
	

Doc No. TBD

System Architecting

Version 0.92 (initial release for review)

Prepared by: Robert Rasmussen, John Day, Steven Jenkins

May 26, 2020

Jet Propulsion Laboratory
California Institute of Technology

Day, John C (312I)
© 2020. California Institute of Technology. Government sponsorship acknowledged.�

	 	 (initial	release	for	review)	

	 i	

Change Log
Version	 Release	Date	 Description	

Initial	draft	 2019	Oct	24	 Initial	draft	with	a	few	items	to	be	completed,	as	noted	in	
comments	

Initial	release	for	review	 2020	Apr	3	 Primary	content,	but	with	deferrals,	as	indicated	in	Word-
version	comments	

	

◼	

Day, John C (312I)
This document was prepared at Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004)

	 	 (initial	release	for	review)	

	 ii	

Table of Contents
1	 Introduction 1	

2	 Framework 2	
2.1	 Views 3	

2.1.1	 Stakeholders and Concerns 3	
2.1.2	 Principles 4	
2.1.3	 Concept vs. Realization 4	
2.1.4	 Auxiliary Views 6	

2.2	 Composition 6	
2.2.1	 Elements 6	
2.2.2	 Functional Roles 6	
2.2.3	 Relationships 6	

2.3	 Commitments 7	
2.3.1	 Properties and Constraints 7	
2.3.2	 Requirements 8	
2.3.3	 Prototypes 8	

2.4	 Mapping Concepts to Reality 8	
2.5	 Viewpoints 9	
2.6	 Summary 10	

2.6.1	 Categories 10	
2.6.2	 Associations 12	
2.6.3	 The Framework Diagram 14	

3	 Viewpoints 15	
3.1	 Conceptual 15	

3.1.1	 Mission Concept 17	
3.1.2	 Science 17	

Objectives, Investigations, and Measurements 17	
Observation Strategy, Opportunities, and Planning 18	
Sensing and Data Acquisition 18	
Science Data Management 19	

3.1.3	 Engineering 19	
Mission 19	
Operations 21	
Flight System Disciplines 22	
Ground System Disciplines 23	
Integration & Test 23	

3.1.4	 Programmatics 24	
Development 24	
Business 25	

3.1.5	 Public Policy 26	
Environmental Safety 26	

	 	 (initial	release	for	review)	

	 iii	

Planetary Protection 26	
Orbital Debris 26	
Public Information 26	

3.2	 Realizational 26	
3.2.1	 Composition 28	

Product Breakdown 28	
External Services 28	
Environment 29	

3.2.2	 Science Datasets 29	
3.2.3	 Mission Plan 29	

Launch and Trajectory 29	
Mission Activities 30	

3.2.4	 Deployments 30	
Integration and Test Configurations 30	
Transport and Storage Configurations 30	
Operational Configurations 30	

4	 Process 31	
4.1	 Context: the NASA/JPL Project Lifecycle 32	
4.2	 Core Ideas 33	
4.3	 Process Description 33	

4.3.1	 Problem Definition Cycle 34	
4.3.2	 Synthesis Cycle 36	

4.4	 Application Across the Mission Lifecycle 37	
4.4.1	 The Role of Architecting in pre-Formulation 38	
4.4.2	 The Role of Architecting in Formulation Phases 39	

Phase A Life-Cycle Reviews 39	
Phase B Life-Cycle Reviews 41	

4.4.3	 The Role of Architecting in Implementation Phases 42	
Phase C Life-Cycle Reviews 43	
Phase D Life-Cycle Reviews 44	
Phase E Life-Cycle Reviews 45	
Phase F Life-Cycle Reviews 45	

4.5	 Application at Increasing Levels of Design 45	

5	 Training, Tools, etc. 47	
5.1	 Core Ideas 47	
5.2	 Training Requirements 47	
5.3	 Necessary Tooling Features 50	

5.3.1	 Authoring 51	
5.3.2	 Integration 51	
5.3.3	 Analysis 52	
5.3.4	 Reporting 52	

5.4	 Summary 52	

		

	 	 (initial	release	for	review)	

	 iv	

Appendices 53	
Appendix A	 Expanded Viewpoint Examples 53	

A.1	 Mass & Inertial Properties Viewpoint 53	
A.2	 Work Breakdown Viewpoint 58	
A.3	 “Level 4” “Engineering” Flight Subsystem Viewpoint 61	

Appendix B	 View Templates 74	
B.1	 Conceptual View Template 75	
B.2	 Realizational View Template 79	

Appendix C	 View Contributions to Gate Products 96	
Appendix D	 Bibliography 105	

◼	

	 	 (initial	release	for	review)	

	 1	

1 Introduction
A	 methodology	 is	 a	 system	 of	 processes,	 techniques,	 notations,	 supporting	 tools,	 and	 other	
means	used	in	the	performance	and	assessment	of	some	activity.	The	purpose	of	this	document	
is	to	introduce	a	methodology	that	can	be	used	effectively	to	perform	system	architecting	on	JPL	
flight	projects.	
This	proposed	methodology	has	been	developed	under	 the	auspices	of	 JPL’s	 Integrated	Model-
Centric	 Engineering	 Initiative	 (IMCE)	with	 support	 from	 the	 JPL	 Project	 Support	 Office.	 [1]	 It	
differs	from	current	practice	in	a	few	essential	respects:	

• It	introduces	and	employs	a	formal	vocabulary	for	system	architecting	knowledge	that	is	
aligned	with	recognized	best	practices	in	architecting.	

• It	employs	mathematical	formalism	to	make	both	pertinent	facts	and	architectural	deci-
sions	explicit	and	rigorous.	

• It	lends	itself	to	supporting	human	creativity	with	automated	analysis.	
• It	facilitates	our	ability	to	carry	information	and	expertise	across	technical	domains	and	
from	project	to	project.	

Such	ideas	are	addressed	in	this	architecting	methodology	through	three	basic	components:	

• A	framework	that	defines	a	normative	structure	within	which	an	architecture	description	
can	be	captured	and	systematically	manipulated,	analyzed,	and	used;	

• A	set	of	viewpoints	that	cover	most	areas	of	interest	routinely	handled	by	JPL	projects	dur-
ing	development,	generally	organized	by	recurring	concerns,	with	guidance	on	view	con-
tent	and	reusable	abstractions	for	their	instantiation	in	views;	and	

• A	process	for	applying	general	patterns	of	architectural	elaboration	over	time	and	at	suc-
cessive	development	stages,	with	identified	criteria	for	successful	completion.	

