	AMS Interoperability Test Plan	23
Yellow Book
AMS Interoperability Test Plan & Report	Comment by David Edell: Insert Standard CCSDS Intro Page(s) here
V.0.1 (Proposed Draft)
 Green Book, Part IIYellow Book

May 2011

DRAFT

CONTENTS

1.	Introduction	3
1.1.	Purpose	3
1.2.	Scope	3
1.3.	Applicability	3
1.4.	Rationale	3
1.5.	Document Structure	4
1.6.	References	4
2.	Test Plan Overview & Configuration	4
2.1.	Overview	4
2.2.	Definitions & Conventions	4
2.3.	Testing Requirements	5
3.	Nominal Testing Procedures	6
3.1.	Base Registrar Configuration	6
3.2.	Basic NodeModule Registration	7
3.3.	Message Exchange	7
3.4.	Cross-Domain Communication	9
3.5.	Resynchronization	11
3.6.	Security & Data Integrity Verification	12
4.	Robustness Verification	13
4.1.	Registrar Failover	13
4.2.	Robustness Validation	14
5.	Remote AMS Test Procedures	17
5.1.	Basic RAMS Verification	17
5.2.	Advanced RAMS Verification	18
6.	Transport Service Testing Requirements	20
6.1.	UDP	20
6.2.	Buffered UDP (BUDP)	20
7.	Spring 2011 Interoperability Test Results	21
7.1.	Summary & Conclusion	21
7.2.	Results	21
7.2.1.	Nominal Testing Procedures	21
7.2.2.	Robustness Verification	22
7.2.3.	Remote AMS Test Sequence	23

[bookmark: _Ref225567394][bookmark: _Toc169235491]Introduction
[bookmark: _Toc169235492]Purpose
This document provides interoperability testing procedures for the Asynchronous Messaging Service (AMS) and the results of those tests. This test plan was first developed following the Fall 2008 meetings and subsequently revised for the second round of interoperability testing conducted in Spring 2011. Results are provided in chapter 7.

[bookmark: _Toc169235493]Scope
The scope of this document is the testing of the Asynchronous Messaging Service (AMS), including AAMS, MAMS, and RAMS components of the protocol.

[bookmark: _Toc169235494]Applicability
This Recommended Standard specifies protocols and associated services that enable communication among modules of mission data systems, specifically:
· between modules of a ground data system;
· between modules of a flight data system;
· between modules of different ground data systems;
· between modules of the flight data systems of different spacecraft;
· between modules of flight data systems and modules of ground data systems, over interplanetary distances.

This document applies to the interoperability testing required to advance AMS from Red Book to Blue Book status. It may also be used as a reference to confirm conformance with future implementations.

[bookmark: _Toc169235495]Rationale
The CCSDS Procedures Manual states that for a Recommendation to become a Blue Book, the standard must be tested in an operational manner. The following requirements for an implementation exercise were excerpted from reference [1]:

“At least two independent and interoperable prototypes or implementations must have been developed and demonstrated in an operationally relevant environment, either real or simulated.”

This document outlines the AMS Working Group’s approach to meeting this requirement.

[bookmark: _Toc169235496]Document Structure
Configuration parameters and conventions for the interoperability testing are outlined in chapter 2 with additional details provided in the Appendix.

The following chapters describe general classes of tests. Within each class there are test topics defining distinct sequences of test procedures. Procedures correspond to individual columns in the associated results tables and may have individual test cases defining additional steps required to confirm a successful test.

Test results are provided in chapter 7.

[bookmark: _Toc169235497]References	Comment by David Edell: Fix section formatting, add references to other AMS documents as appropriate.
The following documents are referenced in this document. At the time of publication, the editions indicated were valid. All documents are subject to revision, and users of this document are encouraged to investigate the possibility of applying the most recent editions of the documents indicated below. The CCSDS Secretariat maintains a register of currently valid CCSDS documents.

[1]	Procedures Manual for the Consultative Committee for Space Data Systems. CCSDS A00.0-Y-9. Yellow Book. Issue 9. Washington, D.C.: CCSDS, November 2003

[2]	Asynchronous Messaging Service. Recommendation for Space Data System Standards, CCSDS 735x1b0. Red Book. Issue 1. Washington, DC.: CCSDS, ?	Comment by David Edell: We should reference the standard here. But: What is the official document name/publication-date to reference?

[bookmark: _Ref162578452][bookmark: _Toc169235498]Test Plan Overview & Configuration
[bookmark: _Toc169235499]Overview
An implementation of the Asynchronous Message Service includes a Registration server, Configuration Server, and two or more application modules (also referred to as nodes) in a given continuum. These entities communicate using a common transport service(s). The AAMS sub-protocol defines user data messages, while the MAMS protocol is used for configuration and status messages. A RAMS gateway utilizes the Remote AMS protocol for communication across continua.

The interoperability testing described in this document is designed to exercise all aspects of the described protocols defining the Asynchronous Message Service between two independently developed implementations.

[bookmark: _Toc169235500]Definitions & Conventions	Comment by David Edell: Move this and following section into a new chapter for “Test Setup” or similar.
All scenarios are designed for the testing of two distinct implementations, ALPHA (abbreviated A) and BETA (abbreviated B). Tables listed at the end of each section define the mapping of implementation to entity name for each case. In general, the first implementation used in a case is abbreviated as ‘A’, such as RegistrarA, while the second implementation is abbreviated as ‘B’, such as NodeB. Abbreviations indicating the implementation will be appended to all entity names, such as RegistrarA for a registration server from implementation ALPHA, or NodeB for a node in implementation BETA.

