
AMS Interoperability Test Plan
6
Green Book Part II

AMS Interoperability Test Plan
V.0.1 (Proposed Draft)
 Green Book, Part II
31.
Introduction

31.1.
Overview

31.2.
Definitions & Conventions

31.3.
Testing Requirements

42.
Nominal Testing Procedures

42.1.
Base Registrar Configuration

52.2.
Basic Node Registration

52.3.
Message Exchange

72.4.
Cross-Domain Communication

92.5.
Resynchronization

103.
Robustness Verification

103.1.
Basic Configuration Robustness

113.2.
Extended Robustness Validation

124.
Transport Service Testing Requirements

124.1.
UDP

124.2.
POSIX or VxWorks Message Queues (Pxmq or Vxmq)

135.
TBD: Sections To Be Added

1. Introduction

Overview

This document provides interoperability testing procedures for the Asynchronous Messaging Service (AMS).
1.1. Definitions & Conventions
All scenarios are designed for the testing of two distinct implementations, ALPHA (abbreviated A) and BETA (abbreviated B). Abbreviations indicating the implementation will be appended to all entity names, such as RegistrarA for a registration server from implementation ALPHA, or NodeB for a node in implementation BETA.

If multiple entities of the same type are used in a single implementation, a number shall be appended to its mnemonic, such as NodeA1 and NodeA2. Names are used for reference purposes only and do not necessarily reflect internal node identifiers. Mappings of node or registrar names may be swapped as necessary to facilitate alternate test scenarios with similar initial states.
The following configuration mnemonics will be used. Their values are not currently defined, but must be common in the MIB shared among all tested implementations.

· Subject1 … SubjectN
· Default_Role = ROLE_A
· Default_Unit = UNIT_A
· ROLE_A … ROLE_N
· UNIT_A … UNIT_N
All testing procedures, with the exception of RAMS procedures
, assume that all entities are members of a single continuum.

1.2. Testing Requirements

These procedures, unless otherwise noted, require that all implementations are operating across a common transport service and MIB configuration state. The Transport Service Testing Requirements chapter describes any TS specific configuration suggestions.

Verification requirements, as stated, may assume the availability of debug information on internal status of nodes or other entities as appropriate. Direct monitoring of message traffic across the selected transport service(s) may also be used for validation purposes. These are suggested verification techniques only and, in the absence of direct verification, success may be inferred from related actions as appropriate. A test result of undetermined (U) should be recorded if no verification was possible for a given step.
For all message exchanges the following defaults should be used if not otherwise specified. The default subject is Subject1, role is Default_Role, and unit is Default_Unit. Message content is not specified, however it is suggested that a known test value (ie: a test pattern, counter, or timestamp) be used and verified when appropriate.

Results tables should be marked as follows, with an explanation attached for any unsuccessful test performed:

· P for successful test.

· F for a failed test

· - for a test that has not been performed.

· U for a test whose results are undetermined.

· I for partial success or incomplete test.

2. Nominal Testing Procedures

This section describes testing procedures for core AMS functionality under normal operations. The basic series may be used for testing a single implementation for compliance, or for the interoperability testing of any combination of implementations. A table provided at the end of each section illustrates sample test scenarios for testing between implementations.
2.1. Base Registrar Configuration

Validate the ability for the RS to communicate and register with the CS.

0. Start Configuration Server

1. Start RegistrarA

a. Confirm registration

b. Confirm heartbeats

2. Start RegistrarB

a. Confirm registration

b. Confirm heartbeats

3. Verify Mutual Awareness of Registrars

a. Confirm RegistrarA is aware of RegistrarB

b. Confirm RegistrarB is aware of RegistrarA

The following testing combinations should be performed. Italicized cases are optional, to be used if there is a failure in any previous test combination.
	Test#
	CS
	RegistrarA
	RegistrarB
	Results

	
	
	
	
	1
	2
	3

	N1a
	ALPHA
	BETA
	ALPHA
	
	
	

	N1b
	BETA
	ALPHA
	BETA
	
	
	

	N1c
	ALPHA
	ALPHA
	ALPHA
	
	
	

	N1d
	BETA
	BETA
	BETA
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

2.2. Basic Node Registration
Validate the ability for a node to register and unregister itself.

0. Initial Configuration should include one CS and at least one active RS.

a. This may correspond to the final state of the previous section, case 1, with any additional registrars ignored for this scenario and/or these procedures mirrored within each active cell (registrar).
1. Verify that a node can register
a. Confirm ability to locate registrar by querying the CS

b. Verify registration success

c. Verify Heartbeat exchange between RS and node.

