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Abstract: Methods of describing random instabilities of importance to frequency and time 
metrology are covered. Quantities covered include frequency, amplitude, and phase instabilities; 
spectral densities of frequency, amplitude, and phase fluctuations; and time-domain deviations of 
frequency fluctuations. In addition, recommendations are made for the reporting of 
measurements of frequency, amplitude, and phase instabilities, especially in regard to the 
recording of experimental parameters, experimental conditions, and calculation techniques. 
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Introduction 

This introduction is not part of IEEE Std 1139-2008, IEEE Standard Definitions of Physical Quantities for 
Fundamental Frequency and Time Metrology—Random Instabilities. 

Techniques to characterize and to measure the frequency, phase, and amplitude instabilities in frequency 
and time devices and in received radio signals are of fundamental importance to all manufacturers and 
users of frequency and time technology. 

In 1964, Standards Coordinating Committee 14 and, in 1966, the Technical Committee on Frequency and 
Time were formed to prepare an IEEE standard on frequency stability. In 1969, these committees 
completed a document proposing definitions for measures of frequency and phase stabilities (Barnes 
[B14]).a In 1988, an updated IEEE standard on frequency stability was published as IEEE Std 1139-1988, 
IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology. Later 
on a revision of this standard was published as IEEE Std 1139-1999, IEEE Standard Definitions of Physical 
Quantities for Fundamental Frequency and Time Metrology—Random Instabilities. The recommended 
measures of instabilities in frequency generators have gained acceptance among frequency and time users 
throughout the world. 

This standard is a revision of IEEE Std 1139-1999, which had been prepared by a previous Standards 
Coordinating Committee 27, consisting of John R. Vig, Chair; Eva S. Ferre-Pikal, Vice Chair; James C. 
Camparo, Leonard S. Cutler, Lute Maleki, William J. Riley, Samuel R. Stein, Claudine Thomas, Fred L. 
Walls, and Joseph D. White. Some clauses of the 1999 standard remain unchanged.  

Most of the major manufacturers now specify instability characteristics of their standards in terms of the 
recommended measures. This standard thus defines and formalizes the general practice. 

Notice to users 

Laws and regulations 

Users of these documents should consult all applicable laws and regulations. Compliance with the 
provisions of this standard does not imply compliance to any applicable regulatory requirements. 
Implementers of the standard are responsible for observing or referring to the applicable regulatory 
requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in 
compliance with applicable laws, and these documents may not be construed as doing so.  

Copyrights 

This document is copyrighted by the IEEE. It is made available for a wide variety of both public and 
private uses. These include both use, by reference, in laws and regulations, and use in private self-
regulation, standardization, and the promotion of engineering practices and methods. By making this 
document available for use and adoption by public authorities and private users, the IEEE does not waive 
any rights in copyright to this document. 

                                                 
a The numbers in brackets correspond to those of the bibliography in Annex F. 
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Updating of IEEE documents 

Users of IEEE standards should be aware that these documents may be superseded at any time by the 
issuance of new editions or may be amended from time to time through the issuance of amendments, 
corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the 
document together with any amendments, corrigenda, or errata then in effect. In order to determine whether 
a given document is the current edition and whether it has been amended through the issuance of 
amendments, corrigenda, or errata, visit the IEEE Standards Association Web site at 
http://ieeexplore.ieee.org/xpl/standards.jsp, or contact the IEEE at the address listed previously. 

For more information about the IEEE Standards Association or the IEEE standards development process, 
visit the IEEE-SA Web site at http://standards.ieee.org. 

Errata 

Errata, if any, for this and all other standards can be accessed at the following URL:  
http://standards.ieee.org/reading/ieee/updates/errata/index.html. Users are encouraged to check this URL 
for errata periodically. 

Interpretations 

Current interpretations can be accessed at the following URL: http://standards.ieee.org/reading/ieee/interp/ 
index.html. 

Patents 

Attention is called to the possibility that implementation of this standard may require use of subject matter 
covered by patent rights. By publication of this standard, no position is taken with respect to the existence 
or validity of any patent rights in connection therewith. The IEEE is not responsible for identifying 
Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity 
or scope of Patents Claims or determining whether any licensing terms or conditions provided in 
connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable 
or non-discriminatory. Users of this standard are expressly advised that determination of the validity of any 
patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Further 
information may be obtained from the IEEE Standards Association. 
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IEEE Standard Definitions  
of Physical Quantities for  
Fundamental Frequency and Time 
Metrology—Random Instabilities 

IMPORTANT NOTICE: This standard is not intended to ensure safety, security, health, or 
environmental protection in all circumstances. Implementers of the standard are responsible for 
determining appropriate safety, security, environmental, and health practices or regulatory 
requirements. 

This IEEE document is made available for use subject to important notices and legal disclaimers. These 
notices and disclaimers appear in all publications containing this document and may be found under the 
heading “Important Notice” or “Important Notices and Disclaimers Concerning IEEE Documents.” 
They can also be obtained on request from IEEE or viewed at http://standards.ieee.org/IPR/ 
disclaimers.html. 

1. Scope 

This standard covers the fundamental metrology for describing random instabilities of importance to 
frequency and time metrology. Quantities covered include frequency, amplitude, and phase instabilities; 
spectral densities of frequency, amplitude, and phase fluctuations; and time-domain deviations of frequency 
fluctuations. In addition, recommendations are made for the reporting of measurements of frequency, 
amplitude, and phase instabilities, especially in regard to the recording of experimental parameters, 
experimental conditions, and calculation techniques. The annexes cover basic concepts and definitions, 
time prediction, and confidence limits when estimating deviations and spectral densities from a finite data 
set. The annexes also cover translation between the frequency domain and time domain instability 
measures, examples on how to calculate the time-domain measures of frequency fluctuations, and an 
extensive bibliography of the relevant literature. Systematic instabilities, such as environmental effects and 
aging, are discussed in IEEE Std 1193™-2003 [B54].1 

                                                 
1 The numbers in brackets correspond to those of the bibliography in Annex F. 
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2. Definitions 

For the purposes of this standard, the following terms and definitions apply. The Authoritative Dictionary 
of IEEE Standards Terms [B51] should be referenced for terms not defined in this clause. If ambiguities are 
created between the narrative definition given here and the mathematical equation given in the text, the 
equation has priority. 

2.1 amplitude spectrum Sa(f): One-sided spectral density of the normalized amplitude fluctuations, as 
defined in normalized amplitude fluctuations a(t). 

2.2 bias: The difference between the expected value of an estimator of a statistic and its correct value. 

2.3 confidence interval: An interval of uncertainty associated with an estimate of an instability measure 
from a finite number of measurements. The endpoints of a confidence interval are called confidence limits. 

2.4 frequency spectrum Sy(f): One-sided spectral density of the normalized frequency fluctuations, as 
defined in normalized frequency fluctuations y(t). 

2.5 normalized amplitude fluctuations a(t): Instantaneous normalized amplitude departure from a 
nominal amplitude. 

2.6 normalized frequency fluctuations y(t): Instantaneous, normalized frequency departure from a 
nominal frequency. 

2.7 phase fluctuations φ(t): Instantaneous phase departure from a nominal phase. 

2.8 phase noise L(f): One-half of the phase spectrum Sφ(f), as defined in phase spectrum Sφ(f). 

2.9 phase spectrum Sφ(f): One-sided spectral density of the phase fluctuations. 

2.10 time fluctuations x(t): Instantaneous time departure from a nominal time. 

2.11 time interval error (TIE): The time difference between a real clock and an ideal uniform time scale 
following a time period t after perfect synchronization. 

2.12 time spectrum Sx(f): One-sided spectral density of the time fluctuations. 

2.13 two-sample deviation σy(τ): Also called the Allan deviation; the square root of the two sample 
variance, as defined in two-sample variance σy

2(τ). 

2.14 two-sample variance σy
2(τ): Also called the Allan variance; one-half the time average of the square 

of the difference between the averages of normalized frequency fluctuations over two adjacent time 
intervals of length τ, with no dead time between the two averaging intervals. 

3. Standards for characterizing or reporting measurements of frequency, 
amplitude, and phase instabilities 

The standard measure for characterizing frequency and phase instabilities in the frequency domain is L(f), 
(pronounced “script-ell of f”), defined as one half of the one-sided spectral density of phase fluctuations: 

)(
2
1)( fSf φ=L   
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When expressed in decibels, the units of L(f) are dBc/Hz (dB below the carrier in a 1 Hz bandwidth). A 
device shall be characterized by a plot of L(f) versus Fourier frequency f. In some applications, providing 
L(f) versus discrete values of Fourier frequency is sufficient. (See Annex A and Annex B for further 
discussion). The standard measure for characterizing amplitude instability in the frequency domain is one 

half of the one-sided spectral density of the normalized amplitude fluctuations, )(2
1 fSa . When 

expressed in decibels the units of )(2
1 fSa  are dBc/Hz (dB below the carrier in a 1 Hz bandwidth). See 

Annex A for a detailed discussion on spectral densities. 

In the time domain, the standard measure of frequency and phase instabilities is the Allan deviation σy(τ). 
A device shall be characterized by a plot of σy(τ) versus averaging time τ. In some cases, providing discrete 
values of σy(τ) versus τ is sufficient. (See Annex A and Annex B for further discussion.) The measurement 
system bandwidth (fh) and the total measurement time shall be indicated. 

In addition the provisions in 3.1 and 3.2 are recommended when reporting measurements on frequency and 
phase instabilities. 