If multiple entities of the same type are used in a single implementation, a number shall be appended to its mnemonic, such as NodeA1 and NodeA2 refer to two distinct application modules operating within a given unit. Names are used for reference purposes only and do not necessarily reflect internal node identifiers. Mappings of node module or registrar names may be swapped as necessary to facilitate alternate test scenarios with similar initial states.

The following configuration mnemonics will be used. All mnemonics should be defined in terms of appropriate values in the agreed upon MIB prior to each test sequence where applicable. Their values are not currently defined, but must be common in the MIB shared among all tested implementations.
· Subject1 … Subject9N
· Default_Role = ROLE_A	Comment by David Edell: Scott proposes globally renaming these to be Role2- and Unit0-
· Default_Unit = UNIT_A
· ROLE_AROLE_2, … … ROLE_ROLE_5N
· UNIT_0, UNIT_AUNIT_1, UNIT_2 … UNIT_N

A default role of ROLE_2 and unit of UNIT_1 shall be used in all test sequences if not otherwise stated.

A marshaling scheme will be defined and used for Subject1, Subject2, and Subject3. No marshaling will be used for any other subject. The test procedures implicitly tests message exchange with and without marshaling through the usage of the full range of subject ids. 	Comment by David Edell: Should we reference Tim’s document or include it as an appendex? Should we list details (ie:Subject1=text, 2=count,etc)?

All entities will support at least two transport services, as specified in the test handbook. Subject1 will use the primary transport service (UDP) and Subject2 will specify the quality of service for the secondary transport service (BUDP). Supplementary transport services are thus implicitly tested through the usage of the range of subject ids throughout the test sequences.

All testing procedures, with the exception of RAMS procedures, assume that all entities are members of a single continuum, Continuum11 abbreviated as C1. The RAMS procedures additionally use Continuum13, abbreviated C2 and Continuum17, abbreviated as C3.
[bookmark: _Toc169235501]Testing Requirements
These procedures, unless otherwise noted, require that all implementations are operating across a common primary transport service and MIB configuration state. A Supplementary Transport Service (STS) should be available for usage when indicated. The Transport Service Testing Requirements c chapter describes any TS specific configuration suggestionsoptions. 	Comment by David Edell: VERIFY: Didn’t we omit the dedicated section in favor of having certain TS associated with specific subjects? Update this to indicate such.

Verification requirements, as stated, may assume the availability of debug information on internal status of nodes modules or other entities as appropriate. Direct monitoring of message traffic across the selected transport service(s) may also be used for validation purposes. These are suggested verification techniques only and, in the absence of direct verification, success may be inferred from related actions as appropriate. A test result of undetermined (U) should be recorded if no verification was possible for a given step.

For all message exchanges the following defaults should be used if not otherwise specified. The default subject is Subject1, role is Default_Role, and unit is Default_Unit. Message content is not specified, however it is suggested that a known test value (ie: a test pattern, counter, or timestamp) be used and verified when appropriate.

Results tables should be marked as follows, with an explanation attached for any unsuccessful test performedthat is not completed successfully:
· P for successful test.
· F for a failed test
· - for a test that has not been performed.
· U for a test whose results are undetermined.
· I for partial success or incomplete test.

[bookmark: _Ref225567483][bookmark: _Toc169235502]Nominal Testing Procedures
This section describes testing procedures for core AMS functionality under normal operations. The basic series may be used for testing a single implementation for compliance, or for the interoperability testing of any combination of implementations. A table provided at the end of each section illustrates sample test scenarios for testing between implementations.

[bookmark: _Toc169235503]Base Registrar Configuration
Validate the ability for the RS to communicate and register with the CS.

0. Start Configuration Server
1. Start RegistrarA
i. Confirm registration
ii. Confirm heartbeats
2. Start RegistrarB
i. Confirm registration
ii. Confirm heartbeats
3. Verify Mutual Awareness of Registrars
i. Confirm RegistrarA is aware of RegistrarB
ii. Confirm RegistrarB is aware of RegistrarA

The following testing combinations should be performed. Italicized cases are optional, to be used if there is a failure in any previous test combination.
	Test#
	CS
	RegistrarA
	RegistrarB
	Results

	
	
	
	
	1
	2
	3

	3.1a
	ALPHA
	BETA
	ALPHA
	
	
	

	3.1b
	BETA
	ALPHA
	BETA
	
	
	

	3.1c
	ALPHA
	ALPHA
	ALPHA
	
	
	

	3.1d
	BETA
	BETA
	BETA
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

[bookmark: _Toc169235504]Basic NodeModule Registration
Validate the ability for a nodemodule to register and unregister itself.

0. Initial Configuration should include one CS and at least one active RS.
i. This may correspond to the final state of the previous section, case 1, with any additional registrars ignored for this scenario and/or these procedures mirrored within each active cell (registrar).
1. Verify that a nodemodule can register
i. Confirm ability to locate registrar by querying the CS
ii. Verify registration success
iii. Verify Heartbeat exchange between RS and nodemodule.
2. Verify that the nodemodule can cancel its registration (unregister)
i. Confirm processing by the registrar
ii. Confirm configuration propagation to other nodemodules.
3. Verify that the nodemodule can Re-Register

The following testing combinations should be performed.
	Test#
	CS
	Registrar
	NodeA
	Results

	
	
	
	
	1
	2
	3

	3.2a
	ALPHA
	ALPHA
	BETA
	
	
	

	3.2b
	BETA
	BETA
	ALPHA
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

[bookmark: _Toc169235505]Message Exchange
Validate the ability for two nodemodules in the same cell to register and communicate. This section will test subscriptions, publish, receive, invite, send, and announce.