2. Verify that the node can cancel its registration (unregister)
a. Confirm processing by the registrar

b. Confirm configuration propagation to other nodes.

3. Verify that the node can Re-Register
The following testing combinations should be performed.

	Test#
	CS
	Registrar
	NodeA
	Results

	
	
	
	
	1
	2
	3

	N2a
	ALPHA
	ALPHA
	BETA
	
	
	

	N2b
	BETA
	BETA
	ALPHA
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

2.3. Message Exchange

Validate the ability for two nodes in the same cell to register and communicate. This section will test subscriptions, publish, receive, invite, send, and announce.

0. One CS, one RS, and one node are active.

a. This may correspond to the final state of case 2.

1. Register a second node, NodeB.

a. Confirm successful registration

b. Verify that NodeB is told of NodeA’s existence and empty subscription list.

c. Verify that NodeA is told of NodeB’s registration.

2. Publish a message on Subject1 from NodeA
a. Verify that NodeB does not receive this message; no subscriptions are in place at this time.

3. Subscribe to Subject1 from NodeB
a. Verify that NodeA receives subscription notification.

4. Publish a message on Subject1 from NodeA
a. Verify that NodeB receives the message

b. Repeat using Subject2 and verify NodeB does not receive the message; this is not the subject that has been subscribed to.

5. From NodeB, subscribe to ALL_Subjects
a. Verify subscription receipt by NodeA

6. Publish a message from NodeA on Subject2
a. Verify NodeB receives this message (subscribed to all)

7. Send
 a message on Subject1 from NodeA addressed to a domain that includes NodeB
a. Verify that NodeB does not receive this message; no invitations are in place at this time.
8. From NodeB, cancel subscription on ALL_SUBJECTS
a. Verify propagation to NodeA. If necessary, attempt to publish a message from NodeB on Subject2 and verify message is not received.
9. From NodeB, invite a domain that includes NodeA to send Subject2
a. Verify NodeA receives invitation

10. Publish a message from NodeA on Subject2.
a. Verify that NodeB does not receive this message. An invitation does not apply to published messages.

11. Send a message from NodeA to NodeB on Subject2
a. Verify that NodeB receives the message

12.
a.
13. From NodeA, query NodeB on Subject2
a. Verify NodeB receives query.

14. From NodeB, attempt to reply to NodeA with Subject2
a. Verify failure, NodeA has not issued an invitation on this subject.

15. Verify query/reply exchange
a. From NodeB, invite messages on Subject2 in a domain that includes NodeA
b. Repeat steps 12 & 13, verifying success now that appropriate subscriptions are in place on both ends.
16. From NodeA, issue an announcement on Subject2
a. Verify that the message is received by NodeB

b. Repeat from NodeB and verify the message is not received. NodeA has no invitations in place on this topic.
c. Repeat announcement from NodeA, addressing the message to a domain that does not include NodeB. Verify message is not received.
17. Cancel NodeA registration (unregister)

a. Verify registrar processes and forwards request.

b. Verify unregisteration notification by NodeB
18. Re-register NodeA
a. Verify registration success

b. Verify correct state of subscriptions, for example:
i. Publish a message on Subject1from NodeA and verify its receipt by NodeB.

ii. Attempt to send a message from NodeB to NodeA on Subject2 and verify failure. Invitations expire upon cancellation of a nodes registration.

iii. Attempt to send a message from NodeA to NodeB on Subject2 and verify success.

The following testing combinations should be performed:
	Test#
	CS
	Registrar
	NodeA
	NodeB

	
	
	
	
	

	N3a
	ANY
	ALPHA
	ALPHA
	BETA

	N3b
	ANY
	BETA
	BETA
	ALPHA

	
	
	
	
	

	
	
	
	
	

	Test#
	Results

	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17

	N3a
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	N3b
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

2.4. Cross-Domain Communication
This scenario validates message exchange and configuration between cells and associated message filtering by domain.

0. Initial state consists of a CS and two cells

a. The first cell consists of RegistrarA, NodeA1, NodeA2 in UNIT_A
b. The second cell consist of RegistrarB, NodeB1, NodeB2 in UNIT_B
c. Nodes A1 and B1 perform ROLE_A
d. Nodes A2 and B2 perform ROLE_B
e. At the start of this test both Registrars, NodeA1, and NodeB1 are active.

1. Register the remaining nodes, NodeA2, and NodeB2 to their respective cells.

a. Verify successful registration to their respective cells

b. Verify receipt of registration notification in neighboring cells.

2. Subscribe to Subject1 from NodeA1 in UNIT_A and ROLE_B
a. Publish a message on Subject1 from NodeA2
i. Verify receipt by NodeA1

b. Publish a message on Subject1 from NodeB1 and from NodeB2.

i. Verify neither message is received.