3.1 Nonrandom phenomena should be recognized 

In particular: 

a) Any observed time dependence of the statistical measures should be stated. 

b) The method of modeling systematic behavior should be specified (e.g., an estimate of the linear 
frequency drift was obtained from the coefficients of a linear least-squares regression to M 
frequency measurements, each with a specified averaging or sample time t and measurement 
bandwidth fh). 

c) The environmental sensitivities should be stated (for example, the dependence of frequency and/or 
phase on temperature, magnetic field, barometric pressure, and vibration). 

3.2 Relevant measurement or specification parameters should be given 

Relevant measurement or specification parameters include the following: 

a) The nominal signal frequency νo. 

b) The method of measurements. 

c) The measurement system bandwidth fh and the corresponding low-pass filter response. 

d) The total measurement (data sample) time and the number of measurements N. 

e) The characteristics of the reference signal (equal noise or much lower noise assumed). 

f) For averaging times which exceed 10% of the total measurement time using )(ˆ , τσ TOTALy  to 

estimate )(τσ y  is recommended (see Howe [B41], [B42] and Howe and Greenhall [B44]). 

g) The calculation techniques [e.g., details of the window function when estimating power spectral 
densities from time-domain data, or the assumptions about effects of dead time when estimating the 
two-sample deviation σy(τ)]. 

h) The confidence interval (or uncertainty) of the estimate and its statistical probability (e.g., 1σ for 
68%, 2σ for 95%). See Annex E. 

i) The environment during measurement. 
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Annex A  

(informative) 

Measures of frequency, amplitude, and phase instabilities 

A.1 Measures of frequency, amplitude, and phase instabilities 

The instantaneous output voltage of a precision oscillator can be expressed as 

( ))(π2sin())()( tttVtv oo φνε ++=  (A.1) 

where  

Vo  is the nominal peak voltage amplitude  
ε(t)  is the deviation from the nominal amplitude  
νo  is the nominal frequency 
φ(t)  is the phase deviation from the nominal phase 2πνot 

Figure A.12 illustrates a signal with frequency, amplitude, and phase instabilities. As shown, frequency 
instability is the result of fluctuations in the period of oscillation. Fluctuations in the phase result in 
instability of the zero crossing. Fluctuations in the peak value of the signal (Vpeak) result in amplitude 
instability. 

 

Figure A.1—Instantaneous output voltage of an oscillator 

                                                 
2 In the signal shown in Figure A.1, the frequency components of the noise are higher than the carrier frequency. The higher frequency 
components are used for illustration purposes only. In general, this standard applies to the frequency components of amplitude, phase, 
and frequency instabilities that are lower in frequency than the carrier frequency. 
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Frequency instability of a precision oscillator is defined in terms of the instantaneous, normalized 
frequency deviation, y(t), as follows 

oo

o ttty
ν

φ
ν

νν
π2

)()()(
&

=
−

≡  (A.2) 

where ν(t) is the instantaneous frequency (time derivative of the phase divided by 2π), and 

t
tt

d
)(d)( φφ =&  (A.3) 

Amplitude instability is defined in terms of the instantaneous, normalized amplitude deviation 

oV
tta )()( ε

≡  (A.4) 

Phase instability, defined in terms of the instantaneous phase deviation φ(t), can also be expressed in units 
of time, as 

o

ttx
ν

φ
π2

)()( =  (A.5) 

With this definition, the instantaneous, normalized frequency deviation is 

t
txty

d
)(d)( =  (A.6) 

Other random phenomena observed in certain oscillators are frequency jumps, that is, discontinuities in the 
frequency of oscillation. These phenomena are not repetitive or well understood and cannot be 
characterized by standard statistical methods. 

A.2 Frequency domain 

In the frequency domain, frequency, amplitude and phase instabilities can be defined or measured by one-
sided spectral densities (see Table A.1). 

The measure of frequency instability is the spectral density of normalized frequency fluctuations, Sy(f), 
given by 

BW
fyfS rmsy

1)()( 2=  (A.7) 
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where  

yrms(f)  is the measured root mean squared (rms) value of normalized frequency fluctuations in a band of 
Fourier frequencies containing frequency f 

BW  is the width of the frequency band in Hz 

The units of Sy(f) are 1/Hz. This expression for Sy(f) can be derived from the Fourier transform relation 
between power spectral density and autocorrelation function: 

( ) ( )∫ ∫
−

∞

=≡
∞→

T

T
yrms ffSytty

TT
0

22 d        d
2
1lim  

so that for sufficiently narrow Fourier frequency bands (such that Sy(f) is approximately constant over the 
bandwidth) we have 

( ) ( )∑∑
∞

=

∞

=

=≅
1

2

1

2           
k

krms
k

kyrms fyBWfSy  

The measure of amplitude instability is the spectral density of normalized amplitude fluctuations, Sa(f), 
given by 

BW
fafS rmsa

1)()( 2=  (A.8) 

The units of Sa(f) are 1/Hz. Again, arms(f) is to be understood as an rms value in a specific Fourier frequency 
band of width BW. 

Phase instability can be characterized by the spectral density of phase fluctuations, Sφ(f), given by 

BW
ffS rms

1)()( 2φφ =  (A.9) 

The units of Sφ(f) are rad2/Hz. Here too, φrms(f) is an rms value in a specific Fourier frequency band. 

As mentioned previously, Sy(f), Sa(f), and Sφ(f), are one-sided spectral densities, and apply over a Fourier 
frequency f range from 0 to ∞. They are equivalent to the sums of the two-sided or single sideband spectral 
densities (see Table A.1), which are the complex Fourier transforms of their respective autocorrelation 
functions, for both positive and negative frequencies f and –f. This equivalence arises because the complex 
Fourier transform of a real time-domain process is both real and symmetric in f.  

Sφ(f) is the quantity that has been historically utilized (see Cutler and Searle [B29]) in frequency metrology; 
however, L(f) has become the prevailing measure of phase noise among manufacturers and users of 
frequency standards. According to the old definition (see Kartaschoff [B59]), L(f) is the ratio of the power 
in one sideband due to phase modulation (PM) by noise (for a 1 Hz bandwidth) to the total signal power 
(carrier plus sidebands); that is,  

power signal total
Hzper  sideband, modulation noise phase onein density power )( =fL  (A.10) 
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Usually L(f) is expressed in decibels (dB) as 10 log10L(f), and its units are dB below the carrier in a 1 Hz 
bandwidth, generally abbreviated as dBc/Hz. 

The old definition of L(f) is related to Sφ(f) by 

2
)(

)(
fS

f φ≅L  (A.11) 

This relationship breaks down when the mean squared phase deviation, <φ2(t)> = the integral of Sφ(f) from f 
to ∞, exceeds about 0.1 rad2. To circumvent this difficulty, L(f) is redefined as 

2
)(

)(
fS

f φ≡L  (A.12) 

This redefinition is intended to avoid difficulties in the use of L(f) in situations where the small angle 
approximation is not valid. L(f), as defined by Equation (A.12), should be designated as the standard 
measure of phase instability in the frequency domain. The reasons are the following:  

⎯ It can always be measured unambiguously, and 

⎯ It conforms to the prevailing usage. 

Definitions of spectral densities and their relations are given in Table A.1. 

Table A.1—Spectral density definitions 

Name Error variance Relationships (assumes ±f symmetry) 
One-sided spectral 

density 
)(1 fS sided−  

)(d 10
fSf sided−

∞

∫  )(2)(2)(2)()( 21 ffSfSfSfS SSBsidedDSBsided L==== −−  

Two-sided spectral 
density 

)(2 fS sided−  

)(d 2 fSf sided−

∞

∞−∫  )(½)(½)()()( 12 fSfSffSfS DSBsidedSSBsided ==== −− L  

Single sideband 
spectral density 

)( fSSSB  

)(d fSf SSB∫
∞

∞−
 )(½)(½)()()( 12 fSfSffSfS DSBsidedsidedSSB ==== −− L  

Double sideband 
spectral 

density )( fSDSB  

)(d
0

fSf DSB∫
∞

 )(2)(2)(2)()( 21 ffSfSfSfS SSBsidedsidedDSB L==== −−  

“Script ell of f” 
)( fL  )(d2

0
ff L∫

∞
 )(½)(½)()()( 12 fSfSfSfSf DSBsidedsidedSSB ==== −−L  

 

Phase instability can also be normalized so that it is expressed as time instability by Sx(f), the one-sided 
spectral density of the phase fluctuations expressed in units of time (x(t)): 

BW
fxfS rmsx

1)()( 2=  (A.13) 
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where, again, xrms(f) is defined in a fashion similar to that of yrms(f). From Equation (A.5), Sφ(f) and Sx(f) are 
related by 

)(
)π2(

1)( 2 fSfS
o

x φν
=  (A.14) 

Since phase and frequency are directly related, that is, angular frequency is the time derivative of the phase, 
spectral densities of frequency and phase fluctuations are also related: 

)()()π2()( 2

2
2 fSffSffS

o
xy φν

==  (A.15) 

Other quantities related to phase instability are phase jitter and wander. The International 
Telecommunication Union (ITU) defines [timing] jitter and wander as variations [deviations] of the 
significant instants of a timing signal from their ideal positions in time excluding frequency offsets and 
drifts, where the jitter consists of variations with Fourier frequency above 10 Hz and the wander consists of 
variations with Fourier frequency below 10 Hz (see ITU-T Recommendation G.810 (08/96) [B56]). One 
can similarly define phase jitter through Equation (A.9). We define the phase jitter deviation by 

2
1

2

1

d)(
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ∫

f

f
jitter ffSφφ  (A.16) 

which is the square root of the integral of Sφ(f) over the Fourier frequencies between a low frequency cutoff 
f1 and high-frequency cutoff f2 determined by the filtering properties of the application being considered. 
The use of 10 Hz for f1 is useful for standardizing producers of time and frequency equipment, but care 
should be exercised because this cutoff is not necessarily related to user requirements. It is also noted that it 
is necessary to specify f2 in order to properly define phase jitter deviation. Equation (A.16) assumes 
infinitely sharp filters. In practice this is hard to achieve and there can be contributions to the measured 
jitter deviation from phase noise outside the region of interest if the filter skirts are not steep enough.  