Following	is	a	description	of	these	three	methodology	components,	followed	by	a	description	of	
the	sorts	of	tools,	training,	and	other	support	capabilities	needed	for	their	application.	

◼	

	 	 (initial	release	for	review)	

	 2	

2 Framework
During	every	design	effort,	many	competing	factors	are	in	play.	The	aim	of	architecture	is	to	find	
and	 establish	 an	 achievable	 balance	 among	 them	 that	 ensures	 a	 satisfactory	 outcome	 for	 all	
concerned.	However,	 interdependencies	among	the	many	aspects	of	a	design	can	be	extraordi-
narily	 intricate,	 especially	when	objectives	are	ambitious,	but	 constraints	are	 strict.	Therefore,	
complete	and	precise	communication	is	vital,	both	among	developers	and	with	those	who	define	
success.	Establishing	accepted	value	to	stakeholders,	unambiguously	delineating	responsibilities	
within	a	principled	structure,	making	broad	allowances	for	evolving	implementation,	and	care-
fully	 articulating	 interfaces	 can	 assure	 the	 confident	 orderly	 progression	 of	 subsequent	 devel-
opment	and	operation.	This	is	the	essence	of	good	architecture.	
Documents	have	long	served	as	the	primary	vehicle	for	communicating	architecture,	in	its	most	
formal	sense.	In	documents,	we	say	what	we	intend	to	do,	and	we	explain	why	we	think	this	is	
right.	Moreover,	we	declare	that	no	documents,	other	than	a	sanctioned	set,	have	this	authorita-
tive	status,	attempting	in	this	way	to	minimize	what	needs	to	be	correct	and	to	resolve	concerns	
over	 conflicting	 information.	 That	 is,	 we	 try	 to	 be	 of	 one	 mind—our	 documents	 asserting	 a	
shared	clarity	of	purpose	and	understanding—the	reward	of	good	communication.	
Given	 their	 importance,	 attaining	 the	 completeness	 and	 stability	 of	 sanctioned	documents	 has	
been	a	pivotal	aspect	of	the	design	process.	This	is	not	easy.	An	encyclopedic	rendering	of	com-
plex	 design	 demands	 an	 organizing	 structure	 that	 fosters	 lucid	 separation	 of	 concerns	 while	
rigorously	 heeding	 the	 ties	 that	 bind	 them.	 These	 considerations	 mirror	 the	 aspirations	 of	
elegant	architecture,	so	in	this	endeavor,	documents	can	serve	to	portray	and	preserve	valuable	
architectural	ideas.	
Nonetheless,	 in	 this	 role,	documents	have	so	 far	been	mostly	passive	artifacts,	 relying	by	 their	
nature	on	external	processes	 for	 interpretation	and	consensus.	Naturally	 therefore,	documents	
are	 often	 viewed	more	 as	 the	 endpoint	 or	 record	 of	 some	 process	 than	 as	 the	medium	 of	 its	
accomplishment.	 For	 the	 latter,	we	 rely	 instead	 on	 other	methods,	whether	 in	 CAD	 drawings,	
spreadsheets,	 simulations,	 or	 otherwise,	 that	 provide	 the	 formality	 of	 actionable	 expression	
generally	 missing	 from	 conventional	 documentation.	 These	 in	 turn	 are	 too	 often	 mediated	
through	ad	hoc,	informal,	and	transitory	processes,	and	they	tend	to	direct	attention	away	from	
architecturally	guided	implementation	toward	meandering	point	design	instead.	
The	purpose	of	a	model-based	framework	for	architecture	is	to	narrow	this	communications	gap	
by	 introducing	more	 formal	structure	 into	 the	rendering	of	architecture	 than	documents	alone	
can	accomplish.	Information	expressed	in	this	manner	would	in	principle	be	directly	amenable	to	
automated	 analysis	 and	 beneficial	 to	 interoperability	 among	 other	 design	 activities,	 thereby	
enabling	iteration	within	the	architecture	model	as	a	productive	work	environment.	
In	its	full	expression,	this	approach	would	necessitate	the	adoption	of	an	extensible	information	
model,	such	that	the	narratives	we	write	to	explain	our	intentions	would	be	merely	supplemental	
to	 underlying	 formal	 content	 where	 primary	 meaning	 is	 asserted.	 However,	 the	 architecture
framework	 adopted	 here	 does	 not	 necessitate	 so	 drastic	 a	 leap.	 Instead,	 the	 narrative	 form	 is	
taken	as	a	peer	to	formal	representations,	but	in	a	manner	that	encourages	the	formal	structure	

	 	 (initial	release	for	review)	

	 3	

to	reveal	itself	in	that	narrative.	In	this	way,	formalism	acts	in	the	service	of	narrative	clarity,	not	
as	a	distraction	from	it—the	hallmark	of	good	scientific	and	engineering	communications.	
This	simplified	framework	is	described	below.	It	employs	terminology,	ideas,	and	techniques	that	
are	 familiar	 across	 the	 architecting	 community	 and	 that	 appear	 broadly	 in	 other	 architecture	
frameworks,	view	models,	and	so	on	[1].	 	Choices	here	have	been	made	in	favor	of	broad,	easy	
introduction	into	JPL	projects,	but	with	an	ability	to	accommodate	advances	in	modeling	formal-
ism.	

2.1 Views
The	 coarse	 structure	 of	 this	 architecture	 framework	 is	most	 evident	 in	 the	 organization	 of	 its	
architectural	views.	A	view	is	analogous	to	a	document,	in	that	it	addresses,	in	a	combination	of	
narrative	and	logical	forms,	a	particular	topic	or	discipline	of	interest.	