0. One CS, one RS, and one nodemodule are active.
i. This may correspond to the final state of case 2.
1. Register a second nodemodule, NodeB.
i. Confirm successful registration
ii. Verify that NodeB is told of NodeA’s existence and empty subscription list.
iii. Verify that NodeA is told of NodeB’s registration.
2. Publish a message on Subject1 from NodeA
i. Verify that NodeB does not receive this message; no subscriptions are in place at this time.
3. Subscribe to Subject1 from NodeB
i. Verify that NodeA receives subscription notification.
4. Publish a message on Subject1 from NodeA
i. Verify that NodeB receives the message
ii. Repeat using Subject2 and verify NodeB does not receive the message; this is not the subject that has been subscribed to.
5. From NodeB, subscribe to ALL_Subjects
i. Verify subscription receipt by NodeA
6. Publish a message from NodeA on Subject2
i. Verify NodeB receives this message (subscribed to all)
7. Send a message on Subject1 from NodeA addressed to a domain that includes NodeB
i. Verify that NodeB does not receive this message; no invitations are in place at this time.
8. From NodeB, cancel subscription on ALL_SUBJECTS
i. Verify propagation to NodeA. If necessary, aAttempt to publish a message from NodeB on Subject2 and verify the message is not received.
9. From NodeB, invite a domain that includes NodeA to send Subject2
i. Verify NodeA receives invitation
10. Publish a message from NodeA on Subject2.
i. Verify that NodeB does not receive this message. An invitation does not apply to published messages.
11. Send a message from NodeA to NodeB on Subject2
i. Verify that NodeB receives the message
12. From NodeA, query NodeB on Subject2
i. Verify NodeB receives query.
13. From NodeB, attempt to reply to NodeA with Subject32
i. Verify failure, NodeA has not issued an invitation on this subject.
14. Verify query/reply exchange
i. From NodeBA, invite messages on Subject23 in a domain that includes NodeBA
ii. Repeat steps 12 & 13, verifying success now that appropriate subscriptions are in place on both ends.
15. From NodeA, issue an announcement on Subject23
i. Verify that the message is received by NodeAB
ii. Repeat from NodeBA and verify the message is not received. NodeBA has no invitations in place on this topic.
iii. Repeat announcement from NodeBA, addressing the message to a domain that does not include NodeAB. Verify message is not received.
16. Cancel NodeA registration (unregister)
i. Verify registrar processes and forwards request.
ii. Verify unregisteration notification by NodeB
17. Re-register NodeA
i. Verify registration success
ii. Verify correct state of subscriptions, for example as follows:
1. Publish a message on Subject1from NodeA and verify its receipt by NodeB.
2. Attempt to send a message from NodeB to NodeA on Subject2 and verify failure. Invitations expire upon cancellation of a nodemodules registration.
3. Attempt to send a message from NodeA to NodeB on Subject2 and verify success.

The following testing combinations should will be performed:
	Test#
	CS
	Registrar
	NodeA
	NodeB

	
	
	
	
	

	3.3a
	ANY
	ALPHA
	ALPHA
	BETA

	3.3b
	ANY
	BETA
	BETA
	ALPHA

	
	
	
	
	

	
	
	
	
	

	Test#
	Results

	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17

	3.3a
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	3.3b
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

[bookmark: _Ref225331202][bookmark: _Ref225331208][bookmark: _Toc169235506]Cross-Domain Communication
This scenario validates message exchange and configuration between cells and associated message filtering by domain.