Similarly, one can define phase wander deviation as the square root of the integral of Sφ(f) over Fourier 
frequencies below f1, although it is noted that this quantity diverges when negative power law noise is 
present. It is also noted that is not possible to obtain Sφ(f) from the phase jitter deviation, unless the shape of 
Sφ(f) is known. 

A.3 Time domain 

In the time domain, an oscillator’s frequency instability is defined by a two-sample deviation σy(τ), also 
called the Allan deviation, which is the square root of a two-sample variance σy

2(τ), also called the Allan 
variance. This variance σy

2(τ) assumes no dead time between adjacent average frequency samples. (Dead 
time refers to the time between time-ordered data sets when no measurement of frequency is taken.) For the 
averaging time τ, 
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2
1

2
1 ][

2
1)( ⎥⎦

⎤
⎢⎣
⎡ −= + kky yyτσ  (A.17) 

where tk = t0 + kτ for some time origin t0, xk = x(tk), and 

τττ
kkkk

t

t
k

xxtxtxttyy
k

k

−
=

−
== ++∫

+

11 )()(d)(1 1

 (A.18) 

The symbol  denotes an infinite time average, [i.e., in Equation (A.17) an average over k = 1 to k = ∞]. 
In practice, the requirement of infinite time average is never fulfilled, and the Allan deviation is estimated 
by 

2
1

1

1

2
1 )(

)1(2
1)( ⎥

⎦

⎤
⎢
⎣

⎡
−

−
≅ ∑

−

=
+

M

k
kky yy

M
τσ  (A.19) 

where M is the number of frequency measurements. This is called the non-overlapped estimate of the Allan 
deviation because y(t) is being averaged over non-overlapping intervals. 

The estimate of the Allan deviation can also be expressed in terms of M+1 time deviation measurements 
x1,…,xM+1 by combining Equation (A.18) and Equation (A.19): 

2
1

1

1

2
122 )2(

)1(2
1)( ⎥

⎦

⎤
⎢
⎣

⎡
+−

−
≅ ∑

−

=
++

M

k
kkky xxx

M τ
τσ  (A.20) 

Consistent, systematic effects such as frequency drift can be removed from the data before estimating the 
Allan deviation; see 3.1. Such data modifications shall be indicated. 

If there is dead time between the frequency-deviation measurements and it is ignored in the computation of 
σy(τ), the resulting instability values will be biased (except for white frequency noise). Some of the biases 
have been studied and some correction tables published (see Barnes [B11], Lesage [B61], and Barnes and 
Allan [B13]). Therefore, the term σy(τ) shall not be used to describe such biased measurements without 
stating the bias together with σy(τ). The unbiased σy(τ) can be calculated from the biased values, using 
information in the references. Considering that {xk} can be routinely measured, it is preferred that {xk} is 
used to compute σy(τ) since the problem of dead time is avoided. 

In general, estimates of σy(τ) with better confidence may be obtained using what is called overlapped 
estimates. Here it is assumed that the time deviation x(t) is sampled with a fixed period 0τ . There are N 

samples ),( 00 τktxxk +=  k = 1, …, N. The estimate is obtained by computing 

2
1

2
2

1
22 )2(

)2(2
1)( ⎥

⎦

⎤
⎢
⎣

⎡
+−

−
≅ +

−

=
+∑ kmk

mN

k
mky xxx

mN τ
τσ  (A.21) 
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where m is a positive integer and τ = mτ0. 

Examples of overlapped σy(τ) estimates are given in Annex C. 

Equation (A.21) shows that σy(τ) acts like a second-difference operator on the time deviations usually 
providing a stationary measure of the stochastic behavior even for nonstationary processes. An efficient 
spacing of τ values in a plot of log σy(τ) vs. log τ sets m = 2p, where p = 0, 1, 2, 3, ... . 

When differentiating between white and flicker PM noise is desirable, a modified deviation, denoted as 
Mod σy(τ), may be used to characterize frequency instabilities (see Allan and Barnes [B4], Stein [B89]). 
Unlike σy(τ), Mod σy(τ) has the property of yielding different dependence on τ for white phase noise and 
flicker PM; the dependencies are τ–3/2 and τ–1, respectively. (The dependence for σy(τ) is approximately τ–1 
for both white and flicker PM.) Another advantage is that Mod σy(τ) averages wideband PM faster than τ–1. 
Mod σy(τ) is defined for 0τ -sampled time deviations ),( 00 τktxxk +=  as 

212

1
22 )2(1

2
1)( 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+−= ∑

=
++ i

m

i
mimiy xxx

m
Mod

τ
τσ  (A.22) 

where 0ττ m=  for an integer m, and  indicates an infinite time average over t0. In practice, the 

modified Allan deviation is estimated from N samples Nxx ,,1 K  by 

2
1

   13

1

21

222 )2(
)13(2

1)( 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+−

+−
≅ ∑ ∑

+−

=

−+

=
++

mN

j
i

jm

ji
mimiy xxx

mNm
Mod

τ
τσ  (A.23) 

For examples of σy(τ) and Mod σy(τ) see Annex C.  

A measure of rms time deviation that is often used in time transfer systems, such as the global positioning 
system (GPS), is σy(τ), defined as 

)(  
3

)( τσττσ yx Mod=  (A.24) 

This quantity is useful when white and flicker PM noise dominate a synchronization system. 

Another approach to distinguish different noise types is to use multivariance analysis (see Vernotte et al. 
[B93]). By using several variances to analyze the same data it is possible to estimate the coefficients for the 
five noise types. For a description of noise types see Annex B. 

At long averaging times, greater than 10% of the total measurement time (i.e., τ > 0.1Nτ0), an Allan 
deviation estimate has potential errors and a bias related to its insensitivity to odd (antisymmetric) noise 
processes in x(t) [odd about the midpoint of the x(t) data or even in terms of average ky ]. This insensitivity 
to odd noise processes is illustrated in Figure A.2. Part a) of Figure A.2 shows three phase samples of a 
noise process that is odd about x2. The calculated fractional frequency deviations according to Equation 
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(A.19) are shown in part b) of Figure A.2. Since 1y  and 2y  are equal, contributions due to this noise 
process will not show up in σy(τ). 

x1

x2

x3

time

y1 y2

time

x(t)

τ

τ

y

A.2a

A.2b

 

Figure A.2—Odd noise process about x2 

For this reason, when τ exceeds 10% of the data sample, using the total deviation )(ˆ , τσ TOTALy  to estimate 

σy(τ) is recommended. )(ˆ , τσ TOTALy  extends the kx  sequence at both ends by reflection about the 

endpoints to provide a better estimate of frequency stability. The advantages of )(ˆ , τσ TOTALy  are outlined 
in several references (see Howe [B41], [B42], and Howe and Greenhall [B44]).  

To define )(ˆ , τσ TOTALy  let 1x , ..., Nx  (N ≥ 5) be the time-residual data, sampled with time period τ0 and 

let the maximum value of τ be mmaxτ0, where mmax is the integer part of (N – 1)/2. We construct a new, 
longer sequence { 12:' maxmax −+≤≤− mNkmx k } as follows: 

NN xxxxxx === '    ,     ,'    ,' 2211 K  

maxmax 12311210 2'    ,    ,2'    ,2' mm xxxxxxxxx −=−=−= −− K  

112211 maxmax
2'    ,    ,2'    ,2' +−−+−+−+ −=−=−= mNNmNNNNNNN xxxxxxxxx K  

Equation (A.21) with τ = mτ0 (m ≤ mmax) can be applied to the sequence 12 ',,' −+− mNm xx K  to define 

2/11

2

2
2, ]''2'[

)2(2
1)(ˆ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−

−
= ∑

−

=
+−

N

k
mkkmkTOTALy xxx

Nτ
τσ  (A.25) 

)(ˆ , τσ TOTALy  can also be represented in terms of extended normalized frequency fluctuation averages as 
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2
1

1

2

2
, )''(

)2(2
1)(ˆ ⎥

⎦

⎤
⎢
⎣

⎡
−

−
= ∑

−

=
−

N

k
mkkTOTALy yy

N
τσ  (A.26) 

where τ/)''(' kmkk xxy −= + . 

A.4 Systematic instabilities 

The long-term frequency change of a source is called frequency drift. Drift includes frequency changes 
caused by changes in the components of the oscillator, in addition to sensitivities to the oscillator’s 
changing environment and changes caused by load and power supply changes (see Vig and Meeker [B96]).  

The frequency aging of an oscillator refers to the change in the frequency of oscillation caused by changes 
in the components of the oscillator, either in the resonant unit or in the accompanying electronics. Aging 
differs from drift in that it does not include frequency changes due to changes in the environment, such as 
temperature changes. Aging is thus a measure of the long-term stability of the oscillator, independent of its 
environment. The frequency aging of a source (positive or negative) is typically maximum immediately 
after turn-on. 

