

Time-Triggered Ethernet CCSDS Meeting

Christian Fidi, Product Manager Christian.Fidi@TTTech.com

March 23rd, 2015

Copyright © TTTech Computertechnik AG. All rights reserved.

Content

- Time-Triggered Approach
- Time-Triggered Ethernet Overview
- Application Examples in Space
- Patents & Licensing
- Cross-Industry use of Technology

No Backup – the 10⁻⁹ Challenge

- The system as a whole must be more reliable than any one of its components: e.g., System
 Dependability 1 FIT – Component dependability 1000
 FIT (1 FIT: 1 failure in 109 hours)
- Architecture must be distributed and support faulttolerance to mask component failures.
- System as a whole is not testable to the required level of dependability.
- The safety argument is based on a combination of experimental evidence about the expected failure modes and failures rates of fault-containment units (FCU) and a formal dependability model that depicts the system structure from the point of view of dependability.

Dependable Real-Time Systems are Distributed

There are four main reasons for the distribution of intelligence in dependable embedded systems:

- 1. Mask failures by the application of redundancy.
- 2. Partition a large system into a set of smaller subsystems in order to reduce the cognitive complexity.
- 3. Bring local intelligence to the sensors and actuators:
 - Complexity reduction by encapsulating subsystems
 - Reduce the number of cables and cabling points, thus reducing the weight and increasing the reliability
 - Simplification of Installation and Maintenance
- 4. Avoid spatial proximity: independent fault-containment regions.

... we must support the communication among subsystems of differing criticality over the same physical wire, otherwise we will be overwhelmed by wires.

Timeliness: Distinguish between

Event Triggered (ET)-Messages: (no global time needed)

- A message is sent, whenever a significant event occurs (e.g., completion of a task, arrival of an interrupt)
- Open World Assumption—possible conflicting send instants
- No Guarantee of Timeliness

Time-Triggered (TT)-Messages: (global time needed)

- An a priori planned cycle is associated with every TT message type. A TT message is sent, whenever the global time reaches the start instant of the cycle of this message type.
- Closed World Assumption—Preplanned conflict-free send instants.
- Guaranteed a priori known latency—Determinism.

Timeliness: Event vs Time-Triggered

Complexity Example: Synchronous vs. Asynchronous

Active standby avionics system model with three components...

- Synchronous model: 185 reachable states (~2x10²)
- Asynchronous model & communication with no latency: >3x10⁶ states

Fig. 5. The architecture of the active standby system.

Models of Time

Dense Physics

Discrete Central Computer

Sparse Distributed Computer

Replica Determinism: Example Stage Separation

Consider a rocket launch.

The real-time system, responsible for the stage separation system has three redundant channels:

Channel 1 – Separation and Fire Boosters

Channel 2 – No Separation and do not Fire Boosters

Channel 3 – No Separation and Fire Boosters (Fault)

Motivation for Time-Triggered Ethernet

Statically Configured CommunicationFree-ForPerformance guarantees:
real-time, dependability, safetyNo perfor
"best effo"Standards:
ARINC 664, ARINC 429, TTP,
MOST, FlexRay, CAN, LIN, ...Standards:
Ethern
Telnet,
Applications:
Flight control, powertrain, chassis,
passive and active safety, ...Standards:
Validation & verification:
Certification, formal analysis, ...

High cost

Free-Form Communication

No performance guarantees: "best effort" plus some QoS

Standards: Ethernet, TCP/IP, UDP, FTP, Telnet, SSH, ... Applications: Multi-media, audio, video, phones, PDAs, internet, web, ... Validation & verification:

No certification, test, simulation, ...

Low cost

Integration of functions from both worlds requires a communication platform supporting both worlds

Space Programs Using Ethernet

TTEthernet – Big Picture

TTEthernet = combination on the same network of

Time-triggered Traffic Timing

- Full control of timings in the system
- Defined latency and sub-microsecond jitter
- Minimum memory needs

Extensions & Standard Ethernet

Time-triggered extensions for standard switched Gigabit-Ethernet

- Startup
- Recovery
- Robust fault-tolerant distributed clock
- Time-triggered Scheduling

TTEthernet Traffic Partitioning

Launcher Application – Ariane 6

Launcher Application

- ❑ Single-fault-tolerance handled in the protocol (network level) → Higly reliable
- □ One network configuration different launcher configurations → Modular
- □ Known latency and minimal jitter → Fully deterministic
- □ Fault-tolerant synchronization
- □ Ethernet physical layer 100Base-TX → Robust
- ❑ Seamless integration since the sub-systems are tested with the flight configuration → Composeability
- ❑ Make use of standard Ethernet for development, testing and operations → COTS based