Views	are	related	to	one	another	through	a	view hierarchy	 that	establishes,	 in	a	manner	analo-
gous	to	a	document	tree,	an	ordering	of	precedence.	The	assertions	made	within	any	view	neces-
sarily	 constrain	 those	 made	 by	 responding	 views,	 permitting	 top	 to	 bottom	 traceability	 in	 a	
fashion	 analogous	 to	 requirement	 flow-down.	 The	 views	 embodying	 this	 flow	 constitute	 ra-
tionale	 for	 successive	 elaborations	 (e.g.,	 functional	 decompositions),	 terminating	 at	 the	 point	
where	 details	 have	 been	 safely	 encapsulated	 within	 distinct,	 specified	 products	 for	 which	
handoff	to	independent	development	is	possible.	
View	hierarchies	are	not	common	within	other	architecture	frameworks,	but	they	are	well	suited	
to	projects	that	concurrently	span	multiple	levels	of	development,	as	is	typical	of	flight	projects	
within	 JPL	 and	 across	 aerospace.	Where	 plausible,	 the	 flatter	 organization	 suggested	 by	 other	
frameworks	can	be	emulated	by	imposing	levels	on	the	View	hierarchy	and	then	strictly	layering	
architecture	development.	In	principle	though,	it	is	best	to	avoid	any	a	priori	imposition	of	such	
structure.	Instead,	defining	an	appropriate	hierarchy	is	treated	within	this	methodology	as	part	
of	the	process,	addressed	early	but	allowed	to	stabilize	with	the	rest	of	the	architecture.	

2.1.1 Stakeholders and Concerns:	 At	 the	 top	 of	 this	 view	 hierarchy	 are	 stakeholders.	 In	
NASA	projects,	 these	would	 include	 the	 project	 sponsor	with	whom	Level	 1	 requirements	 are	
negotiated.	But	several	other	institutional,	governmental,	commercial,	or	other	stakeholders	are	
likely	to	need	formal	consideration	as	well,	so	it’s	important	to	give	each	their	due.	These	include	
internal	stakeholders	with	interests	in	project	priorities,	guidance	for	the	resolution	of	compet-
ing	characteristics,	staffing,	facilities,	and	relevance	to	business	strategy.	
Specialized	views	are	defined	 in	 this	architecture	 framework	 for	characterizing	 the	nature	and	
authority	 of	 each	 identified	 stakeholder,	 and	 for	 establishing	 the	 manner	 of	 architectural	 en-
gagement	 that	 each	 requires.	 And	 because	 a	 key	 tenet	 of	 architecting	 is	 to	 help	 stakeholders	
express	 their	 objectives,	 constraints,	 or	 anxieties—to	 assure	 them	 that	 they	 are	 heard	 and	
understood—specialized	views	are	also	defined	to	capture	concerns	and	to	show	how	success	on	
their	 behalf	 is	 to	 be	measured	 in	 verifiable	 success criteria.	 These	 are	 taken	 as	 the	originating
requirements	 on	 the	 enterprise.	 The	 specialized	 views	 in	 this	 set	 are	 analogous	 to	 the	 routine	
plans	and	directives	that	commission	project	developments.	

	 	 (initial	release	for	review)	

	 4	

2.1.2 Principles:	Sharing	the	top	of	the	view	hierarchy	are	principles,	as	asserted	by	the	archi-
tects	 themselves.	While	 not	 given	 the	 same	 stature	 as	 success	 criteria,	 they	may	 nonetheless	
provide	the	deciding	criteria	for	difficult	choices.	The	framework	encourages	explicit	documenta-
tion	of	their	origin	and	rationale,	both	for	their	contribution	to	the	selected	architecture,	and	for	
their	 sustaining	 value	 to	 subsequent	 efforts.	 These	 are	 loosely	 analogous	 to	 institutionally	
mandated	“principles”,	but	with	the	intent	of	being	instructive	rather	than	imperative.	

2.1.3 Concept vs. Realization:	 Within	 the	 hierarchy	 of	 responding	 views,	 the	 framework	
defines	two	distinct	types:	conceptual	and	realizational.	This	dichotomy	is	sometimes	explained	
in	 other	 terms—function	 vs.	 implementation,	 logical	 vs.	 physical,	 requirements	 vs.	 capability,	
and	so	on—but	the	basic	idea	is	always	the	same:	to	reconcile	what	is	needed	
with	 what	 is	 achievable.	 There	 is	 no	 precedence	 be-
tween	 these	 types	 in	 either	 rank	 or	 importance.	
Their	developments	necessarily	progress	 in	paral-
lel,	 in	 a	 give-and-take	 manner	 seeking	 balance	
and	compatibility.	

Each	 conceptual view	 considers	 the	 architected	
system	 from	 some	 point	 of	 view	 (science,	 tele-
communication,	 system	 integration,	 data	 flow,	
navigation,	 planetary	 protection,	 mission	 opera-
tions,	and	so	on),	establishing	an	approach	within	
that	domain	 for	 addressing	mission	needs,	while	
remaining	feasible	for	implementation	within	the	
context	of	the	overall	design.	
Of	 special	 importance	 among	 conceptual	 views	 is	 a	 good	 separation	 of	 concerns1,	 such	 that	
undiluted	attention	can	be	given	to	the	matters	at	hand.	Thus,	from	their	particular	overarching	
perspective,	 they	 establish	 relevant	 allocations	 across	 the	 suite	 of	 products	 (resource,	 perfor-
mance,	reliability,	etc.),	as	well	as	rolled	up	assessments	of	system	behavior	in	light	of	required	
activities.	
Conceptual	 views	 are	 analogous	 to	 the	many	 system-spanning	 documents	 one	 expects	 on	 any	
project	 (e.g.,	 plans	 and	 functional requirements	 documents,	 especially	 at	 higher	 levels),	 each	
addressing	some	functional	realm,	and	often	provided	by	specialized	project	teams.	Framework	
guidance	 is	 provided	 on	 the	 overall	 structure	 of	 conceptual	 views	 and	 on	 their	 relationships	
within	the	view	hierarchy,	but	their	specific	form	has	been	kept	quite	flexible.	