Aging can be specified by the normalized rate of change in frequency at a specified time after turn-on (for 
example, 1 x 10–10 per day after 30 days), or by the total normalized change in frequency in a period of time 
(for example, 1 x 10–8 per month) (see Vig and Meeker [B96]). It is worth noting that some clocks can have 
a very long (multi-year) equilibration following turn-on before frequency aging takes on an essentially 
unchanging linear rate (see Camparo, Klimcak, Herbulock [B25]). 

A.5 Clock-time prediction 

The time difference between a real clock and an ideal uniform time scale, also known as time interval error 
(TIE), observed over a time interval starting at time t0 and ending at t0 + t is defined as 

∫
+

=−+=
tt

t
ttytxttxtTIE 0

0

'd)'()()()( 00  (A.27) 

For fairly simple models, regression analysis can provide efficient estimates of the TIE (see Draper and 
Smith [B32] and CCIR [B26]). In general, there are many estimators possible for any statistical quantity. 
An efficient and unbiased estimator is preferred. Using the time domain measure σy(τ), the following 
estimate of the standard deviation (rms) of TIE and its associated systematic departure due to a linear 
frequency drift (plus its uncertainty) can be used to predict a probable TIE of a clock synchronized at time 
t0 and left free running thereafter: 

21

2
2

22
2

est 4
)()( RMS

0

0

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= tat

t
ttTIE yy

x σσ
σ

 (A.28) 

where 

0xσ  is the uncertainty in the initial synchronization  
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0yσ    is the uncertainty in the initial frequency adjustment 

)(tyσ  is the two-sample deviation describing the random frequency instability of the clock at 
τ = t computed after a linear frequency drift has been remove 

a  is the normalized linear frequency drift per unit of time plus the uncertainty in the drift 
estimate 

The third term in the brackets provides an optimum and unbiased estimate [under the condition of an 
optimum (rms) prediction method] in the cases of white noise frequency modulation (FM) and/or random 
walk FM. The third term is too optimistic, by about a factor of 1.4, for flicker FM noise, and too 
pessimistic, by about a factor of 3, for white PM noise (see Barnes and Allan [B12] and Allan [B3]). 

This estimate is a useful and fairly simple approximation. A more complete error analysis becomes 
difficult. If carried out, such an analysis needs to include the methods of time prediction, the uncertainties 
of the clock parameters using the confidence limits of measurements defined as follows, the detailed clock 
noise models, systematic effects, etc. 

A quantity often used to characterize the stability of clocks in telecommunication systems is the maximum 
time interval error (MTIE). MTIE is defined as the maximum time difference minus the minimum time 
difference between a clock and an ideal reference (see Bregni [B23]). 
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Annex B  

(informative) 

Power-laws and conversion between frequency and time domain 

B.1 Power-law spectral densities 

Power-law spectral densities serve as reasonable and accurate models of the random fluctuations in 
precision oscillators. In practice, these random fluctuations can often be represented by the sum of five 
such noise processes assumed to be independent, as 

⎪⎩

⎪
⎨

⎧

≥

<<
= ∑

+

−=

h

h
y

ff

fff
fS

for               0

0for  h
)(

2

2α

α
α  (B.1) 

where 

hα is constant 
α is integer 
fh is high-frequency cutoff of an infinitely sharp low-pass filter 

High-frequency divergence is eliminated by the restrictions on f in this equation. The identification and 
characterization of the five noise processes are given in Table B.1, and shown in Figure B.1. 
 

Table B.1—Functional characteristics of the independent noise processes used in 
modeling frequency instability of oscillators 

Slope characteristics of log-log plot 
Frequency domain Time domain 

Sy(f) Sφ(f) or Sx(f) σy
2(τ) σy(τ) Mod σy(τ) 

 
Description of noise process 

α β μ μ/2 μ′ 
Random walk FM –2 –4 1 1/2 1/2 
Flicker FM –1 –3 0 0 0 
White FM 0 –2 –1 –1/2 –1/2 
Flicker PM 1 –1 –2 –1 –1 
White PM 2 0 –2 –1 –3/2 
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Figure B.1—Slope characteristics of the five independent noise processes 
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B.2 Conversion between frequency and time domain 

The operation of the counter, averaging the frequency for a time τ, may be thought of as a filtering 
operation. The transfer function H(f) of this equivalent filter is then the Fourier transform of the impulse 
response function of the filter. The time domain frequency instability is then given by 
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∞

ffHfSTM yy τσ  (B.2) 

where Sy(f) is the one-sided spectral density of normalized frequency fluctuations. 1/T is the measurement 
rate (T–τ is the dead time between measurements). In the case of the two-sample deviation |H(f)|2 = 
2(sin4πτf)/(πτf)2. The two-sample deviation can thus be computed from  
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Specifically, for the compound power law model given in Equation (B.1), the time domain measure is 
given by 
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Equation (B.4) assumes that fh is the high-frequency cutoff of an infinitely sharp low-pass filter and that 
2πfhτ >> 1. This equation also implicitly assumes that the random driving mechanism for each term is 
independent of the others, and that the mechanism is valid over all Fourier frequencies. These assumptions 
may not always be true. 

The modified two-sample deviation can also be computed from Sy(f) by using 
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where m is a positive integer and τ = mτ0 (see Bernier [B18]). 

Table B.2 gives the coefficients of the translation from Sy(f) (frequency domain) to σy
2(τ) (time domain). In 

general computation of Sy(f) or related frequency domain measurements from σy(τ) or Mod σy(τ) are not 
permitted unless only one power law noise type is present. Nevertheless, when several noise types are 
present, special analysis can be made on the time-domain data to obtain the coefficients (in the frequency 
domain) for each power law (see Vernotte et al. [B93]). 

 

Authorized licensed use limited to: Johns Hopkins University. Downloaded on March 07,2019 at 15:29:34 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Std1139-2008 
IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology— 

Random Instabilities 

17 
Copyright © 2009 IEEE. All rights reserved. 

 

Table B.2—Translation of frequency instability measures from spectral densities  
in frequency domain to variances in time domain for  

an infinitely sharp low-pass filter with 2πfhτ>>1 

Description of noise process =)( fSy  =)( fSφ  =)(2 τσ y  

Random walk FM 2
2h −

− f  42
2h −

− fν   Ah 1
2τ−  

Flicker FM  1
1h −

− f  32
1h −

− fν  0
1Bh τ−  

White FM 0
0h f  22

0h −fν  1
0Ch −τ  

Flicker PM 1
1h f  12

1h −fν  2
1Dh −τ  

White PM 2
2h f  02

2h fν  2
2Eh −τ  

 

 
3
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Annex C  

(informative) 

Examples of computation of deviations 

C.1 Introduction 

This annex contains basic examples on how to compute the deviations used to describe frequency 
instabilities in the time domain. For more information on this topic and on how to assess the validity of the 
computations when using larger number of samples, see Riley [B78] and [B77]. 

C.2 Allan deviation σy(τ) examples 

Figure C.1 shows a plot of the time deviation between a pair of oscillators as a function of time. The 
recorded time samples for τ = 1 s are shown in the first column of Table C.1. To compute σy(τ = 1 s), 
compute the average fractional frequency deviation for xks separated by 1 s, then calculate the difference 
between adjacent y ks and use Equation (A.19) to obtain σy(τ). See Table C.1. 
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Figure C.1—Plot of x(t) between a pair of oscillators 

Table C.1—Steps to compute σy(1 s) 

 
k 

xk 
μs 

y k = (xk+1–xk)/τ 
× 10–6 

y k+1– y k 
× 10–6 

1 0 43.6 2.5 
2 43.6 46.1 –14.2 
3 89.7 31.9 10.2 
4 121.6 42.1 2.6 
5 163.7 44.7 –5.1 
6 208.4 39.6 1.4 
7 248 41.0 –10.2 
8 289 30.8 — 
9 319.8 — — 
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In this example N = 9 (number of time samples) and M = 8; therefore 

( ) 6
2/17

1

2
1 1067.5

)7(2
1)s1( −

=
+ ×=⎥

⎦

⎤
⎢
⎣

⎡
−== ∑

k
kky yyτσ  (C.1) 

For τ = 2 s ( = 2τ0) the procedure is similar: compute the fractional frequency deviation for xks separated by 
2 s, then calculate the difference between adjacent y ks and use Equation (A.19) to obtain σy(τ). See Table 
C.2.  