0. Initial state consists of a CS and two cells
i. The first cell consists of RegistrarA, NodeA1, NodeA2 in UNIT_AUNIT_1
ii. The second cell consist of RegistrarB, NodeB1, NodeB2 in UNIT_BUNIT_2
iii. Nodes A1 and B1 perform ROLE_AROLE_2
iv. Nodes A2 and B2 perform ROLE_BROLE_3
v. At the start of this test both Registrars, NodeA1, and NodeB1 are active.
1. Register the remaining nodemodules, NodeA2, and NodeB2 to their respective cells.
i. Verify successful registration to their respective cells
ii. Verify receipt of registration notification in neighboring cells.
2. NodeA1 Subscribes to Subject1 in UNIT_AUNIT_1 and ROLE_BROLE_3
i. Publish a message on Subject1 from NodeA2
i. Verify receipt by NodeA1
ii. Publish a message on Subject1 from NodeB1 and from NodeB2.
i. Verify neither message is received.
3. NodeA1 Subscribes to Subject2 on UNIT_BUNIT_2 and ROLE_AROLE_2
i. Publish a message on Subject2 from NodeB1
i. Verify receipt by NodeA1
ii. Publish a message on Subject2 from NodeA2 and from NodeB2.
i. Verify neither message is received.
4. NodeA1 Subscribes to Subject3 on UNIT_BUNIT_2 and ALL_ROLES
i. Publish a message on Subject3 from NodeA2 and verify it is not received.
ii. Publish a message on Subject3 from NodeB1 and NodeB2 and verify receipt of each.
5. NodeA1 Subscribes to Subject4 on ALL_UNITS and ALL_ROLES
i. Publish a message on Subject4 from every other nodemodule in the continuum and verify receipt.
6. Cancel Subscription to Subject4 from NodeA1 on ALL_UNITS and ALL_ROLES.
i. Verify propagation to all other nodemodules. This includesIf necessary, attempting to publish a message on this subject from each of the remaining modules and confirming that NodeA1 does not receive itto verify.
7. From NodeA1, invite messages on Subject5 from ALL_UNITS and ALL_ROLES
i. Verify that all others nodemodules may privately send messages on Subject5 to NodeA1
ii. Verify NodeA1 can receive an announcement on this subject from all other nodemodules.
8. From NodeA1, invite messages on Subject6 from UNIT_BUNIT_2 and ALL_ROLES
i. Verify that only NodeB1 and NodeB2 can send messages on Subject6 to NodeA1 in this configuration.
ii. Repeat verification for transmission and receipt of announcements.
9. From NodeA1, invite messages on Subject7 from UNIT_BUNIT_2 and ROLE_AROLE_2
i. Verify that only NodeB1 can send a private message to NodeA1 on this subject.
ii. Repeat verification for transmission and receipt of announcements.
10. From NodeA1, invite messages on Subject8 from UNIT_AUNIT_1 and ROLE_BROLE_3
i. Verify that only NodeA2 can send a private message to NodeA1 on this subject.
ii. Repeat verification for transmission and receipt of announcements.
11. From NodeA1, Cancel Invitation on Subject5
i. Verify propagation to all nodemodules.
12. Cancel Registration of NodeB1
i. Verify propagation of configuration change to all other nodemodules.
ii. Re-register NodeB1 and verify that it is made aware of all active subscriptions and invitations.
13. Cancel Registration of NodeA1
i. Verify propagation of configuration change to all other nodemodules.
ii. Confirm that all invitations and subscriptions are cancelled upon shutdown of NodeA1.

The following testing combinations are recommended. Compatible scenarios may be executed from the same configuration by swapping entity mnemonics accordingly.

	Test#
	CS
	RegistrarA
	NodeA1
	NodeA2
	RegistrarB
	NodeB1
	NodeB2

	32.4a
	ANY
	ALPHA
	ALPHA
	BETA
	BETA
	BETA
	ALPHA

	32.4b
	ANY
	BETA
	BETA
	ALPHA
	ALPHA
	ALPHA
	BETA

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	Test#
	Results

	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13

	32.4a
	
	
	
	
	
	
	
	
	
	
	
	
	

	32.4b
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

[bookmark: _Toc210532758][bookmark: _Toc210532764][bookmark: _Toc210532773][bookmark: _Toc210532833][bookmark: _Toc210532853][bookmark: _Toc210532873][bookmark: _Toc210532893][bookmark: _Toc210532913][bookmark: _Toc210532914][bookmark: _Toc210532915][bookmark: _Toc210532917][bookmark: _Toc210532920][bookmark: _Toc210532921][bookmark: _Toc210532922][bookmark: _Toc210532923][bookmark: _Toc210532928][bookmark: _Toc210532933][bookmark: _Toc210532952][bookmark: _Toc210532959][bookmark: _Toc169235507]Resynchronization
Resynchronization may be performed periodically to ensure a consistent configuration within a cell. Full verification of this capability may require the availability of debugging capabilities in the system, or transport service, to artificially create a non-synchronized scenario. These procedures should are to be repeated for the a Registrar of each available implementation.

0. Initial state includes:
i. A non-zero resynchronization value for a given cell
ii. A minimum of one CS, RS, and two three nodemodules (including a minimum of one of each implementation type).
iii. A second cell (RegistrarB and at least one associated nodemodule) is recommended to verify propagation between cells.
iv. Establish some set of invitations and subscriptions spanning all combinations of active nodes.
1. Verify resynchronization period.
i. Confirm that all modules receive Aa cell_status should be received by all active nodes in the message space at message at the expiration of this period.
2. Verify that all subscriptions, invitations, and registration databases remain valid following the resynchronization.
3. If possibleArtificially, cause the nodemodules to become out of sync. This may be done by killing the third module (NodeC) in a method that prevents it from transmitting an ‘I_am_quitting’ message, or using some other implementation-specific method to cause knowledge of subscriptions and invitations to be lost. This may be done by issuing an invitation, subscription, or registration change and blocking receipt by one or more entities.
i. Transmit a message from each remaining module to the now defunct NodeC and verify no adverse affects.
ii. Wait for the conclusion of the next resynchronization period and validate that all entities are now synchronized.

	Test#
	CS
	RegistrarA
	NodeA
	NodeB
	Results

	
	
	
	
	
	1
	2
	3

	.5a
	ALPHA
	BETA
	ALPHA
	BETA
	
	
	

	.5b
	BETA
	ALPHA
	BETA
	ALPHA
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

[bookmark: _Toc169235508]Security & Data Integrity Verification

0. Initial State includes:
i. One CS, two Registrars, and six modules. Modules shall be spawned in step 1. Modules A1, A2, and A3 belonging to RegistrarA, and Modules B1, B2, and B3 belonging to RegistrarB.
ii. Modules A3 and B3 will lack digital signatures, and B3 will additionally lack checksums. All other entities defined shall have unique encryption keys used in digital signatures and for encryption of all message traffic.
iii. The following entries will be limited by the encryption key specified in the MIB:
1. Subject10 is limited to receivers of type ROLE_4
2. Subject12 is limited to senders of type ROLE_5
3. ROLE_4 is only authorized for NodeA1
4. ROLE_5 is only authorized for NodeB1
iv. NodeA1 is part of ROLE_4, NodeB1 is part of ROLE_5,. All other modules may belong to ROLE_2.

