correctly received messages are
acknowledged by the receiving node (or nodes), by writing a dominant bit in the
acknowledgement portion (ACK slot) of the transmitted frame; thus
overwriting the sent recessive level in the ACK slot to indicate successful
reception. If the acknowledgement bit is missing or an error has been detected
earlier in the frame, both situations resulting in an error frame, then the
message content received thus far in the receiving node’s CAN protocol engine
are destroyed and the transmitting node will proceed to re-transmit the
message again.
However, if for some reason a node’s transmission operation fails to work
correctly such that a message is sent twice, or if a failure occurs in the
reception process such that a node is under the impression that a message is
received twice, then the consequences of this double message sending error or
double message receiving error is a function of both the content and context of
the message involved.
Evaluation of the problem must consider whether the failure is transient or
permanent in nature, whether the message is a status message, control
message, RTR message, ADC signal or otherwise. A node’s application software
(or hardware) can be programmed to know the expected message sequence and
thus be aware of message duplications. A further detailed discussion of these
failure modes is beyond the scope of this document.

E.5 Priority inversion
Priority inversion may occur in one node when the CAN controller implements
only one transmit buffer. A low priority message stored in the buffer could
prevent a message of higher priority from being transmitted over the bus.

Low-prior Message

Status and control lines

C
A

N
 P

ro
to

co
l C

on
tro

lle
r

Acceptance
Filtering

C
P

U
 In

te
rfa

ce

Receive Buffer(s)

H
ig

h-
pr

io
r M

es
sa

ge

Not transmitted because of
higher-prior message traffic

Low-prior MessageLow-prior Message

Status and control lines

C
A

N
 P

ro
to

co
l C

on
tro

lle
r

Acceptance
Filtering

C
P

U
 In

te
rfa

ce

Receive Buffer(s)

H
ig

h-
pr

io
r M

es
sa

ge

Not transmitted because of
higher-prior message traffic

Figure 27: Inner priority inversion

One possible solution is to use CAN controllers that provide multiple transmit
buffers with different priorities. Messages can then be queued by the higher
layer protocol to one buffer or another depending on their priority. Anyway,
this might not be the optimum solution, because if all buffers are full, and a
new message with higher priority is to be sent, it will still be blocked.
A better way to solve the problem would be to use a single transmit buffer and
sort the messages by priority outside the controller. This way, the higher layer
protocol has to implement a priority ordered transmission queue, instead of the
typical FIFO. In order for this to work, the controller must offer the possibility

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 78

to clear the transmit buffer if the arbitration was lost. The higher layer
protocol should then keep that low priority message in the queue and pass the
new highest priority message to the controller.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 79

Annex F

PHY Layer design considerations

(informative)

The large amount of propagation time in the 125Kbps and 250Kbps
configurations facilitates slower slopes and input filtering.

Transceivers may be used in conjunction with filter circuits. However, the
increased signal slope times and propagation delays shall be included in each
device’s CAN interface propagation delay time. The total shall still comply with
the bit timing specification of section 5.5.3.

It is possible to use compliant devices, i.e. those with bit-timing characteristics
meeting this document’s requirements, on the same bus as devices that use an
earlier (non-compliant) sample point. However, the potential maximum bus
length is shortened accordingly.

It is possible to use compliant devices, i.e. those with bit-timing characteristics
meeting this document’s requirements, on the same bus as devices that use
CAN interfaces with (non-compliant) larger propagation delays. However the
bus length shall be shortened accordingly.

It may not possible to use compliant devices on the same bus as devices that
have wider oscillator tolerances than the tolerance described in this document.

Specific Maximum Bus Length and Stub (Drop) Length are considered to be
system specific parameters that are not constrained by this specification and
are therefore left to the system developer to optimise for any specific system.
Guidance on the specification of these parameters can be obtained by referring
to an Application Note from Philips components, see reference Philips AN123,
and ISO 11898 and SAE J2284.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 80

Annex G

Compliance pro-forma (informative)

TBW when normative section has been approved.