Table C.2—Steps for computing σy(2 s) 

 
k 

xk 
μs 

y k = (xk+2 – xk)/τ 
× 10–6 

y k+2 – y k 
× 10–6 

1 0 44.85 –7.85 
2 43.6 — — 
3 89.7 37 5.15 
4 121.6 — — 
5 163.7 42.15 –6.25 
6 208.4 — — 
7 248 35.9 — 
8 289 — — 
9 319.8 — — 

 

For this example M = 4 since there are a total of four y ks. Therefore 

( ) 6
213

1

2 106.4
)3(2

1)s2( −

=
+ ×=⎥

⎦

⎤
⎢
⎣

⎡
−== ∑

k
kmky yyτσ  (C.2) 

As mentioned in A.3, it is usually more efficient to use overlapped estimates when possible since this 
results in a better confidence interval. Figure C.2 illustrates how to compute the y ks for an overlapped 
estimate of σy(τ = 2 s). In this case m = 2 (τ = 2τ0) and M = 8. The y ks and the second difference values 
are shown in Table C.3. 
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Figure C.2—Computation of y ks for overlapped estimates 

 

Table C.3—Steps for computing an overlapped estimate of σy(2 s) 

 
k 

xk 
μs 

y k = (xk+2 – xk)/τ  
× 10–6 

y k+2 – y k  
× 10–6 

1  0 44.85 –7.85 
2 43.6 39 4.4 
3 89.7 37 5.15 
4 121.6 43.4 –3.1 
5 163.7 42.15 –6.25 
6 208.4 40.3 — 
7 248 35.9 — 
8 289 — — 
9 319.8 — — 

 

There are a total of (N – 2m = 5) second difference values ( y k+m– y k); therefore the Allan deviation 
equation becomes 

21
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−

=
+ k
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k
mky y

mN
τσ  (C.3) 

where y k = (xk+m – xk)/τ. Equation (C.3) becomes Equation (A.21) when the y ks are expressed in terms of 
the initial time residual measurements. It is used in this example to help explain the origin of Equation 
(A.21). Using the values in Table C.3 (last column), Equation (C.3) yields  

 6
21

22222 1095.3])25.6()1.3( 15.54.4)85.7[(
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⎭
⎬
⎫

⎩
⎨
⎧

−+−+++−=yσ  
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C.3 Modified Allan deviation Mod σy(τ) example 

The modified Allan deviation may also be used to characterize frequency stability in the time domain when 
differentiating between white and flicker PM noise is desirable. This deviation uses the average of m 
adjacent xks when computing the stability for τ = mτ0. The fractional frequency deviations are then obtained 
using the x ks. See Figure C.3 for computation of x ks and y 'ks. 

x(t)

x- k

x- k+1

x- k+2

τ  o xk+3

y'k
-

-

xk+4
-

 

Figure C.3—Method for calculating x ks, and y 'ks for Mod σy(τ) 

Table C.4 shows the computed x ks, and y 'ks for τ = 2s. The modified Allan deviation can then be 
obtained by using Equation (A.19) and the fact that m = 2 and the equivalent M is N – 3m + 1: 

21
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Mod τσ  (C.4) 
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−+++−=sMod yσ  

Equation (C.4) becomes Equation (A.23) when expressing the y 'ks in terms of the initial time residual 
measurements. It is used in this example to help explain the origin of Equation (A.23). 

Table C.4—Computed x k, and y 'k values for Mod σy(2 s) 

 
k 

xk 
μs 

2/)( 1 kkk xxx += +  

μs 

τ/)(' 2 kkk xxy −= +  

× 10–6 
kk yy '' 2 −+  

× 10–6 
1  0 21.8 41.93 –1.73 
2 43.6 66.65 38 4.78 
3  89.7 105.65 40.2 1.03 
4  121.6 142.65 42.78 –4.68 
5 163.7 186.05 41.23 — 
6 208.4 228.2 38.1 — 
7  248 268.5 — — 
8 289 304.4 — — 
9 319.8 — — — 
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C.4 Total deviation )(ˆ , τσ TOTALy  example 

In Annex A it was recommended that the total deviation )(ˆ , τσ TOTALy  be used to characterize fractional 

frequency fluctuations when τ exceeds 10% of the data sample. )(ˆ , τσ TOTALy  extends the xk sequence at 
both ends by reflection about the endpoints to provide a better estimate of frequency stability.  

As an example we will compute )s2(ˆ ,TOTALyσ  for x(t) in Figure C.4. This data set is different from the one 

used in the previous examples. In this case x1, x3, and x5 almost fall into a line; therefore the value for σy(τ) 
will be negatively biased (too optimistic). 
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Figure C.4—x(t) as a function of time 

For this data set, N = 5 and mmax = (5 – 1)/2 = 2. There are only two extra x'k to adjoin, namely, x'0 = 2x1 - x2 
= 1.66 ns, x'6 = 2x5 – x4 = 1.90 ns. According to Equation (A.26) 
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Therefore 
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This value can be compared to the value obtained for the Allan deviation: 
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(Note that 11 'yy = , 33 'yy = .) σy(2 s) is seriously negatively biased by two orders of magnitude 

compared to )s2(ˆ ,TOTALyσ . 

A slight negative bias in )(ˆ , τσ TOTALy  has been found for flicker FM noise and random walk FM noise. It 
is possible to remove this bias if the noise type is assumed to be known (see Howe and Greenhall [B44]). 
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Annex D  

(informative) 

Other variances deviations that have been used to describe frequency 

instabilities in the time domain 

A variety of deviations and error measures other than )(τσ y , Mod )(τσ y , )(τσ x , and rms TIEest(t) 
have been used in this field and are being used by other fields, societies, and organizations. Other 
deviations of y that have been introduced are ones based on a structure function approach (see Lindsey and 
Chie [B67]), a high-pass deviation (see Rutman [B83]), and two versions of the Hadamard deviation. An 
earlier three-sample Hadamard deviation, which is based on Hadamard’s original work, has been defined as 
(see Rutman [B83] and Baugh [B16]):  

[ ] 212
123 ][),,3( >+−<=== yyyTNH ττσ  (D.1) 

where ky is given by Equation (A.18). A later, different version, which is a 2nd order difference variance of 
y(t) (see Reinhardt [B76]), is defined as (see Hutsell [B48] and Riley [B81]): 

[ ] 212
123 ]2[)6/1()( >+−<= yyyyH τσ  (D.2) 

This later version has been introduced in “total” form as a useful predictor of GPS clock error (see Howe et 
al. [B46]). A “modified” version of the Hadamard deviation is described in Bregni and Jmoda [B24]. More 
information on the Hadamard deviation can be found in Wan, Visr, Roberts [B103], Walter [B101], 
Boileau and Picinbono [B21], Howe et al. [B45], Greenhall and Riley [B38], Gagnepain [B35], and Riley 
[B81]. 

Other deviations of x and TIE are also in use in other fields and by other societies and organizations. Such 
deviations are the standard deviation of x, its N-sample statistic, the TIE deviation TIErms (τ), and its N-
sample statistic (see IEEE Std 1057™-1994 [B53], IEEE Std 181™-2003 [B52], IEEE Std 1241™-2000 
[B55], ITU-T Recommendation G.810 (8/96) [B56]). The definitions and properties of these deviations are 
listed in Table D.1. Such deviations can be written in a spectral form similar to Equation (B.3) as 

21

0
d)()( ⎥⎦

⎤
⎢⎣
⎡= ∫ ffSfKhf

yyσ  (D.3) 

where Ky(f) is a y-kernel that defines the spectral properties of the deviation under consideration relative to 
Sy(f). The y-kernels of the above deviations are listed in Table D.1. 

The deviation integral in Equation (D.3) can diverge at f = 0 for a given Ky(f) and Sy(f); this implies that the 
chosen stability deviation statistic does not converge to a stable value for this kind of oscillator noise. One 
can apply additional high-pass filtering to the noise before measuring its stability deviation, or choose a 
different stability deviation that converges for the given noise. More information on these deviations can be 
found in Reinhardt [B74], [B75], [B76]. 
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Table D.1—Deviations of x(t) and TIE 

 
 

Deviation σ name 

 
 

σ t-domain definition 
(xk = x(t+kτ0), τ = mτ0) 
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(Reinhardt [B76]) 
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(Reinhardt [B76]) 

 
α ≥ 0 

 
TIErms(τ) 

(ITU-T G.810 [B56]) 
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2)]()([ txtx −+τ  

τ2sinc2(πfτ) 
small f: ∝ 1 

 

 
α ≥ 0 

 
TIErms(τ) 

N-sample statistic 
(ITU-T G.810 [B56]) 
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Annex E  

(informative) 

Confidence limits of measurements 

A simple method to compute the confidence interval for σy(τ) (see Lesage and Audoin [B63], [B65]), 
which assumes a symmetric (Gaussian) distribution, uses the relation 

2/1κ)( −= MI y αα τσ  (E.1) 

where  

Iα  is the uncertainty of the estimate  
κα  is a constant  
α is an integer that depends on the type of noise (see Annex B) 
M  is the number of non-overlapped τ-averaged frequency samples used in the estimate  

The confidence limits are σy(τ) ± Iα. 

For a 1σ or 68 % confidence interval the values for κα are as follows: 

 κ2 = 0.99 

 κ1 = 0.99 

 κ0 = 0.87 

 κ–1 = 0.77 

 κ–2 = 0.75 

As an example of the Gaussian model with M = 100, α = –1 (flicker frequency noise) and σy(τ = 1 s) = 
1 × 10–12, one may write 

Iα ≅ σy(τ) × (0.77) × (100)–1/2 = σy(τ) × (0.077) 

which gives 

σy(τ = 1 s) = (1 ± 0.08) 10–12  

This analysis for σy(τ) applies only to the non-overlapped estimate, Equation (A.19), and is valid only for 
M ≥ 10. If M is small, then the plus and minus confidence limits become sufficiently asymmetric and the κα 
coefficients are not valid. However, these confidence limits can be calculated (see Lesage and Audoin 
[B63]). 