3. Subscribe to Subject2 from NodeA1 on UNIT_B and ROLE_A
a. Publish a message on Subject2 from NodeB1
i. Verify receipt by NodeA1
b. Publish a message on Subject2 from NodeA2 and from NodeB2.
i. Verify neither message is received.

4. Subscribe to Subject3 from NodeA1 on UNIT_B and ALL_ROLES
a. Publish a message on Subject3 from Node A2 and verify it is not received.

b. Publish a message on Subject3 from NodeB1 and NodeB2 and verify receipt of each.

5. Subscribe to Subject4 from NodeA1 on ALL_UNITS and ALL_ROLES
a. Publish a message on Subject4 from every other node in the continuum and verify receipt.

6. Cancel Subscription to Subject4 from NodeA1 on ALL_UNITS and ALL_ROLES.
a. Verify propagation to all other nodes. If necessary, attempt to publish a message on this subject to verify.

7. From NodeA1, invite messages on Subject5 from ALL_UNITS and ALL_ROLES
a. Verify that all others nodes may privately send messages on Subject5 to NodeA1

b. Verify NodeA1 can receive an announcement on this subject from all other nodes.
8. From NodeA1, invite messages on Subject6 from UNIT_B and ALL_ROLES
a. Verify that only NodeB1 and NodeB2 can send messages on Subject6 to NodeA1 in this configuration.

b. Repeat verification for transmission and receipt of announcements.
9. From NodeA1, invite messages on Subject7 from UNIT_B and ROLE_A

a. Verify that only NodeB1 can send a private message to NodeA1 on this subject.
b. Repeat verification for transmission and receipt of announcements.
10. From NodeA1, invite messages on Subject8 from UNIT_A and ROLE_B
a. Verify that only NodeA2 can send a private message to NodeA1 on this subject.

b. Repeat verification for transmission and receipt of announcements.
11. Cancel Invitation on Subject5
a. Verify propagation to all nodes.

12. Cancel Registration of NodeB1

a. Verify propagation of configuration change to all other nodes.
b. Re-register NodeB1 and verify that it is made aware of all active subscriptions and invitations.

13. Cancel Registration of NodeA1

a. Verify propagation of configuration change to all other nodes.

b. Confirm that all invitations and subscriptions are cancelled upon shutdown of NodeA1.

The following testing combinations are recommended. Compatible scenarios may be executed from the same configuration by swapping entity mnemonics accordingly.

	Test#
	CS
	RegistrarA
	NodeA1
	NodeA2
	RegistrarB
	NodeB1
	NodeB2

	N4a
	ANY
	ALPHA
	ALPHA
	BETA
	BETA
	BETA
	ALPHA

	N4b
	ANY
	BETA
	BETA
	ALPHA
	ALPHA
	ALPHA
	BETA

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	Test#
	Results

	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

	N4a
	
	
	
	
	
	
	
	
	
	
	
	

	N4b
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

Resynchronization

Resynchronization may be performed periodically to ensure a consistent configuration within a cell. Full verification of this capability may require the availability of debugging capabilities in the system, or transport service, to artificially create a non-synchronized scenario. These procedures should be repeated for the Registrar of each available implementation.
0. Initial state includes:

a. A non-zero resynchronization value for a given cell

b. A minimum of one CS, RS, and two nodes (one of each implementation type).

c. A second cell (RegistrarB and at least one associated node) is recommended to verify propagation between cells.

d. Establish some set of invitations and subscriptions spanning all combinations of active nodes.

1. Verify resynchronization period. A cell_status should be received by all active nodes in the message space at the expiration of this period.

2. Verify that all subscriptions, invitations, and registration databases remain valid following the resynchronization.

3. If possible, cause the nodes to become out of sync. This may be done by issuing an invitation, subscription, or registration change and blocking receipt by one or more entities.

a. Wait for the conclusion of the next resynchronization period and validate that all entities are now synchronized.

3. Robustness Verification

3.1. Basic Configuration Robustness

This scenario confirms the robustness of a configuration server in its management of its registration server.

0. Initial configuration consists of a CS and a Registrar

1. Delete (kill) the registrar.

a. Wait N3*N6 period and verify imputed death of registrar

b. Verify Registrar is restarted successfully by the CS (or other implementation-specific mechanism).

2. Suspend the registrar for a period of N3 such that it misses one heartbeat.

a. Verify Registrar continues normal operation and the CS does not prematurely impute its death.

3. Suspend the registrar for a period of N3*N6 seconds

a. Verify that its death is imputed by the registrar

b. Verify that a new instance of the registrar is successfully activated.

c. Verify that upon resumption, the existing registrar is appropriately terminated.

i. Termination should be imputed by failure of CS to respond to heartbeats.