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 81

Bibliography

[1] Controller Area Network (CAN), CAN Specification 2.0B, Robert Bosch
GmbH

[2] Physical Layer Recommendations for CAN bus in Heavy Vehicles,
Society of Automotive and Aerospace Engineers: SAE J2284

[3] Philips Semiconductor Application Note, CAN bus Timing:
Philips AN4781NG

[4] CANOpen Cabling and Connector Pin Assignment:
CiA Draft Recommendation DR-303-1

[5] CAN Wiring – Notes on the wiring of CAN-Bus Systems and Cable
Selection, Version 3.4, ESD Electronic System Design Gmbh, Hanover
Germany

[6] K.W. Tindell , H. Hansson and A.J. Wellings, Analysing Real-Time
Communications: Controller Area Network (CAN), Real-Time Systems
Symposium, 1994., Proceedings pp. 256 - 263, 1994

[7] K. G. Shin, Real-time communications in a computer-controlled work-
cell. IEEE Transactions on Robotics and Automation, Vol. 7 pp. 105 -
113, Feb. 1991

[8] K. M. Zuberi, and K.G Shin, Scheduling Messages on Controller Area
Network for Real-Time CIM Applications, IEEE Transactions on
Robotics and Automation, Vol. 13, No. 2, pp. 310 - 314, April. 1997.

[9] G. Cena and H. Valenzano, An improved CAN fieldbus for industrial
applications, IEEE\ Transactions on Industrial Electronics, 1997, 44
(4), pp. 553 - 564

[10] S.H. Hong, Scheduling algorithm of data sampling times in the
integrated communication and control system, IEEE\ Transactions on
Control System Technology, 3 (2), 1995 pp. 225 - 230

[11] K. Tindell, Calculating Controller Area (CAN) message response times,
Contr. Eng. Practice, Vol. 3, no. 8. pp. 1163-1169, 1995

[12] N. Navet and Y.-Q. Song ,Design of reliable real-time applications
distributed over CAN (Controller Area Network) (INCOM'98 - IFAC)

 Proposal of ECSS—E-50-xx Draft 2.1
 May 2005

 82

Int. Symp. On Information Control in Manufacturing, pp. 391 -396,
1998

[13] R. Rudiger, Evaluating the temporal behavior of CAN based systems by
means of a cost functional Proc. 5th international CAN Conference '98,
pp. 10.09-10.26, San Jose, CA, USA, 3-5 November 1998

[14] J-A Yung, S-W. Nam, K-W. Kim, S. Lee, M.H. Lee. J.M. Lee and J.H.
Kim, Performance Evaluation of Multiplexing Protocols, International
Congress and Exposition, Detroit, Michigan. Feb. 23-26, 1998. SAE
paper reference number 981105

[15] CANopen Framework for Maritime Electronics. CiA Draft Standard
Proposal 307 Version 1.0.1, 8.November 2002

[16] CANopen Framework for CANopen Managers and Programmable
CANopen Devices. CiA Draft Standard Proposal 302 Version 3.3.0

[17] Etschberger, K.: CAN-based Higher Layer Protocols and Profiles;
Proceedings of the 4th International CAN Conference; CAN-in-
Automation; Berlin; 1997

[18] Etschberger, K.: Controller Area Network; IXXAT Press; 2001; ISBN 3-
00-007376-00

[19] Lawrenz, W.: CAN System Engineering, from theory to practical
applications; Springer-Verlag; 1997; ISBN 0-387-94939-9

[20] Barbosa, M.: CANopen Implementation; Research Studies Press ltd.;
2000; ISBN 0-86380-247-8

[21] ECSS-E-20A, Space Engineering – Electrical and electronic

[22] PSS-04-106, Packet Telemetry Standard

[23] Leen, G. and Heffernan, D.: Time-triggered Controller Area Network,
IEEE Computing and Control Engineering Journal. Vol. 12, Issue 6,
Dec. 2001, pp. 245 - 256.