	

1	A	term	probably	coined	by	Edsger	W.	Dijkstra:	“Let	me	try	to	explain	to	you,	what	to	my	taste	is	characteristic	for	all	
intelligent	thinking.	It	is,	that	one	is	willing	to	study	in	depth	an	aspect	of	one's	subject	matter	in	isolation	for	the	sake	
of	its	own	consistency,	all	the	time	knowing	that	one	is	occupying	oneself	only	with	one	of	the	aspects.	We	know	that	a	
program	must	be	correct	and	we	can	study	it	from	that	viewpoint	only;	we	also	know	that	it	should	be	efficient	and	we	
can	study	its	efficiency	on	another	day,	so	to	speak.	In	another	mood	we	may	ask	ourselves	whether,	and	if	so:	why,	the	
program	is	desirable.	But	nothing	is	gained—on	the	contrary!—by	tackling	these	various	aspects	simultaneously.	It	is	
what	I	sometimes	have	called	‘the	separation	of	concerns’,	which,	even	if	not	perfectly	possible,	is	yet	the	only	available	
technique	for	effective	ordering	of	one's	thoughts,	that	I	know	of.	This	is	what	I	mean	by	‘focusing	one's	attention	upon	
some	aspect’:	it	does	not	mean	ignoring	the	other	aspects,	it	is	just	doing	justice	to	the	fact	that	from	this	aspect's	point	
of	view,	the	other	is	irrelevant.	It	is	being	one-	and	multiple-track	minded	simultaneously.”	[20]	

From JPL D-8614, Rev B “System Engineering at JPL”,
October 1993 (original source unknown)

	 	 (initial	release	for	review)	

	 5	

	
From JPL 89-24, “The Voyager Neptune Travel Guide”, Charles Kohlhase editor, June 1, 1989 (artist Phil Gwinn)	

Separately,	each	realizational view	considers	the	convergence	of	diverse	concepts	on	a	particular	
component	 of	 the	 target	 system:	 whether	 an	 identified	 product	 (or	 integration	 of	 products)	
within	the	implemented	system,	or	on	some	part	of	the	system	context	(e.g.,	an	environment,	a	
service,	 or	 some	 external	 interfacing	 system).	 In	 this	 manner,	 realizational	 views	 gather	 and	
attempt	to	reconcile	the	expectations	that	conceptual	views	assert,	as	applied	to	a	specific	item,	
while	counter-asserting	interdependencies	from	practical	implementation	that	conceptual	views	
must	honor.	
For	a	product,	the	resulting	reconciliation	of	these	constraints	is	analogous	to	some	combination	
of	a	requirement	or	specification	document	and	a	design description	document.	For	an	environ-
ment,	 it	 would	 be	 analogous	 to	 the	 contextual	 description	 in	 an	 environment requirements	
document.	 For	 a	 service,	 it	 would	 be	 analogous	 to	 a	 service specification	 (e.g.,	 a	 DSN	 Service	
Agreement).	And	so	on.	Guidance	on	structure	and	content	is	comparable	to	that	for	conceptual	
views.	

The	 conventional	 notion	 of	 a	 “subsystem”	 typically	 straddles	 the	 conceptual-realizational	 line,	
with	 subsystem	 teams	 contributing	 both	 conceptually	 to	 the	 system	 architecture,	 as	 well	 as	
realizationally	 to	 the	 definition	 of	 products.	 Proper	 usage	 of	 this	 architecture	 framework	 re-
quires	these	roles	to	be	resolved	into	their	separate	perspectives,	where	subsystem	as	a	concep-
tual	discipline	is	distinct	from	subsystem	as	a	realizational	product.	
For	instance:	

Conceptually, telecommunication is broadly engaged with radio signals and associated functions and
mediums, trajectory and associated geometry, data and associated capacity and latency demands, etc.

Realizationally, telecommunication is bound to antennas, waveguides, transponders, and related
items that must be delivered, and to the accommodation of their electrical, thermal, structural, point-
ing, commanding, and other dependencies.

Separation of Concerns
different Views
same System

	 	 (initial	release	for	review)	

	 6	

2.1.4 Auxiliary Views:	Rounding	out	 the	set	of	specialized	views	are	models,	scenarios,	anal-
yses,	and	trades.	Each	is	defined	with	the	express	purpose	of	encouraging	more	complete	cover-
age	of	topics	already	covered	within	conceptual	or	realizational	views.	In	that	way,	they	may	be	
considered	 as	 supplemental	 to	 those	 views,	 in	 the	 same	 way	 one	 might	 regard	 a	 document	
appendix	 that	 expands	 upon	 some	 idea	 addressed	 tangentially	 within	 the	 narrative,	 but	 too	
complex	for	full	description	in	that	setting.	
Within	 this	 set,	 models	 address	 items	 such	 as	 simulations,	 test	 results,	 or	 other	 sources	 that	
purport	to	describe	essential	aspects	of	the	architected	system	or	its	context.	Scenarios	address	a	
similar	need	for	the	usage	of	that	system,	including	any	other	dynamic	circumstance	relevant	to	
its	successful	deployment.	Analyses	address	the	use	of	models,	scenarios,	tools,	and	other	contri-
butions	 to	 the	 assessment	 of	 architectural	 features	 and	 capabilities.	 And	 trades	 address	 the	
extent,	criteria,	and	review	of	key	architecture	choices.	In	each	case,	the	complexity	of	the	model,	
scenario,	 analysis,	 or	 trade	 is	 expected	 to	 govern	 the	 scope	 of	 its	 rendering	within	 the	 frame-
work.	 Guidance	 is	 provided	 to	 aid	 the	 selection	 of	 content,	 but	 otherwise,	 the	 organization	 of	
these	specialized	views	is	flexible.	

2.2 Composition
Within	views,	a	more	detailed	framework	structure	is	needed	to	enable	formal	expression	of	the	
assertions	they	make.	Fortunately,	these	can	all	be	expressed	within	a	small	set	of	ideas.	

2.2.1 Elements:	The	first	of	these	is	composition,	wherein	the	division	of	a	system	into	parts	is	
defined.	Each	part	is	called	an	element,	and	each	separate	part	of	that	element	is	an	element,	and	
so	on.	The	most	basic	of	assertions	 is	 therefore	 to	declare	 the	 required	composition	of	an	ele-
ment	into	its	parts	(aka	sub-elements).	
Any	given	composition	of	a	system	is	certainly	not	unique.	Each	conceptual	perspective	suggests	
a	 different	 partitioning,	 whether	 into	 thermal	 zones,	 fault	 containment	 regions,	 data	 system	
nodes,	 software	modules,	 or	 gravitational	 bodies,	 etc.	 Composition	 can	 also	 support	 program-
matic	or	other	non-engineering	views,	such	as	the	structure	of	a	work	breakdown	or	an	organi-
zation.	Separation	of	concerns	among	conceptual	views	permits	 the	 independent	expression	of	
these	ideas.	