1. Register all specified modules.
i. Verify successful registration of all modules.
2. Register two additional modules (one per registrar and implementation) using the restricted ROLE_4.
i. Verify registration failure due to lack of authorization to assume the given role.
3. All modules issue a subscription request for Subject1
i. Verify all subscriptions are accepted and acknowledged.
4. Some module (with checksums enabled) subscribes to Subject2, with a checksum error deliberately inserted in the MDPU message.
i. Confirm message is discarded by all other modules
5. One module per unit, with checksums enabled, publishes a message on Subject1, with a checksum error deliberately injected in the AAMS message.
i. Confirm message is discarded by all modules
6. NodeB3 publishes a message on Subject1 (with no checksum inserted)
i. Verify receipt and acceptance by all subscribing modules.
7. Create a new registrar, RegistrarC and cause it to register itself with a checksum error deliberately injected into the MAMS message.
i. Verify registration failure.
8. Repeat previous step with a valid checksum and an invalid (or missing) digital signature.
i. Verify registration failure.
9. NodeA1 subscribes to Subject10.
i. Verify all modules accept subscription.
10. NodeB1 subscribes to Subject10
i. Verify all other modules reject the subscription as unauthorized.
11. Each active module publishes a message on Subject10.
i. Verify NodeA1 and no others receive it.
12. NodeA1 subscribes to Subject12.
i. Verify success
13. NodeB1 subscribes to Subject12.
i. Verify success
14. Each active module publishes a message on Subject12.
i. Verify that message is accepted only from NodeB, currently fulfilling ROLE_5.

	Test#
	CS
	RegistrarA
	RegistrarB
	NodeA1, NodeB1,
NodeA3
	ResultsNodeA2,
NodeB2,
NodeB3

	3.6a
	ALPHA
	ALPHA
	BETA
	ALPHA
	BETA

	3.6b
	BETA
	BETA
	ALPHA
	BETA
	ALPHA

	
	
	
	
	
	

	
	
	
	
	
	

	Test#
	Results

	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14

	3.7a
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	3.7b
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

[bookmark: _Ref225567571][bookmark: _Toc169235509]Robustness Verification
[bookmark: _Toc169235510]Registrar Failover
This scenario confirms the robustness of a configuration server in its management of its registration server.

0. Initial configuration consists of a CS and a Registrar
1. Delete (kill) the registrar.
i. Wait N3*N6 period and verify imputed death of registrar
ii. Verify Registrar is restarted successfully by the CS (or other implementation-specific mechanism).
2. Suspend the registrar for a period of N3 such that it misses one heartbeat.
i. Verify Registrar continues normal operation and the CS does not prematurely impute its death.
3. Suspend the registrar for a period of N3*N6 seconds
i. Verify that its death is imputed by the registrar configuration server
ii. Verify that a new instance of the registrar is successfully activated.
iii. Verify that upon resumption, the existing registrar is appropriately terminated.
1. Confirm that Ttermination should beis imputed by a failure of the CS to respond to heartbeats.
4. Activate and register one nodemodule for each available implementation.
i. Verify registration and initiation of heartbeat exchange.
5. Terminate the registrar
i. Verify imputed termination and restart by the server
ii. Verify ability of each nodemodule to successfully impute death of the registrar, locate its successor, reconnect and resume activities (heartbeats).
iii. Verify ability for nodemodules to subscribe and publish messages.
6. Terminate the Configuration Server.
i. Verify imputed loss by the registrar.
ii. Verify that nodemodule communication is not impeded
7. Restart the Configuration Server
i. Verify ability for registrar to reconnect.
8. Terminate a nodemodule. This is a test of the servers; any nodemodule may be terminated.
i. Verify its registrar imputes the nodemodules death and propagates the news to all other nodemodules in the message space.
ii. Restart the nodemodule.
1. Verify successful registration
2. Verify communication with existing nodemodules.

The following testing combinations should will be performed.
	Test#
	CS
	Registrar
	NodeModules
	Results

	
	
	
	
	1
	2
	3
	4
	5
	6
	7
	8

	43.1a
	ALPHA
	BETA
	ALL
	
	
	
	
	
	
	
	

	43.1b
	BETA
	ALPHA
	ALL
	
	
	
	
	
	
	
	

	43.1c
	ALPHA
	ALPHA
	ALL
	
	
	
	
	
	
	
	

	43.1d
	BETA
	BETA
	ALL
	
	
	
	
	
	
	
	

[bookmark: _Toc169235511]Robustness Validation
This scenario confirms configuration robustness between cells and configuration server failover mechanisms.