4. Activate and register one node for each available implementation.

a. Verify registration and initiation of heartbeat exchange.

5. Terminate the registrar

a. Verify imputed termination and restart by the server
b. Verify ability of each node to successfully impute death of the registrar, locate its successor, reconnect and resume activities (heartbeats).
c. Verify ability for nodes to subscribe and publish messages.
6. Terminate the Configuration Server.

a. Verify imputed loss by the registrar.

b. Verify that node communication is not impeded

i. Message exchange and heartbeats continue as previously.

ii. Additional subscriptions or invitations should be successfully exchanged and verified.

7. Restart the Configuration Server

a. Verify ability for registrars to reconnect.

8. Terminate a node. This is a test of the servers, any node may be terminated.
a. Verify its registrar imputes the nodes death and propagates the news to all other nodes in the message space.

b. Restart the node.

i. Verify successful registration

ii. Verify communication with existing nodes.

The following testing combinations should be performed.

	Test#
	CS
	Registrar
	Nodes
	Results

	
	
	
	
	1
	2
	3
	4
	5
	6
	7
	8

	R1a
	ALPHA
	BETA
	ALL
	
	
	
	
	
	
	
	

	R1b
	BETA
	ALPHA
	ALL
	
	
	
	
	
	
	
	

	R1c
	ALPHA
	ALPHA
	ALL
	
	
	
	
	
	
	
	

	R1d
	BETA
	BETA
	ALL
	
	
	
	
	
	
	
	

3.2. Extended Robustness Validation
This scenario confirms configuration robustness between cells.

0. Initial configuration consists of a CS, two RS each with two registered nodes (four total) and some set of established subscriptions and invitations. This may correspond to the final state of basic case 3.
1. Terminate the Configuration Server

a. Verify imputed loss by the registrars
b. Verify that node communication is not impeded

i. Message exchange and heartbeats continue as previously.

ii. Additional subscriptions or invitations should be successfully exchanged and verified.

2. Restart the Configuration Server

a. Verify ability for registrars to reconnect.

3. Terminate RegistrarA

a. Verify imputed termination and restart by the server

b. Verify ability of each client node to successfully impute death of the registrar, locate its successor, reconnect and resume activities (heartbeats).

c. Verify ability for nodes to subscribe and publish messages.

4. Terminate a node of RegistrarA

a. Verify RegistrarA imputes the nodes death and the news propagates to all applicable entities, including RegistrarB and its registered nodes.

b. Restart the node.

i. Verify successful registration

ii. Verify communication with existing nodes.

5. Repeat step 3 for RegistrarB

6. Repeat step 4 for RegistrarB

The following testing combinations should be performed.

	Test#
	CS
	RegistrarA
	NodeAx
	RegistrarB
	NodeBx
	Results

	
	
	
	
	
	
	1
	2
	3
	4
	5
	6

	R2a
	ALPHA
	ALPHA
	ALL
	BETA
	ALL
	
	
	
	
	
	

	R2b
	BETA
	ALPHA
	ALL
	BETA
	ALL
	
	
	
	
	
	

4. Transport Service Testing Requirements
The following sections describe any transport specific procedures that may be recommended to ensure a common configuration and basic connectivity.

4.1. UDP

UDP is the preferred transport service for interoperability testing at this time. The following conventions will be followed for this TS:

· MAMS messages will be carried via UDP.

· Each node will have only one input port for AAMS messages, and it will be a UDP port. (Each node will have two UDP input ports -- one for MAMS and one for AAMS)

· All AAMS messages will be null-terminated character strings consisting of printable text.

To test UDP connectivity prior to AMS testing, we may be able to use the ‘netcat’ utility:

 machine1> nc -u machine2 6001 -p 6002

 machine2> nc -u machine1 6002 -p 6001

Then type a line in on each machine - it should be received at the partner machine.
4.2. POSIX or VxWorks Message Queues (Pxmq or Vxmq)

Connectivity testing for onboard message queue transport services is implementation specific and may require non-standard procedures to establish communication that are outside the scope of this document. This may include system-specific procedures for allocating and assigning message queues.
5. TBD: Sections To Be Added

Inter-Continuum (RAMS) testing

Testing of Multiple Transport Service capabilities

Other?
Additional TS-specific configuration requirements as available.

Explicit MIB values

Results/Conclusions
�TBD

�This test verifies that NodeA’s subscription does not apply to invitations.

�This item has recently changed. Previous (future?) behavior was for the CS to issue a ‘you_are_dead’ directive.