2.2.2 Functional Roles:	 Each	 element	within	 a	 composition	 has	 a	 role	 relative	 to	 the	 other	
elements.	Elements	that	are	destined	to	be	products	exist	to	fulfill	some	purpose.	Otherwise,	they	
wouldn’t	be	needed.	 In	this	architecture	 framework,	purpose	 is	asserted	as	 the	element’s	 func-
tion,	as	established	by	the	conceptual	view	in	which	its	role	in	the	composition	is	asserted	or	in	
the	conceptual	scenario	in	which	functionality	is	invoked.	An	element’s	function	is	relevant	only	
within	this	conceptual	context.	

2.2.3 Relationships:	As	parts	of	a	larger	system,	the	elements	of	a	composition	must	interact	
or	relate	in	prescribed	ways,	often	in	service	of	the	function	of	the	composite	element.	Elements	
can	also	interact	in	incidental	ways	that	are	germane	to	the	architecture,	nonetheless.	Each	such	
interaction	 is	 asserted	within	 the	 framework	 structure	as	a	 relationship.	 Engineered	 interfaces	

	 	 (initial	release	for	review)	

	 7	

would	be	included	among	relationships	(e.g.,	electrical,	structural,	informational,	etc.),	but	other	
relevant	 associations	would	 also	 be	 captured	 (e.g.,	related	 to	 interference,	 configuration,	 fault	
propagation,	etc.).	
Together,	 elements	 and	 their	 functions	 and	 relationships	 are	 clearly	 analogous	 to	 the	 infor-
mation	 typically	 found	 in	 functional	 block	 diagrams.	 As	 formally	modeled	 items	 in	 the	 frame-
work	 though,	 they	become	relatable	entities	 that	are	accessible	by	 tools	 for	analysis	and	other	
uses.	This	must	be	approached	carefully.		Composition	is	surprisingly	subtle	idea	[2],	addressing	
a	 variety	 of	 notions	 regarding	 the	 association	 between	 parts	 and	whole,	 and	 among	 the	 parts	
themselves.	
This	architecture	 framework	accommodates	such	 issues	 in	part	by	separation	of	 concerns,	but	
also	 by	 classifying	 elements	 according	 to	 their	 conceptual	 or	 realizational	 origination.	 In	 this	
manner,	potential	 issues	of	 transitivity	can	be	avoided.	Relationships	address	associations	 that	
are	 non-compositional,	 and	 additional	 associations	 are	 defined	within	 the	 framework	 for	 par-
ticular	dependencies	among	framework	categories.	Together,	these	provide	the	breadth	needed	
for	expressive	representations	of	system	composition.	

2.3 Commitments
The	definition	of	any	element	or	relationship	is	accomplished	by	the	declaration	of	the	properties	
it	possesses	that	are	relevant	to	the	architecture.	Whether	simply	its	name,	or	more	importantly,	
its	 physical,	 geometric,	 or	 informational	 characteristics,	 properties	 are	 the	 only	 distinguishing	
features	of	an	element	or	relationship,	beyond	its	associations	within	a	composition.	Therefore,	
literally	 everything	 that	might	 ever	 need	 to	 be	 said	 about	 them	 can	 be	 expressed	 in	 terms	 of	
properties	and	composition.	Asserting	the	existence	of	these	properties	is	analogous	to	labeling	
the	columns	of	a	table.	These	too	become	relatable	entities	for	external	uses.	

2.3.1 Properties and Constraints:	Properties	have	values,	many	varying	over	time	or	related	
to	other	properties	in	particular	ways.	What	we	know	or	expect	or	desire	about	these	values	is	
asserted	 in	constraints.	 Some	constraints	will	 simply	assign	a	value	 (or	 range	of	values),	while	
others	might	be	as	complex	as	the	relations	of	an	elaborate	behavior	model	(i.e.,	equations	and	so	
on).	

Note that named constants are not element or relationship properties under framework definitions.
To permit otherwise would nearly always reflect an abuse of notation, where an explicit constraint
should be expressed instead.

For instance, it would be inappropriate to say that maximum_expected_IMU_mass is a property of
an IMU, since this value might change, even though the IMU’s actual mass does not. Moreover, the
value of maximum_expected_IMU_mass is relevant to the IMU only if it participates in a constraint
with the IMU’s actual mass, which is a property of the IMU. Thus, maximum_expected_IMU_mass is
the name for a value in a constraint on a property, but it is not a property itself.

The framework addresses such named values and the constraints that include them by expressing
constraints explicitly (not merely suggesting them in names), and by associating them with the views
that assert them rather than with elements or relationships.

A	 constraint	 can	 involve	 any	 number	 of	 properties,	 and	 any	 given	 property	 can	 participate	 in	
several	constraints.	Therefore,	for	an	architecture	to	be	realizable,	properties	must	be	addressed	
collectively,	 with	 all	 constraints	 simultaneously	 satisfiable.	 	 With	 allowances	 for	 variation,	

	 	 (initial	release	for	review)	

	 8	

determination	of	relative	sensitivities,	allocations	that	permit	decoupling,	provisions	for	quantity	
kind,	 and	 so	 on,	 something	 far	 better	 than	 point	 design	 assessment	 is	 needed.	 Therefore,	 the	
framework	encourages	representation	of	constraints	in	full	mathematical	expressiveness.	
In	this	architecture	framework,	constraints	are	treated	as	a	specialized	aspect	of	a	property.	For	
example,	 a	parametric	dependency	among	 the	 elements	 in	 a	 composition	would	be	 taken	as	 a	
property	of	the	composition	(as,	for	instance,	it	being	a	“property”	of	rigid	bodies	that	their	parts	
all	move	 in	 the	 same	way).	Nonetheless,	 constraints	 and	 the	values	 they	 constrain	are	held	as	
distinct	entities.	

2.3.2 Requirements:	Each	constraint	has	a	provenance	that	establishes	its	stature	within	the	
architecture.	For	 instance,	any	constraint	asserting	a	desired	characteristic	of	a	product	would	
belong	 to	 the	conceptual	view	that	makes	 this	assertion,	 typically	 in	support	of	 some	assigned	
function.	 Such	 constraints	 are	 analogous	 to	 requirements	 in	 conventional	 treatments.	 Indeed,	
within	this	architecture	framework,	this	 is	precisely	how	requirements	are	defined	(“products”	
in	 turn	defined	by	 relationships	with	 suppliers).	When	a	 constraint	 expresses	 an	 estimated	or	
measured	value	of	a	product,	it	typically	belongs	to	the	realizational	view	that	makes	this	asser-
tion.	When	a	constraint	describes	intrinsic	physical	behavior,	it	belongs	to	the	element	or	com-
position	that	encompasses	the	scope	of	that	behavior;	and	so	on.	Assignment	of	provenance	is	a	
feature	of	this	framework.	