0. Initial configuration consists of a CS (at the primary network location), two RS each with two registered nodemodules (four total) and some set of established subscriptions and invitations. This may correspond to the final state of basic case 3.
1. Terminate primary Configuration Server
i. Verify imputed loss by the registrars after period N6.
ii. Verify that nodemodule communication is not impeded
1. Message exchange and heartbeats continue as previously.
2. Confirm that additional subscriptions or invitations can be propagated.
iii. Spawn a new nodemodule and confirm its inability to register.
2. Spawn a Configuration Server at a secondary network location
i. Verify registrars connect to secondary configuration server
ii. Verify ability to register a new nodemodule. This will be done for each implementation.
iii. Verify ability to assert subscriptions and invitations. This will be done by each of the original four nodemodules.
3. Respawn the primary Configuration Server
i. Verify secondary CS is automatically terminated upon receipt of an ‘I_am_running’ message from the primary CS.
ii. Verify all registrars detect the termination and revert to the primary CS
iii. Verify ability to register a new nodemodule. This will be done for one nodemodule of each implementation.
iv. Verify ability to assert subscriptions and invitations. This will be done by each of the original four nodemodules.
4. Terminate the Configuration Server
5. Verify imputed loss by the registrars
6. Verify that node communication is not impeded
7. Message exchange and heartbeats continue as previously.
8. dditional subscriptions or invitations
9. Restart the Configuration Server
10. Verify ability for registrars to reconnect.
11. Terminate RegistrarA
i. Verify imputed termination.
ii. Verify ability for nodemodules to continue AAMS message exchange, then restart by the .
iii. Verify inability to register new nodemodules in RegistrarA’s cell.
iv. Verify ability of each client nodemodule to successfully impute death of the registrar.
12. Respawn RegistrarA at a new network location
i. Verify ability of each client nodemodule to successfully impute death of the registrar, locate its successorthe new registrar, reconnect and resume activities (heartbeats).
ii. Verify ability for nodemodules to subscribe and publish messages.
13. Suspend a nodemodule of RegistrarA
i. Verify RegistrarA imputes the nodemodules death and the news propagates to all applicable entities, including RegistrarB and its registered nodemodules.
ii. Resume execution of the nodemodule.
1. Verify it receives notification or imputes its own demise.
2. Reconnect or re-register and verify success
3. Verify communication with existing nodemodules.
14. Repeat step 3 for RegistrarB
15. Repeat step 4 for RegistrarB

The following testing combinations should will be performed.
	Test#
	CS1
	CS1 (backup)
	RegistrarA
	NodeAx
	RegistrarB
	NodeBx
	Results

	
	
	
	
	
	
	
	1
	2
	3
	4
	5
	6
	7
	8

	4.2a
	ALPHA
	BETA
	ALPHA
	ALL
	BETA
	ALL
	
	
	
	
	
	
	
	

	4.2b
	BETA
	ALPHA
	ALPHA
	ALL
	BETA
	ALL
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

[bookmark: _Ref225567604][bookmark: _Toc169235512]
Remote AMS Test Procedures

This section describes testing procedures for the Remote AMS (RAMS) protocol, including both Mesh and Tree configurations. These test procedures assume the existence of up to three discrete continuums, Continuum11, Continuum13, and Continuum17. For brevity, they will be referred to as C1, C2, and C3. ALL_CONTINUA indicates all continuuma are addressed.

All entities in these test sequences are assumed to have encryption keys defined and in use.

The following procedures are intended to exercise all RAMS components, in both the Tree and Mesh configurations. As indicated, certain steps may not apply to all test configurations.

[bookmark: _Toc169235513]Basic RAMS Verification

0. The initial state consists of two continuums, C1 and C2 in an active state on the RAMS network, each containing one relevant cell.
i. RegistrarA, NodeA1, and NodeA2 are members of C1
ii. RegistrarB, NodeB1, and NodeB2 are members of C2.
iii. All entities belong to UNIT_AUNIT_1 and ROLE_AROLE_2.
iv. All entities are active at the start of this test.
1. Verify each continuum is aware of its neighbor.
2. NodeA1 Subscribes to Subject1 in C1
i. Verify subscription is not transmitted outside of C1.
ii. Publish a message on Subject1 from NodeA2
1. Verify receipt only by NodeA1
iii. Publish a message on Subject1 from NodeB1
1. Verify message is not received
3. NodeA1 Subscribes to Subject2 in C2
i. Publish a message on Subject2 from NodeB1
1. Verify receipt by NodeA1
ii. Publish a message on Subject2 from NodeA2
1. Verify message is not received.
4. NodeA1 Subscribes to Subject3 on ALL_CONTINUA
i. Publish a message on Subject3 from NodeB1and verify receipt.
5. Cancel Subscription to Subject2 from NodeA1 on C2.
i. Verify propagation to all other nodemodules and continuaum. If necessary, aAttempt to publish a message on this subject to verify.
6. From NodeA1, invite messages on Subject4 from ALL_CONTINUA
i. Verify that NodeB1 can send messages on Subject4 to NodeA1.
ii. Verify NodeA1 can receive an announcement on this subject from NodeB1.
7. Optionally, repeat a + b for messages transmitted by NodeA2 and verify their receipt only by NodeA1.
8. Optionally, repeat for an invitation in the reverse direction, followed by a query and reply exchange.
9. From NodeA1, invite messages on Subject5 from C2
i. Verify that only NodeB1 can send a private message to NodeA1 on this subject.
ii. Repeat verification for transmission and receipt of announcements.
10. From NodeA1, Cancel Invitation on Subject5
i. Verify NodeB1 cannot privately transmit messages to NodeA1.

