AMS Interoperability Testing

Rough sketch by Tim Ray -- 9/8/2008
We will mix and match entities from the available pool of implementations, and run a sequence of tests that are intended to start with the simplest stuff and gradually get more complex.

To simplify the testing, the following conventions will be followed:

· MAMS messages will be carried via UDP.

· Each node will have only one input port for AAMS messages, and it will be a UDP port. (Each node will have two UDP input ports -- one for MAMS and one for AAMS)

· All AAMS messages will be null-terminated character strings consisting of printable text.

To simplify this writeup, some shorthands are used:

· *HB* = verify heartbeats are exchanged successfully and there are no imputed deaths.

· *MAMS* = verify that the server has an accurate list of client registrars, and each registrar has an accurate list of client nodes and peer registrars.
· *AAMS* = verify that each node has an accurate list of its peer nodes, with an accurate list of subscriptions/invitations for each peer node (if the subject-numbers are accurate that is sufficient).

To test UDP connectivity prior to AMS testing, we may be able to use the ‘netcat’ utility:

 machine1> nc -u machine2 6001 -p 6002

 machine2> nc -u machine1 6002 -p 6001

Then type a line in on each machine - it should be received at the partner machine.
Test Series 1 -- Nominal Core
Note: For this series, screening of subscriptions and invitations is based only on subject number (i.e. appropriate screening of the domain is not tested here).
1 server + 1 registrar
1) Verify that the registrar can register with the server. *HB* *MAMS*
1 server + 2 registrars

1) Verify that both registrars can register, and that they know about each other. *HB* *MAMS*

1 server + 1 registrar + 1 node

1) Verify that registrar and node can register. *HB* *MAMS* *AAMS*
2) Verify that node can unregister. *HB* *MAMS*
3) Verify that node can re-register. *HB* *MAMS* *AAMS*
1 server + 1 registrar + 2 nodes

1) Verify that registrar and nodes can register. *HB* *MAMS* *AAMS*
2) Verify that both nodes can assert/cancel subscriptions. *AAMS*
3) Verify that both nodes can assert/cancel invitations. *AAMS*

4) Verify that each node can publish messages to the other.

· Note: This requires having appropriate subscriptions in place.

5) Verify that each node can announce and send messages to the other.

· Note: This requires having appropriate invitations in place.

6) Verify that each node can initiate a query and receive a reply from the other.

· Note: This requires having appropriate invitations in place.

7) Verify that one node can unregister. *HB* *MAMS* *AAMS*

· Note: Make sure that both nodes have at least one subscription in place prior to unregistering.
8) Verify that the node can re-register. *HB* *MAMS* *AAMS*

· Note: The subscriptions/invitations that existed prior to unregistering should automatically be exchanged upon re-registering.
1 server + 2 registrars + 4 nodes (2 in each cell)

· the steps are similar to those in the previous test
Test Series 2 -- Robustness
1 server + 1 registrar
1) Verify nominal startup and registration. *HB* *MAMS*

2) Shut down the the server, and verify that the registrar imputes its death.

3) After its death has been imputed, restart the server and verify that the registrar re-registers. *HB* *MAMS*

4) Shut down the registrar, and verify that the server imputes its death. *MAMS*

5) After its death has been imputed, restart the registrar and verify that it re-registers. *HB* *MAMS*

6) Shut down and immediately re-start the server (using the same udp port for mams messages). Verify that the registrar is killed off by the server (i.e. that the server sends a ‘you-are-dead’ in response to the first incoming ‘heartbeat’).
· Note: The spec may be changed in this area.

7) Stop both entities. Restart both entities. Verify nominal startup and registration. *HB* *MAMS*

8) Shut down and immediately re-start the registrar (using the same udp port for mams messages). Verify that the restarted registrar’s attempt to register is rejected due to ‘duplicate registrar’.
· Note: The spec may be changed in this area.

9) Verify that server eventually imputes the death of the “old” registrar. Then verify that the restarted registrar is able to register. *HB* *MAMS*

1 server + 1 registrar + 1 node

1) Verify nominal startup and registration. *HB* *MAMS*

2) Shut down the node, and verify that the registrar imputes its death. *MAMS*

3) After its death has been imputed, restart the node and verify that it is able to re-register. *HB* *MAMS*

4) Shut down the registrar, and verify that both the server and node impute its death (the server should notice first). *MAMS*
5) After its death has been imputed, restart the registrar and verify that it is able to register. Then verify that the node is able to reconnect, resulting in the nominal startup configuration. *HB* *MAMS*

1 server + 2 registrars + 4 nodes (2 in each cell)

1) Verify nominal startup and registration. *HB* *MAMS* *AAMS*

2) Shut down the server, and verify that the registrars impute its death.

3) Verify that subscriptions can still be asserted. *AAMS*

4) Verify that messages can still be published.
5) Restart the server, and verify that both registrars re-register. *HB* *MAMS*

6) Shut down a registrar, and verify that the server and both client nodes impute its death. *MAMS*

7) Verify that messages can still be published.

8) Restart the registrar, and verify that it registers. *HB* *MAMS*

9) Verify that both its client nodes are able to reconnect. *HB* *MAMS*

10) Shut down a node, and verify that the associated registrar imputes its death, propogates the news to all other nodes in the message space. *MAMS* *AAMS*

11) Restart the node, and verify that it is able to register. *HB* *MAMS* *AAMS*

12) Have the restarted node assert a subscription, and verify that all peers are able to publish messages to it.

MISSING:

· Multiple servers (i.e. keeping the highest-ranking server alive)

· Resynchronization of a cell

· Screening subscriptions/invitations with regard to domain
· Validating timer expirations (e.g. an aams query timeout)
· ...