2.3.3 Prototypes:	Allowance	 is	made	 in	 this	architecture	 framework	 for	 the	concise	descrip-
tion	 of	 different	 elements	 that	 share	 a	 common	 set	 of	 properties	 (e.g.,	 all	 hardware	 has	 the	
property,	 mass).	 This	 is	 accomplished	 via	 the	 definition	 of	 prototype	 elements.	 Any	 element	
asserted	 to	 be	 a	 copy	 (i.e.,	 instance)	 of	 the	 prototype	 acquires	 all	 of	 its	 properties,	 including	
relevant	constraints	(appropriately	translated	to	the	instance	properties).	Relationships	among	
copied	 elements	 similarly	 acquire	 properties	 and	 constraints	 of	 relationships	 among	 corre-
sponding	 prototypes.	 	 This	 provides	 an	 easy	way	 to	 levy	 requirements	 on	 types	 of	 things,	 the	
effect	being	that	each	instance	of	that	type	also	acquires	this	constraint,	but	in	a	form	automati-
cally	tailored	to	that	instance.	
Both	conceptual	and	realizational	prototype	elements	are	allowed,	as	determined	by	where	they	
are	defined.	A	conceptual	prototype	would	typically	represent	a	general	type	of	element,	serving	
as	 a	 template	 for	 different	 variants,	 while	 a	 realizational	 prototype	 would	 typically	 specify	 a	
particular	component	that	occurs	in	multiple,	interchangeable	instances	within	a	system.	

2.4 Mapping Concepts to Reality
The	 convergence	 of	 conceptual	 notions	 in	 realizational	 entities	 is	 also	 accomplished	 via	 an	
association	between	elements.	In	particular,	every	Conceptually	defined	element	must	ultimately	
be	bound	to	some	Realizational	element.	That	is,	each	notion	must	be	made	real.	This	is	usually	a	
many-to-one	mapping,	 such	 that	 a	 real	 item	might	 be	 viewed	 conceptually	 as	 (for	 instance)	 a	
power	load,	a	source	of	microphonics,	a	fault	containment	region,	a	source	of	telemetry,	and	so	
on.	A	dozen	or	more	such	C→R	associations	would	be	common.	

By	these	associations,	whatever	properties,	constraints,	and	relationships	are	noted	for	a	concep-
tual	element	would	apply	by	inheritance	to	its	realizations.	In	this	way,	the	realization	of	concep-

	 	 (initial	release	for	review)	

	 9	

tual	elements	is	similar	to	the	copying	of	prototype	elements.	However,	conceptual	compositions	
may	have	multiplicity	constraints	on	membership	that	can	be	enumerated	only	via	C→R	associa-
tions.	 These	 associations	 also	 help	 to	 address	 the	 different	ways	 in	which	 distinct	 conceptual	
compositions	can	overlay	the	same	realizational	composition,	making	them	a	useful	addition	to	
the	framework.	
Collectively,	it	is	the	assertion	of	compositions,	constraints,	and	so	on	within	a	view	that	become	
the	defining	context	for	hierarchically	dependent	views.	That	is,	views	“see”	what	is	above	them	
hierarchically,	 but	not	what	 is	 below	 them.	Flow-down	 is	 generally	 established	by	 this	means,	
but	it	may	then	be	further	targeted,	such	that	particular	dependent	views	can	be	singled	out	for	
further	elaboration	of	an	assertion.	A	conceptual	view	might,	 for	 instance,	divide	responsibility	
for	downlink	telecommunications	among	different	elements,	one	of	which	has	the	role	of	point-
ing	an	antenna.	Any	associated	pointing	constraint	would	be	directed	 to	whichever	dependent	
view	addressed	pointing,	where	a	unified	approach	to	all	pointing	needs	would	be	addressed.	

Traceability	 from	 view	 to	 view	 is	 augmented	 by	 the	 net	 of	 associations	 among	 constraints	
through	 their	 shared	properties.	This	 is	 closely	analogous	 to	 connections	 from	requirement	 to	
requirement	in	a	conventional	approach,	but	with	the	connections	being	formally	and	verifiably	
determined	by	the	constraints	themselves,	and	with	their	scope	being	wider	than	requirements	
alone	(e.g.,	traceability	to	assumptions	about	the	environment).	
In	this	light,	it’s	vital	to	note	that	the	C→R	association	is	accessible	to	conceptual	views,	such	that	
any	constraints	originating	at	the	realizational	level	on	properties	defined	at	the	conceptual	level	
are	within	the	purview	of	the	defining	conceptual	view.	This	enables	the	assessment	of	closure	
within	 an	 architecture,	whereby	 the	 realization	 of	 a	 conceptual	 approach	 can	 be	 examined	 or	
even	further	constrained	in	order	to	declare	compliance	or	to	push	back	for	relief.	
This	 give	 and	 take	highlights	 a	 vital	 aspect	 of	 the	 architecture	 framework	wherein	 conceptual	
and	 realizational	 views	are	properly	viewed	as	peers,	neither	being	 “below”	or	 subordinate	 to	
the	other.	They	share	a	set	of	properties,	constraints,	and	so	on,	as	defined	via	C→R	associations,	
through	which	 their	mutual	 compatibility	 can	be	 established.	What	 flows	 from	 the	 conceptual	
side	are	the	successively	refined	ideas	that	establish	system	functionality.	What	flows	from	the	
realizational	side	are	the	practicalities	of	implementation,	integration,	and	deployment.	Architec-
ture	mediates	their	association.	