Human Space Flight Application – Example: Space Shuttle

Required Multiple Communications Functions

- Command & Status across 24 MIA Buses MIL-STD-1553 like
- Displays across MIL-STD-1553
- □ Instrumentation across RS-422 (e.g. PCMMU to IDP)
- □ Audio for crew
- Time Distribution from MTU
- □ Video / Imagery (after Columbia) across IEEE-1394a
- Note: Shuttle implemented separate Communications
 Paths / Technologies

HSF Application – MPCV (Multi Purpose Crew Vehicle)

Human Space Flight Application

- ❑ Up to dual-fault-tolerance handled in the protocol (network level) → Higly reliable
- □ Full determinism (known latency and minimal jitter) → Highly deterministic
- □ Full traffic partitioning (combine platform and payload) → Easy access to shared ressource e.g. TSP OS
- □ Fault-tolerant synchronization
- Seamless integration since the sub-systems are tested with the flight configuration → Composeability

Satellite Application

Satellite Application

Satellite Application

- Globale synchronized time-base (important for platform and payload) → One trusted timebase
- ❑ Synchronization to GPS (all data is timestamped with a precise absolutestamp) → One absolute timebase
- □ Full determinism (known age of data important for platform an payload) → Allows distributed computing
- □ Full traffic partitioning (combine platform and payload) → Easy access to shared ressource e.g. TSP OS
- Seamless integration since the sub-systems are tested with the flight configuration
 - ➔ Composeability
- □ Real-time → Reduced memory needs (no buffering necessary)

A Scalable Solution

TTE thernet is scalable concerning the architecture, the network speed, fault-tolerance and the degree of determinism

Patents Overview

www.tttech.com

CCSDS and other Standards

• TTTech is willing to license its patents under reasonable and non-discriminatory terms and conditions with applicants

has been also for CAL

			e	C	7
LET	TER OF AS	SSURANG	CE		
SAE IP Department					
ACCOMMONWEALTH I	Drive				
Warrendale, PA 1509	6				
USA					

No License is implied by submission of this Letter of Assurance
PATENT OWNER/ORGANIZATION:
Legal Name of Organization: TTTech Computertechnik AG
PATENT OWNER'S CONTACT FOR LICENSE APPLICATION:
Name & Department: <u>Georg Kopetz</u> Address: <u>Schoenbrunnerstr. 7, A-1040 Wien</u> Telephone: <u>+43 1 585 34 34 12 Fax: +43 1 585 34 34 90</u> E-mail: <u>georg.kopetz@tttech.com</u>
PROPOSED SAE TECHNICAL REPORT:
Number:AS6802 Title:Time-Triggered Ethernet

PATENT HOLDER'S POSITION REGARDING LICENSING ESSENTIAL PATENT RIGHTS

2.

The Patent Holder is prepared to grant a *license** to an unrestricted number of applicants on a worldwide, non-discriminatory basis and on reasonable terms and conditions to comply with such Proposed SAE Technical Report.

Please return to

	 Does I Report If Own affected 	arent Owner agree that its patent is required; rer agrees its patent is required, please p id. Patent Number(s): Claims Affected:	rovide the patent number and claims
	Licenses to an applicant denied of discriminatory, nor is a license th withdrawal of Proposed Technica	n basis of pending or ongoing patent liti; at includes a reciprocity requirement, fie l Report deemed unreasonable for such	gation with Patent Holder is not deemed eld of use restrictions or termination upon inclusion.
~	SIGNATURE Print name of authorized person: _ Title of authorized person:	GEDRG HOPET? HEMBER OF THE EXECUTIVE	BDARD
	Signature of authorized person:	Jong hy.	Date: Sept. 6 ⁴¹ 2011

www.tttech.com

Thin

Fail-Stop and Fail-Operational Requirements

ΤΓΓech

Strong trend towards fail-operational

Design assurance standards are similar across industries

Deterministic Ethernet

Critical real-time traffic guaranteed in a converged network

Deterministic Ethernet Network Representation

Best-Effort IEEE 802.3	QoS / AVB IEEE 802.1Q	TSN IEEE 802.1Qbv	TTEthernet SAE AS6802
Low Criticality	Streaming	Scheduled	Deterministic
Diagnostic over IPBackground Traffic	Audio/VideoSensor Fusion	 Real-time Control over IP 	 Fault-Tolerant and Safety Systems
		Guarantee of Service	

www.tttech.com

Vienna, Austria (Headquarters) Phone +43 1 585 34 34-0 office@tttech.com USA Phone +1 978 933 7979 usa@tttech.com Japan Phone +81 52 485 5898

office@tttech.jp

China

Phone +86 21 5015 2925-0 china@tttech.com

www.tttech.com

Copyright © TTTech Computertechnik AG. All rights reserved.