The following are suggested testing configurations that should will be performed, if available.
	Test#
	C1
	C2
	Configuration
	Results

	
	
	
	
	1
	2
	3
	4
	5
	6
	7
	8

	54.1a
	ALPHA
	BETA
	TREE
	
	
	
	
	
	
	
	

	54.1b
	BETA
	ALPHA
	MESH
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

[bookmark: _Toc169235514]Advanced RAMS Verification
This section adds a third continuum for verification of messages requiring multiple hops (Tree configuration only), the ability to add or remove a continuum, and general message filtering with more than two continuum.

This procedure assumes the conclusion of the previous section as its initial configuration, or an environment with the same subscriptions already in place.

0. Continua C1 and C2 are operating as described above.
i. C3 is active, but its RAMS Gateway is offline.
ii. RegistrarC and NodeC are members of C3.
iii. Some subscriptiosnSubscriptions and/or invitations should arebe in place between C1 and C2, both addressed to a specific domain (not including C3), and one that includes ALL_CONTINUA.
1. C3 joins the RAMS Network. If operating under a Tree configuration, C3 becomes a child of C2.
i. Verify C1 and C2 receive appropriate petitions indicating the arrival of C3
ii. Verify C3 receives appropriate petitions from C1 and C2, including notification of all pre-existing subscriptions.
2. NodeC publishes a message on Subject1
i. Verify the message is not received.
ii. Repeat for Subject3 and verify receipt by NodeA1, currently subscribing to this subject on ALL_CONTINUA.
3. NodeC attempts to send a private message to NodeA1
i. Verify ability to send messages on Subject4, invited from all continuum.
ii. Verify inability to send messages on Subject5.
4. NodeA1 Subscribes to Subject6 in C3
i. Publish a message on Subject6 from NodeC
i. Verify receipt by NodeA1
ii. Publish a message on Subject6 from NodeB1
i. Verify message is not received.
5. From NodeA1, invite messages on Subject7 from C3
i. Verify that NodeC can send a private message to NodeA1 on this subject.
ii. Verify that NodeB1 cannot send a private message to NodeA1 on this subject.
iii. Optionally, repeat a+b for transmission and receipt of announcements.
6. NodeB1 Subscribes to Subject8 in C3
i. Publish a message on Subject8 from NodeC
i. Verify receipt by NodeB1
ii. Publish a message on Subject8 from NodeA1
i. Verify message is not received.
7. From NodeC, invite messages on Subject9 from ALL_CONTINUA
i. Verify that Nnode A1 can successfully send a private message to NodeC on this subject.
ii. Verify that nNode B1 can successfully send a private message to NodeC on this subject.
8. Remove C3 from the RAMS network. This is a clean shutdown with appropriate petition cancellations being generated prior to shutdown of the RAMS gateway.
i. Verify petition propagations to C1 and C2.
ii. Verify cancellation of all active invitations and subscriptions for C3.
9. Add a C3 gateway back into the RAMS network.
i. Verify propagation of all expected petitions and declarations.
10. Terminate the C1 gateway (ie: Ctrl+C) to simulate an unexpected failure. A new instance of the C1 gateway should will then attempt to join the RAMS Network.
i. Verify, preferably with all pre-existing members of other members of C1 continuinge to run without interruption.
ii. Verify iC1’sts ability to rejoin and communicate with all other continua successfully, with only the expected configuration messages exchanged.

The following are suggested testing configurations that shouldwill be performed, if available. DELTA may be a third implementation, or a second instance of an existing one.
	Test#
	C1
	C2
	C3
	Configuration
	Results

	
	
	
	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	.2a
	ALPHA
	BETA
	DELTAALPHA
	TREE
	
	
	
	
	
	
	
	
	
	

	.2b
	DELTABETA
	ALPHA
	BETA
	MESH
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

[bookmark: _Ref152845936][bookmark: _Toc169235515]
Transport Service Testing Requirements	Comment by David Edell: Move this into test configuration section OR as an Appendix
[bookmark: _Ref162579050]The following sections describe any transport specific procedures that may be recommended to ensure a common configuration and ensure basic connectivity.

[bookmark: _Toc227386380][bookmark: _Toc227386381][bookmark: _Toc169235516]UDP
UDP is the preferred transport service for interoperability testing at this time. The following conventions will be followed for this TS:
· MAMS messages will be carried via UDP.
· Each nodemodule will have only one input port for AAMS messages, and it will be a UDP port. (Each nodemodule will have two UDP input ports -- one for MAMS and one for AAMS)
· All AAMS messages will be null-terminated character strings consisting of printable text.

To test UDP connectivity prior to AMS testing, the ‘netcat’ utility may be used:
 machine1> nc -u machine2 6001 -p 6002
 machine2> nc -u machine1 6002 -p 6001
Then type a line in on each machine - it should be received at the partner machine.

[bookmark: _Toc169235517]Buffered UDPPOSIX or VxWorks Message Queues (Pxmq or Vxmq) (BUDP)
Buffered UDP uses the buffering option to ensure that message delivery occurs in transmission order. All other parameters are the same as for the UDP transport service.