2.5 Viewpoints
Viewpoints	are	the	final	category	defined	by	this	architecture	framework.	They	fill	a	role	some-
what	related	to	principles,	but	dedicated	to	the	practice	of	defining	an	architecture,	rather	than	
to	the	architecture	itself.	The	intent	of	each	viewpoint	is	to	set	standards,	conventions,	or	other	
criteria	that	would	be	expected	from	a	well-crafted	view	in	a	particular	topic	area	or	discipline.	
In	addition	to	defined	abstractions	intended	for	use	in	developing	descriptions	from	this	point	of	
view,	 viewpoints	 could	 include	 accepted	 methods,	 sanctioned	 data	 sources,	 useful	 reference	
material,	mandated	reviews,	or	supported	formats,	notation,	and	tools.	
Like	principles,	viewpoints	would	be	expected	to	provide	sustaining	value	to	subsequent	efforts,	
improving	and	evolving	from	one	application	or	project	to	the	next.	Consequently,	a	viewpoint	is	
the	 sort	 of	 institutional	 asset	 that	 would	 normally	 be	 associated	 with	 some	 discipline	 group	
having	responsibility	for	its	development	and	evolution	(comparable	to	institutional	procedures	
and	 guidelines).	 In	 this	 regard,	 viewpoints	 are	 considered	 authoritative,	 but	 they	 needn’t	 be	

	 	 (initial	release	for	review)	

	 10	

peremptory.	Their	aim	is	to	guide	and	support	disciplined	developments,	and	to	establish	com-
mon	practice	and	understanding.	

2.6 Summary
The	framework	outlined	above	is	a	collection	of	14	entity	types,	each	intended	for	the	expression	
of	 information	 in	 different	 categories.	 For	 each	 such	 category,	 information	 is	 expressed	 in	
records.	

For example, each View would be one record, and all View records collectively comprise the con-
tents of the View category.

Note the capitalization of “View” above. From here through the end of this document, wherever a
category is mentioned, it will be capitalized in order to emphasize the formality of its place within
the architecture framework.

The	records	in	a	given	category	have	a	minimally	defined	structure	consisting	of	a	small	number	
of	fields.	These	include	name	and	description	fields,	plus	added	information	fields	appropriate	to	
the	category.	
Records	may	be	connected	to	one	another	in	ordered	
pairs	 via	 associations.	 Only	 a	 subset	 of	 category	
pairs	support	associations,	but	where	an	association	
is	 permitted,	 it	 simply	 links	 two	 records	 of	 the	
indicated	categories.	

For example, a particular View may address a particular Concern. This pair is associated via an
addresses association.

There	 are	 a	 few	 rules	 about	 the	multiplicity	 of	 associations.	 These	 determine	which	 combina-
tions	of	associations	are	permitted	to	appear	in	the	same	architecture	description.	

For example, no Property can belong to more than one item. That is, any given Property can appear
in only one belongs to association.

2.6.1 Categories
The	complete	set	of	categories	is	as	follows:	

Stakeholder A Stakeholder record describes one of the parties to whom a project is obligat-
ed regarding performance or outcomes. These would typically include the
sponsor for a project plus various institutional or governmental entities.

Concern A Concern record describes an issue of importance or interest to a Stakeholder.
Concerns are the source of originating constraints on a system. For NASA
projects, these would include Level 1 requirements. Others would typically
involve institutional or legal mandates, partnering agreements, or comparable

Viewpoint A Viewpoint record provides guidance for development and content of Views
addressing a particular topic or discipline. A Viewpoint can establish represen-
tation and analysis conventions; it can provide vetted sources of data and
authoritative reference material; it can recommend areas that need attention,
processes for development, and so on. Viewpoints would typically be organized
in a manner analogous to the conventional partitioning across procedure or

The details of framework records, fields,
associations, rules, etc. are documented,
with examples and further guidance, in
JPL D-55628 Architecture Framework
Definition [21].

	 	 (initial	release	for	review)	

	 11	

policy documents. They would be reusable across projects.

View A View record describes a particular aspect of an architecture from some point
of view. A View may directly address some Concern; it may elaborate some
particular aspect identified more generally in another View; or it may serve to
reconcile overlapping interests. Views would typically be organized in a manner
analogous to the conventional partitioning across design or specification
documents.

Trade A Trade record describes the basis for a significant decision made by a project.
Trades would typically address technical choices among design alternatives, but
they could also address programmatic choices. Each Trade would provide
information needed to understand the options considered and the criteria by
which the choice is made.

Model A Model record describes our understanding of some aspect of a system or its
mission, and the manner in which this understanding is to be applied in anal-
yses, simulations or other applications. A Model would typically be created to
explain some complicated aspect of a system or mission that would benefit
from dedicated treatment outside of Views and Viewpoints.

Analysis An Analysis record describes a calculation, test, or other assessment that is
performed in the evaluation of the architecture. An Analysis might be a one-
time case, for instance to support a Trade, or it might be one that is repeated
routinely as part of the iterative process for arriving at a closed architecture.

Element An Element record describes one of the parts of a system. These would typically
be engineered components, but they could also include external services used
by the system, relevant objects in the environment of the system, and other
systems with which the system must interoperate. In addition, Elements can be
defined that describe types of Elements.

Relationship A Relationship record describes one way in which certain Elements of the
System interact with one another. Relationships will typically describe function-
al interdependencies, sharing of resources, sources of interference or contami-
nation, and so on.

Function A Function record describes the purpose or role of an engineered Element in an
architecture. This is typically an expression of the division of responsibilities
observed in an architecture.

Property A Property record defines a particular attribute, quality, or characteristic of
something in the system, including any definitive constraints. A Property can
describe physical, informational, procedural, temporal, and other aspects of
Elements, Relationships, Scenarios, or other items. Constraint may express
intentions that lead to requirements on project products, or they may express
assertions regarding what is known about other items of interest to the project.

Scenario A Scenario record describes a situation that a system could encounter and the
manner in which it is intended or expected to unfold over time. A Scenario
would typically address a particular planned activity, before, during, or after a
mission, considering how it might be done and whether objectives for it can be
met. A Scenario could address nominal behavior, or it might instead explore the
implications of faults, discoveries, or other unplanned events. Scenarios

	 	 (initial	release	for	review)	

	 12	

become the driving cases for evaluation of the system.

Principle A Principle record captures some notion that is considered fundamental to
good architecture. Principles will often be relevant to a particular technical
discipline, but general principles may also be identified. Principles should be
applicable across all projects.

Requirement A requirement record is the rendering of a particular constraint on a particular
Element in the form of a “shall statement”.