Another way of computing confidence intervals for σy(τ) is to use the chi-squared distribution. The 
estimated Allan variance has a chi-squared distribution function given by Equation (E.2). The number of 
degrees of freedom for a specific noise process and number of samples can be computed and then used in 
Equation (E.2) to compute the confidence interval (see Howe, Allan, Barnes [B43]): 
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2

2
2 ˆ

)(
y

ydf
σ
σ

χ =  (E.2) 

where  

df  is the number of degrees of freedom  
2ˆ yσ  is the estimated (measured) Allan variance 

σy
2  is the true Allan variance 

 

Table E.1 shows empirical equations to compute the number of degrees of freedom for different types of 
noise processes (see Howe, Allan, Barnes [B43]). This table is valid only for overlapped estimates of the 
Allan variance, Equation (A.21) squared. 

To compute the confidence interval for yσ̂ (τ = 1 s) = 10–12, for flicker frequency noise, N = 101, and τo = 
0.5 s (m = 2), we first find the number of degrees of freedom using Table E.1: 

)3(4
5 2

mNm
Ndf

+
=  (E.3) 

6.59
))2(3101)(2(4

)101(5 2
=

+
=   

For a 1σ (68%) confidence interval, the χ2 values needed are χ2(0.16) and χ2(1-0.16). These values can be 
obtained from numerical tables of the chi-squared distribution function or from various computer programs. 
For 59 degrees of freedom, χ2(0.16) = 48.25 and χ2(0.84) = 69.73. 

Therefore 
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or 
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y <<  (E.5) 

yyy σσσ ˆ11.1ˆ92.0 <<  (E.6) 
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Table E.1—Empirical equations for the number of degrees of freedom  
of the Allan variance estimate a  

Noise process Degrees of freedom b 
 
White PM 
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N
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aAdapted from Howe, Allan, Barnes [B43]. 
bN = number of samples, and m = τ/τo 

Other methods have been developed for computing the confidence interval of Mod σy(τ) (see Walter 
[B102] and Greenhall [B36]. Table E.2 shows a comparison of confidence intervals for σy(τ) (no overlap 
and full overlap) and Mod σy(τ) for white PM, flicker PM, and white FM noise processes (see Lesage and 
Audoin [B63], Howe, Allan, Barnes [B43], Stein [B89], Walter [B102], and Weiss et al. [B104]). As 
shown in Table E.2, overlapped estimates improve the confidence intervals for specific values of M and m. 
Although σy(τ) usually provides a smaller percentage confidence interval than Mod σy(τ) (see Table E.2 for 
white PM and flicker PM), the absolute confidence intervals are approximately similar. The reason is that 
Mod σy(τ) is typically much smaller than σy(τ) for white and flicker PM noise processes. 
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Table E.2—Confidence intervals for σy(τ) (no overlap and full overlap) and Mod σy(τ) a  

 
 

N = 1025 

No overlap 
± for 68% 

σy(τ) 
white PM 

Full overlap  
– for 68%  

σy(τ) 
white PM 

Full overlap  
+ for 68%  

σy(τ) 
white PM 

Full overlap  
– for 68% 
Mod σy(τ) 
white PM 

Full overlap  
+ for 68%  
Mod σy(τ) 
white PM 

m = 2 4.4% 2.9% 3.2% 3.1% 3.4% 
m = 8 8.7% 2.9% 3.2% 5.2% 6.1% 

m = 32 17.4% 3.0% 3.4% 9.7% 14% 
m = 128 34.9% 3.1% 3.6% 18% 41% 

 
N = 1025 

 
Flicker PM 

 
Flicker PM 

 
Flicker PM 

 
Flicker PM 

 
Flicker PM 

m = 2 4.4% 2.9% 3.1% 3.0% 3.3% 
m = 8 8.7% 3.6% 4.0% 5.7% 6.8% 

m = 32 17.4% 5.2% 6.1% 11% 16% 
m = 128 34.9% 8.4% 11% 20% 50% 

 
N = 1025 

 
White FM 

 
White FM 

 
White FM 

 
White FM 

 
White FM 

m = 2 3.8% 2.8% 3.0% 3.0% 3.2% 
m = 8 7.7% 4.8% 5.6% 5.8% 7.0% 

m = 32 15.3% 8.8% 12% 11% 16% 
m = 128 30.6% 16% 32% 20% 51% 

a See Lesage and Audoin [B63], Howe, Allan, Barnes [B43], Stein [B89], Walter [B102], and Weiss et al. [B104]. 

The confidence limits for frequency domain measures (spectral densities) can be approximated by 

Nβ
k1±  (E.7) 

where  

N is the number of averages  
β = 1 for FFT spectrum analyzers and β = (resolution BW)/(video BW) for swept spectrum analyzers 
k = 1 for 1σ or 68% confidence and k = 2 for 2σ or 95% confidence (see Walls, Percival, Ireland 

[B100]). 
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Annex F  

(informative) 

Bibliography 

[B1] Allan, D. W., “Statistics of Atomic Frequency Standards,” Proc. IEEE, Vol. 54, pp. 221–230, Feb. 
1966. 

[B2] Allan, D. W., “The Measurement of Frequency and Frequency Stability of Precision Oscillators,” 
Proc. 6th Annual Precise Time and Time Interval Planning Meeting, pp. 109–142, Dec. 1974. 

[B3] Allan, D. W., “Time and Frequency (Time Domain) Characterization, Estimation and Prediction of 
Precision Clocks and Oscillators,” IEEE Trans. UFFC, Vol. 34, pp. 647–654, Nov. 1987. 

[B4] Allan, D.W., and Barnes, J.A., “A Modified ‘Allan Variance’ with Increased Oscillator 
Characterization Ability,” Proc. 35th Annual Freq. Control Symp., pp. 470–474, 1981. 

[B5] Allan, D. W., and Daams, H., “Picosecond Time Difference Measurement System,” Proc. 29th 
Annual Symp. Freq. Control, pp. 404–411, May 1975. 

[B6] Allan, D. W., and Hellwig, H. W., “Time Deviation and Time Prediction Error for Clock 
Specification, Characterization, and Application,” IEEE Proc. Position Location and Navigation Symp., 
pp. 29–36, 1978. 

[B7] Allan, D. W., et al., “Performance, Modeling, and Simulation of Some Cesium Beam Clocks,” Proc. 
27th Annual Symp. Freq. Control, pp. 334–346, 1973. 

[B8] Atkinson, W. K., Fey, L., and Newman, J., “Spectrum Analysis of Extremely Low-Frequency 
Variations of Quartz Oscillators,” Proc. IEEE, Vol. 51, pp. 379–380, Feb. 1963. 

[B9] Babitch, D., and Oliverio, J., “Phase Noise of Various Oscillators at Very Low Fourier Frequencies,” 
Proc. 28th Annual Symp. Freq. Control, pp. 150–159, 1974. 

[B10] Barnes, J. A., “Models for the Interpretation of Frequency Stability Measurements,” Nat. Bur. 
Stands. (U.S.) Tech. Note 683, Aug. 1976. 

[B11] Barnes, J. A., “Tables of Bias Functions, B1 and B2, for Variances Based on Finite Samples of 
Processes with Power Law Spectral Densities,” Nat. Bur. Stands. (U.S.) Tech Note 375, Washington, DC, 
Jan. 1969. 

[B12] Barnes, J. A., and Allan, D. W., “An Approach to the Prediction of Coordinated Universal Time,” 
Frequency, pp. 3–8, Nov./Dec. 1967. 

[B13] Barnes J.A., and Allan, D.W., “Variances Based on Data with Dead-Time Between the 
Measurements: Theory and Tables,” Nat. Bur. Stands. (U.S.) Tech. Note 1318, Washington DC, 1988. 

[B14] Barnes, J. A., et al., “Characterization of Frequency Stability,” IEEE Trans. Instrum. Meas., Vol. 
IM-20, pp. 105–120, May 1971. 

[B15] Barnes, J. A., et al., “Noise Models for Atomic Clocks,” Proc. 14th Annual Precise Time and Time 
Interval Planning Meeting, pp. 295–307, Dec. 1982. 

[B16] Baugh, R. A., “Frequency Modulation Analysis with the Hadamard Variance,” Proc. 25th Annual 
Symp. Freq. Control, pp. 222–225, 1971. 

[B17] Bernier, L. G., “Linear Prediction of the Non-Stationary Clock Error Function,” Proc. 2nd European 
Frequency and Time Forum, Neuchâtel, Switzerland, pp. 125–137, 1988. 

[B18] Bernier, L. G., “Theoretical Analysis of the Modified Allan Variance, Proc. 41st Annual Symp. 
Freq. Control, pp. 116–121, 1987. 

Authorized licensed use limited to: Johns Hopkins University. Downloaded on March 07,2019 at 15:29:34 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Std1139-2008 
IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology— 

Random Instabilities 

31 
Copyright © 2009 IEEE. All rights reserved. 

[B19] Blackman, R. B., and Tukey, J. M., The Measurement of Power Spectr.  Dover Publication, Inc., 
New York, NY, 1959. 

[B20] Blair, B. E., “Time and Frequency: Theory and Fundamentals,” Nat. Bur. Stands. (U.S.) Monograph 
No. 140, US Government Printing Office, Washington, DC 20402, May 1974. 

[B21] Boileau, E., and Picinbono, B., “Statistical Study of Phase Fluctuations and Oscillator Stability,” 
IEEE Trans. Instrum. Meas., Vol. 25, pp. 66–75, March 1976. 

[B22] Brandenberger, H., et al., “High Quality Quartz Crystal Oscillators: Frequency-Domain and Time-
Domain Stability,” Proc. 25th Annual Symp. Freq. Control, pp. 226– 230, 1971. 