Connectivity testing for onboard message queue transport services is implementation specific and may require non-standard procedures to establish communication that are outside the scope of this document. This may include system-specific procedures for allocating and assigning message queues.
[bookmark: _Ref162578997][bookmark: _Ref162579005][bookmark: _Ref162579026][bookmark: _Ref169007148][bookmark: _Toc169235518]
Spring 2011 Interoperability Test Results
[bookmark: _Toc169235519]Summary & Conclusion
Formal interoperability testing for the Asynchronous Messaging Service (AMS) was conducted at the Johns Hopkins University Applied Physics Laboratory in Laurel, MD from March 22-24, 2011, with David Edell (APL) serving as test director. Scott Burleigh from the Jet Propulsion Laboratory (JPL), Pat Donahue from Marshall (MSFC), and Tim Ray from Goddard (GSFC) were in attendance. Testing was concluded via teleconference on May 12, 2011.

Interoperability testing was performed between the GSFC and MSFC implementations. All test procedures, as described in the preceding chapters, were completed successfully. The tests performed have demonstrated interoperability between two independently developed implementations across all aspects of the AMS protocol. Based on these findings, the SIS-AMS Working Group formally recommends the promotion of the AMS Specification to a Blue Book CCSDS Recommended Standard.	Comment by David Edell: Based on example from other Yellow books (502x1y1). “AMS Specification” in this sentence should be replaced with the formal document number.

[bookmark: _Toc169235520]Results
[bookmark: _Toc169235521]Nominal Testing Procedures
Base Registrar Configuration
	Test#
	CS
	RegistrarA
	RegistrarB
	Results

	
	
	
	
	1
	2
	3

	3.1a
	MSFC
	GSFC
	MSFC
	P
	P
	P

	3.1b
	GSFC
	MSFC
	GSFC
	P
	P
	P

Basic Module Registration
	Test#
	CS
	Registrar
	NodeA
	Results

	
	
	
	
	1
	2
	3

	3.2a
	MSFC
	MSFC
	GSFC
	P
	P
	P

	3.2b
	GSFC
	GSFC
	MSFC
	P
	P
	P

Message Exchange
	Test#
	CS
	Registrar
	NodeA
	NodeB

	
	
	
	
	

	3.3a
	ANY
	MSFC
	MSFC
	GSFC

	3.3b
	ANY
	GSFC
	GSFC
	MSFC

	Test#
	Results

	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17

	3.3a
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P

	3.3b
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P

Cross-Domain Communication
	Test#
	CS
	RegistrarA
	NodeA1
	NodeA2
	RegistrarB
	NodeB1
	NodeB2

	3.4a
	ANY
	MSFC
	MSFC
	GSFC
	GSFC
	GSFC
	MSFC

	3.4b
	ANY
	GSFC
	GSFC
	MSFC
	MSFC
	MSFC
	GSFC

	Test#
	Results

	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17

	3.3a
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P

	3.3b
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P

Resynchronization
	Test#
	CS
	RegistrarA
	NodeA
	NodeB
	Results

	
	
	
	
	
	1
	2
	3

	3.5a
	MSFC
	GSFC
	MSFC
	GSFC
	P
	P
	P

	3.5b
	GSFC
	MSFC
	GSFC
	MSFC
	P
	P
	P

Security & Data Integrity Verification
	Test#
	CS
	RegistrarA
	RegistrarB
	NodeA1, NodeB1,
NodeA3
	NodeA2,
NodeB2,
NodeB3

	3.6a
	MSFC
	MSFC
	GSFC
	MSFC
	GSFC

	3.6b
	GSFC
	GSFC
	MSFC
	GSFC
	MSFC

	Test#
	Results

	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14

	3.7a
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P

	3.7b
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P

[bookmark: _Toc169235522]Robustness Verification
Registrar Failover
	Test#
	CS
	Registrar
	Modules
	Results

	
	
	
	
	1
	2
	3
	4
	5
	6
	7
	8

	4.1a
	MSFC
	GSFC
	ALL
	P
	P
	P
	P
	P
	P
	P
	P

	4.1b
	GSFC
	MSFC
	ALL
	P
	P
	P
	P
	P
	P
	P
	P

Robustness Validation
Section 4.2 was completed via teleconference on May 12 following updates to the Marshall implementation related to the handling of configuration server failover.
	Test#
	CS1
	CS1 (backup)
	RegistrarA
	NodeAx
	RegistrarB
	NodeBx
	Results

	
	
	
	
	
	
	
	1
	2
	3
	4
	5
	6
	7
	8

	4.2a
	MSFC
	GSFC
	MSFC
	ALL
	GSFC
	ALL
	P
	P
	P
	P
	P
	P
	P
	P

	4.2b
	GSFC
	MSFC
	MSFC
	ALL
	GSFC
	ALL
	P
	P
	P
	P
	P
	P
	P
	P

[bookmark: _Toc169235523]Remote AMS Test Sequence
Basic RAMS Verification
	Test#
	C1
	C2
	Configuration
	Results

	
	
	
	
	1
	2
	3
	4
	5
	6
	7
	8

	5.1a
	MSFC
	GSFC
	TREE
	P
	P
	P
	P
	P
	P
	P
	P

	5.1b
	GSFC
	MSFC
	MESH
	P
	P
	P
	P
	P
	P
	P
	P

Advanced RAMS Verification
Section 5.2b (mesh configuration) was completed via teleconference on May 12 following updates to the Marshall implementation
	Test#
	C1
	C2
	C3
	Configuration
	Results

	
	
	
	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	5.2a
	MSFC
	GSFC
	MSFC
	TREE
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P

	5.2b
	GSFC
	MSFC
	GSFC
	MESH
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P

T