[B23] Bregni, S. R., “Measurement of Maximum Time Interval Error for Telecommunications Clock 
Stability Characterization,” IEEE Trans. Instrum. Meas., Vol. IM-45, pp. 900–905, Oct., 1996. 

[B24] Bregni, S. R., and Jmoda, L., “Improved Estimation of the Hurst Parameter of Long-Range 
Dependent Traffic Using the Modified Hadamard Variance,” Proceedings of the 2006 IEEE International 
Conference on Communications (ICC 2006), June 2006. 

[B25] Camparo, J. C., Klimcak, C. M., and Herbulock, S. J., “Frequency Equilibration in the Vapor-Cell 
Atomic Clock,” IEEE Trans. Instrum. Meas., Vol. 54, pp. 1873–1880, Oct. 2005. 

[B26] CCIR Publication, Report 898, Springfield, VA: National Technical Information Service, 
Department of Commerce, 1986. 

[B27] Chi, A. R., “The Mechanics of Translation of Frequency Stability Measures Between Frequency and 
Time-Domain Measurements,” Proc. 9th Annual Precise Time and Time Interval Planning Meeting, pp. 
523–546, Dec. 1977. 

[B28] Chronos Group, Frequency Measurement and Control, Section 3.3.3, Chapman & Hall, London, 
ISBN 0-412-48270-3, 1994. 

[B29] Cutler, L. S., and Searle, C. L., “Some Aspects of the Theory and Measurement of Frequency 
Fluctuations in Frequency Standards,” Proc. IEEE, Vol. 54, pp. 136–154, Feb. 1966. 

[B30] De Prins, J., and Cornelissen, G., Analyse Spectrale Discrete, Eurocon (Lausanne, Switzerland), Oct. 
1971. 

[B31] De Prins, J., et al., “Frequency-Domain Interpretation of Oscillator Phase Stability,” IEEE Trans. 
Instrum. Meas., Vol. IM- 18, pp. 251–261, Dec. 1969. 

[B32] Draper, N. R., and Smith, H., Applied Regression Analysis. New York: John Wiley and Sons, 1986. 

[B33] Egan, W. F., Frequency Synthesis by Phase Lock. Wiley-Interscience, 1999. 

[B34] Fischer, M. C., “Frequency Stability Measurement Procedures,” Proc. 8th Annual Precise Time and 
Time Interval Planning Meeting, pp. 575–618, Dec. 1976. 

[B35] Gagnepain, J. J., “La Variance de B. Picinbono,” Traitement du Signal, Vol. 15, No. 6, Special, 
1998, pp. 477–482. 

[B36] Greenhall, C. A., “Estimating the Modified Allan Variance,” Proc. 1995 IEEE Int’l Freq. Control 
Symp., pp. 346–353, June 1995. 

[B37] Greenhall, C. A., “Initializing a Flicker Noise Generator,” IEEE Trans. Instrum. Meas., Vol. IM-35, 
pp. 222–224 June 1986. 

[B38] Greenhall, C.A., and Riley, R. J., “Uncertainty of Stability Variances Based on Finite Differences,” 
Proc. 35th PTTI Meeting, December 2003. 

[B39] Groslambert, J., Oliver, M., and Uebersfeld, J., “Spectral and Short-Term Stability Measurements,” 
IEEE Trans. Instrum. Meas., Vol. IM-23, pp. 518–521, Dec. 1974. 

[B40] Halford, D., “A General Mechanical Model for |f| Spectral Density Noise with Special Reference to 
Flicker Noise 1/|f|,” Proc. IEEE, Vol. 56, pp. 251–258, March 1968. 

Authorized licensed use limited to: Johns Hopkins University. Downloaded on March 07,2019 at 15:29:34 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Std1139-2008 
IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology— 

Random Instabilities 

32 
Copyright © 2009 IEEE. All rights reserved. 

[B41] Howe, D. A., “An Extension of the Allan Variance with Increased Confidence at Long Term,” Proc. 
1995 IEEE Int’l Freq. Control Symp., pp. 321–329, June, 1995. 

[B42] Howe, D. A., “Methods of Improving the Estimation of Long-Term Frequency Variance,” Proc. 
European Frequency and Time Forum, pp. 91–99, 1997. 

[B43] Howe, D. A., Allan, D. W., and Barnes, J. A., “Properties of Signal Sources and Measurement 
Methods,” Proc. 35th Annual Symp. Freq. Control, pp. 669–717, May 1981. 

[B44] Howe, D. A., and Greenhall, C. A., “Total Variance: A Progress Report on a New Frequency 
Stability Characterization,” Proc. 29th Annual Precise Time and Time Interval (PTTI) Systems and 
Applications Meeting, pp. 39–48, Dec. 1997. 

[B45] Howe, D. A., et al., “A Total Estimator of the Hadamard Function Used For GPS Operations,” Proc. 
32nd PTTI Meeting, Nov. 2000, pp. 255–268. 

[B46] Howe, D. A., et al., “Enhancements to GPS Operations and Clock Evaluations Using a ‘Total’ 
Hadamard Deviation,” IEEE Ttrans. UFFC, Vol. 52, no. 8, Aug., 2005.  

[B47] Hutsell, S. T., “Operational Use of the Hadamard Variance in GPS,” Proc. 28th PTTI Meeting, 
pp. 201–213, December 1996. 

[B48] Hutsell, S. T., “Relating the Hadamard Variance to MCS Kalman Filter Clock Estimation,” Proc. 
1995 PTTI Meeting, Dec. 1995. 

[B49] IEEE–NASA, Proceedings of Symposium on Short–Term Frequency Stability, NASA Publication 
SP 80, 1964. 

[B50] IEEE, Special Issue on Time and Frequency, Proc. IEEE, Vol. 60, May 1972. 

[B51] IEEE 100™, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition. New York: 
Institute of Electrical and Electronics Engineers, Inc.3 

[B52] IEEE Std 181–2003, IEEE Standard on Transitions, Pulses, and Related Waveforms. 

[B53] IEEE Std 1057–1994, IEEE Standard for Digitizing Waveform Recorders.  

[B54] IEEE Std 1193–2003, IEEE Guide for Measurements of Environmental Sensitivities of Standard 
Frequency Generators. 

[B55] IEEE Std 1241–2000, IEEE Standard for Terminology and Test Methods for Analog-to-Digital 
Converters. 

[B56] ITU–T Recommendation G.810 (08/96), Definitions and Terminology for Synchronization 
Networks, ITU, 1996.4  

[B57] Jones, R. H., and Tryon, P. V., “Estimating Time from Atomic Clocks,” J. Res. Nat. Bur. Stands. 
(U.S.), Vol. 88, pp. 17–24, Jan.–Feb. 1983. 

[B58] Kartaschoff, P., “Computer Simulation of the Conventional Clock Model,” IEEE Trans. Instrum. 
Meas., Vol. IM– 28, pp. 193–197, Sept. 1979. 

[B59]  Kartaschoff, P., Frequency and Time. Academic Press, New York, 1978. 

[B60] Kroupa, V. F., Frequency Stability: Fundamentals and Measurement, IEEE Press. IEEE Selected 
Reprint Series, prepared under the sponsorship the IEEE Instrumentation and Measurement Society, 
pp. 77–80, 1984. 

[B61] Lesage, P., “Characterization of Frequency Stability: Bias Due to the Juxtaposition of Time Interval 
Measurements,” IEEE Trans. Instrum. Meas., IM-32, pp. 204–207, 1983. 

 
3 IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, Piscataway, NJ 08854, 
USA (http://standards.ieee.org/). 
4 ITU-T publications are available from the International Telecommunications Union, Place des Nations, CH-1211, Geneva 20, 
Switzerland/Suisse (http://www.itu.int/). 

Authorized licensed use limited to: Johns Hopkins University. Downloaded on March 07,2019 at 15:29:34 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Std1139-2008 
IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology— 

Random Instabilities 

33 
Copyright © 2009 IEEE. All rights reserved. 

[B62] Lesage, P., and Audoin, C., “A Time Domain Method for Measurement of the Spectral Density of 
Frequency Fluctuations at Low Fourier Frequencies,” Proc. 29th Annual Symp. Freq. Control, pp. 394–
403, May 1975. 

[B63] Lesage, P., and Audoin, C., “Characterization of Frequency Stability: Uncertainty Due to the Finite 
Number of Measurements,” IEEE Trans. Instrum. Meas., Vol. IM-22, pp. 157–161, June 1973. 

[B64] Lesage, P., and Audoin, C., “Correction to: Characterization of Frequency Stability: Uncertainty due 
to Finite Number of Measurements,” IEEE Trans. Insrum., Meas., Vol. IM-23, pp. 103, March 1974. 

[B65] Lesage, P., and Audoin, C., “Correction to: Characterization of Frequency Stability: Uncertainty due 
to the Finite Number of Measurements,” IEEE Trans. Instrum. Meas., Vol. IM-25, pp. 270, Sept. 1976. 

[B66] Lesage, P., and Ayi, T., “Characterization of Frequency Stability: Analysis of Modified Allan 
Variance and Properties of its Estimate,” IEEE Trans. Instrum. Meas., Vol. IM–33, pp. 332–336, Dec. 
1984. 

[B67] Lindsey, W. C., and Chie, C. M., “Theory of Oscillator Instability Based Upon Structure Functions,” 
Proc. IEEE, Vol. 64, pp. 1662–1666, Dec. 1976. 

[B68] Mandelbrot, B., “Some Noises with 1/f Spectrum; a Bridge between Direct Current and White 
Noise,” IEEE Trans. Information Theory, Vol. IT–13, pp. 289–298, April 1967. 

[B69] Matsakis, D. N., and Josties, F. J., “Pulsar–Appropriate Clock Statistics,” Proc. 28th PTTI Meeting, 
pp. 225–236, December 1996. 

[B70] Meyer, D. G., “A Test Set for the Accurate Measurements of Phase Noise on High-Quality Signal 
Sources,” IEEE Trans. Instrum. Meas., Vol. IM–19, pp. 215–227, Nov. 1970. 

[B71] Percival, D. B., “A Heuristic Model of Long–Term Atomic Clock Behavior,” Proc. 30th Annual 
Symp. Freq. Control, pp. 414–419, June 1976. 

[B72] Peregrino, L., and Ricci, D. W., “Phase Noise Measurement Using a High Resolution Counter with 
on–line Data Processing,” Proc. 30th Annual Symp. Freq. Control, pp. 309–317, June 1976. 

[B73] Picinbono, B., “Processus a Accroissements Stationnaires,” Ann. des telecom, Tome 30, No. 7–8, pp. 
211–212, July–Aug, 1975. 

[B74] Reinhardt, V.S., “The Calculation of Frequency Source Requirements for Digital Communications 
Systems,” Proceedings of the IEEE International Frequency Control Symposium 50th Anniversary Joint 
Conference, pp. 24–27, August, 2004.  

[B75] Reinhardt, V. S., “A Review of Time Jitter and Digital Systems,” Proceedings of the 2005 Joint 
IEEE International Frequency Control Symposium and Precise Time and Time Interval (PTTI) Systems and 
Applications Meeting, August, 2005. 

[B76] Reinhardt, V. S., “The Properties of Time and Phase Variances in the Presence of Power Law Noise 
for Various Systems,” Proceedings of the 2006 IEEE International Frequency Control Symposium, 
pp. 745–749, June 2006. 

[B77] Riley, W. J., “Addendum to a Test Suite for the Calculation of Time Domain Frequency Stability,” 
Proc. 1996 IEEE Int’l Freq. Control Symp., pp. 880–882, June 1996. 

[B78] Riley, W. J., “A Test Suite for the Calculation of Time Domain Frequency Stability,” Proc. 1995 
IEEE Int’l. Freq. Control Symp., pp. 360–366, June 1995. 

[B79] Riley, W. J., “Handbook of Frequency Stability Analysis,” Natl. Inst. Stand. Technol. SP1065, U.S. 
Government Printing Office, Washington D.C. 

[B80] Riley, W. J., “The Calculation of Time Domain Frequency Stability,” http://www.ieee–
uffc.org/freqcontrol/paper1ht.html. 

[B81] Riley, W. J., “The Hadamard Variance,” http://www.ieee–uffc.org/freqcontrol/tutorials/ 
Riley/Hadamard.pdf, 2007. 

Authorized licensed use limited to: Johns Hopkins University. Downloaded on March 07,2019 at 15:29:34 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Std1139-2008 
IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology— 

Random Instabilities 

34 
Copyright © 2009 IEEE. All rights reserved. 

[B82] Rutman, J., “Characterization of Frequency Stability: A Transfer Function Approach and its 
Application to Measurements via Filtering of phase Noise,” IEEE Trans. Instrum. Meas., Vol. IM–23, pp. 
40–48, March 1974. 

[B83] Rutman, J., “Characterization of Phase and Frequency Instabilities in Precision Frequency Sources: 
Fifteen Years of Progress,” Proc. IEEE, Vol. 66, pp. 1048–1075, Sept. 1978. 

[B84] Rutman, J., “Comment on Characterization of Frequency Stability,” IEEE Trans. Instrum. Meas., 
Vol. IM-21, pp. 85, Feb. 1972. 

[B85] Rutman, J., “Oscillator Specifications: A Review of Classical and New Ideas,” Proc. 1977 IEEE 
International Freq. Contrl. Symp., pp.291–301, June 1977. 

[B86] Rutman, J., and Sauvage, G., “Measurement of Frequency Stability in the Time and Frequency 
Domains via Filtering of Phase Noise,” IEEE Trans. Instrum. Meas., Vol. IM–23, pp. 515–518, Dec. 1974. 

[B87] Rutman, J., and Uebersfeld, J., “A Model for Flicker Frequency Noise of Oscillators,” Proc. IEEE, 
Vol. 60, pp. 233–235, Feb. 1972. 

[B88] Sauvage, G., and Rutman, J., “Analyse Spectrale du bruit de Frequence des Oscillateurs par la 
Variance de Hadamard,” Ann. des Telecom., Vol. 28, pp. 304–314, July–Aug 1973. 

[B89] Stein, S.R., “Frequency and Time: Their Measurement and Characterization,” Precision Frequency 
Control, Vol. 2, Academic Press, New York, pp. 191–232, 1985. 

[B90] Sullivan, D. B., et al., Natl. Inst. Stand. Technol. Tech. Note 1337, Washington D.C., March 1990. 

[B91] Tuladhar, K. K., and Jenni, G., “Frequency Jumps on BVA and Other Precision Quartz Crystal 
Resonators, and Burst Noise on Overtone Mode High–Frequency Quartz Crystal Resonators,” Part 1 in the 
10th European Frequency & Time Forum, 1996; Part II in the Proc. 1996 IEEE Int’l Freq. Control Symp., 
pp. 339–345, 1996. 

[B92] Vanier, J., and Tetu, M., “Time Domain Measurement of Frequency Stability: A Tutorial 
Approach,” Proc. 10th Annual Precise Time and Time Interval Planning Meeting, pp. 247–291, 1978. 

[B93] Vernotte, F., et al., “Oscillator Noise Analysis: Multi–Variance Measurement,” IEEE Trans. 
Instrum. Meas., Vol. IM–42, No. 2, pp. 342–350, April 1993. 

[B94] Vessot, R., “Frequency and Time Standards,” Methods of Experimental Physics. Academic Press, 
New York, pp. 198–227, 1976. 

[B95] Vessot, R., Mueller, L., and Vanier, J., “The Specification of Oscillator Characteristics from 
Measurements Made in the Frequency Domain,” Proc. IEEE, Vol. 54, pp. 199–207, Feb. 1966. 

[B96] Vig, J. R., and Meeker, T. R., “The Aging of Bulk Acoustic Wave Resonators, Filters and 
Oscillators,” Proc. 45th Annual Symp. Freq. Control, pp. 77 – 101, 1991. 

[B97] Von Neumann, J., et al., “The Mean Square Successive Difference,” Ann. Math. Stat., Vol. 12, pp. 
153–162, 1941. 

[B98] Walls, F. L., and Allan, D. W., “Measurements of Frequency Stability,” Proc. IEEE, Special Issue 
on Radio Measurements and Standards, Vol. 74, No. 1, pp. 162– 168, Jan. 1986. 

[B99] Walls, F. L., et al., “Design Considerations in State–of–the–Art Signal Processing and Phase Noise 
Measurement Systems,” Proc. 30th Annual Symp. Freq. Control, pp. 269–274, June 1976. 

[B100] Walls, F. L., Percival, D. B., and Ireland, W. R., “Biases and variances of several FFT spectral 
estimators as a function of noise type and number of samples,” Proc. 43rd Annual Freq. Control Symp., 
pp. 336–341, 1989. 

[B101] Walter, T., “A Multi-Variance Analysis in the Time Domain,” Proc. 24th PTTI Meeting, pp. 413–
424, December 1992. 

[B102] Walter, T. “Characterizing Frequency Stability: A Continuous Power-Law Model with Discrete 
Sampling,” IEEE Trans. Instrum. Meas., IM-43, pp. 69–79, Feb. 1994. 

Authorized licensed use limited to: Johns Hopkins University. Downloaded on March 07,2019 at 15:29:34 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Std1139-2008 
IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology— 

Random Instabilities 

35 
Copyright © 2009 IEEE. All rights reserved. 

[B103] Wan, K., Visr, E., and Roberts, J., “Extended Variances and Autoregressive Moving Average 
Algorithm for the Measurement and Synthesis of Oscillator Phase Noise,” Proc. 43rd Annu. Symp. on 
Freq. Contrl., pp.331–335, June 1989. 

[B104] Weiss, M. A., et al., “Confidence on the Modified Allan Variance,” Proc. 9th European Frequency 
and Time Forum, Besancon, pp. 153–165, France, 1995. 

[B105] Winkler, G. M. R., “A Brief Review of Frequency Stability Measures,” Proc. 8th Annual Precise 
Time and Time Interval Planning Meeting, pp. 489–528, U.S. Naval Research Laboratory, Washington, 
D.C., Dec. 1976. 

[B106] Winkler, G. M. R., Hall, R. G., and Percival, D. B., “The U.S. Naval Observatory Clock Time 
Reference and the Performance of a Sample of Atomic Clocks,” Metrologia, Vol. 6, pp. 126–134, Oct. 
1970. 

[B107] Yoshimura, K., “Characterization of Frequency Stability: Uncertainty due to the Autocorrelation of 
the Frequency Fluctuations,” IEEE Trans. Instrum. Meas., IM-27, pp. 1–7, March 1978. 

Authorized licensed use limited to: Johns Hopkins University. Downloaded on March 07,2019 at 15:29:34 UTC from IEEE Xplore.  Restrictions apply. 