2.6.2 Associations
The	complete	set	of	associations	that	are	defined	among	categories	(with	their	associated	multi-
plicities)	is	as	follows:	

Each Concern is important to one Stakeholder.
Separate Concerns may be similar, but to ensure that the nuances of each Stakeholder’s interest are not
lost, each Concern is associated with an appropriate Stakeholder, and not shared other Stakeholders.

Each Viewpoint is prescribed by zero or more Stakeholders.
It is common for Stakeholders to set expectations for the manner in which their Concerns are addressed
(documentation, analyses, reviews, etc.). These expectations are captured in Viewpoints associated with
the governing Stakeholders.

Each View addresses zero or more Concerns or Views.
Through this acyclic association, all Views are traceable to Concerns, either directly or through the View
hierarchy. This traceability is further extended to auxiliary view, as noted below. This hierarchy also
governs the scope of Views and auxiliary views, which should not refer to subordinate content.

Each View conforms to zero or more Viewpoints.
This association establishes which Viewpoints assert guidance for each View, and it places Viewpoints
within the scope of the Views they guide.

Each View is provided to zero or more Stakeholders.
This association establishes certain Views as subject to Stakeholder review.

Each Trade is reflected in zero or more Views.
The decisions reflected in Views often arise from formally documented Trades, which are traceable via
this association. This association places Trades within the scope of the Views they inform.

Each Trade considers zero or more Concerns or Principles.
This association ties the decisions of Trades directly to any Principle or Concern that factors significantly
influences their outcome in a direct manner.

Each Model is defined by one View or Viewpoint.
Models are auxiliary views that document complicated aspects of a system that Views and Viewpoints
depend upon. This association places Models within the scope of the Views and Viewpoint they support.

Each Analysis is invoked by zero or more Views or Viewpoints.
Analyses are auxiliary views that may either describe a particular investigation that directly comple-
ments the exposition in some View, or that prescribe a type or method of analysis that would be ex-
pected from some Viewpoint. This association places Analyses within the scope of the Views they sup-
port.

Each Element is defined by one Concern, Model, View, or Viewpoint.
Each Element must be defined within a particular context. It is then accessible to any other context that
has the defining context in its scope.

Each Element is a copy of zero or more prototype Elements.
Through this association, Elements can be declared to be of a particular kind, as defined via a prototypi-
cal Element, in which case they acquire the characteristics of the prototype.

	 	 (initial	release	for	review)	

	 13	

Each Element is a realization of zero or more conceptual Elements.	
Conceptually established Elements are given concrete realizations through this association. Realization-
al Elements can participate in multiple conceptual contexts.

Each Element is a member of zero or more composite Elements.
This association establishes the connection between a composite Element and the sub-Elements that
comprise it. In the conceptual realm, this association is at the core of functional decomposition. In the
realizational realm, this association is at the core of product breakdown and system integration.

Each Element is a participant in zero or more Scenarios.
Functional dependencies are often established through Scenarios that describe the manner in which El-
ements interact. This association formally establishes such dependencies.

Each Relationship is defined by one Concern, Model, View, or Viewpoint.
Each Relationship must be defined within a particular context. It is then accessible to any other context
that has the defining context in its scope.

Each Relationship is a connection among two or more Elements.
This association establishes the network of Relationships among the Elements in a system.

Each Scenario is defined by one Concern, Model, View, or Viewpoint.
Each Scenario is motivated by a particular context in which the system is applied. It is then accessible to
any other context that has the defining context in its scope.

Each Function is assigned to one Element.
In a proper functional decomposition, each Function must be associated uniquely with an Element that
fulfills this purpose.

Each Function is in support of one composite Element or one Scenario.
This association establishes the traceability of Functions to the integrated contexts within which they
are relevant.

Each Property is possessed by one Analysis, Concern, Element, Model, Relationship, Scenario, View,
or Viewpoint.

Every Property needs to be associated either with something that intrinsically possesses a characteristic
described by that Property or that asserts a characteristic via that Property to be imposed on something
else.

	 	 (initial	release	for	review)	

	 14	

2.6.3 The Framework Diagram
Framework	classes	and	the	associations	among	them,	as	described	above,	are	summarized	in	the	
following	diagram.	

	
Key: Each box denotes a class within the framework. The box label is a noun phase naming the class.

A line connecting two boxes denotes a recognized association between two items of the connected classes. The label
on the line next to an item is a verb phrase describing the role that the adjacent item plays in the association. Thus,
for each association, class-role-class may be read as a sentence.

Roles can be assigned to both items in an association. If a role in one direction is missing, it can typically be inferred
from the role in the other direction. Roles typically contain multiplicity information describing how many items of a
class can participate in an association. The shorthand notation for this is either a non-negative integer, a comma-
separated list of non-negative integers, or a range denoted by two ellipsis-separated, non-negative integers. An aster-
isk (*) indicates the absence of a bounding constraint. If multiplicity information is missing, ‘1’ is implied.

◼	

View	
(conceptual	or	
realiza/onal)†

auxiliary		
views	

can consider or
uniquely specify *

Version 14

Concern	

Requirement	 R	
constrains

Applies to each specified Element
that’s a defined deliverable

is comprised of 1…*

Architecture	
Descrip5on	

is addressed by 1…*

is reflected in 1…*

identifies 1…*

has 1…*

is important to 1…*

can uniquely specify *

appeals to 1…*

is considered by 1…*

can consider *

can address *

is considered by 1…*

can consider *

Trade	

can conform to * specifies
or establishes

methods for 1…*

supports 1…*

prescribes 1…*

Viewpoint	

is considered by 1…*

can establish context for *

R	

R	

†	Each View typically addresses either conceptual-
ization or realization (combinations are allowed).
Viewpoints can guide this choice. Elements are
either conceptual or realizational, generally in
accordance with the specifying View. Functions are
specified only for conceptual Elements. Otherwise,
Relationships, Properties, Scenarios, and so on gain
conceptual or realizational status according to the
Elements with which they associate (typically all one
or all the other). Realization is the identification of an
Element with one or more conceptual Elements.

structure	&	
behavior	

Element†	

Property	
(with	value	constraints)	

involves 1…*

participates in *

Rela5onship	

has *

belongs to 1 belongs to 1

connects 2…*
can participate in *
or realize

Func5on	
can fulfill *

is assigned† to 1

{xor}

other	en5ty	

has * has *

belongs to 1

is expressed via 1…*

Scenario	

can consider or
uniquely specify *

can be composed of () *
or a prototype for () *
or realized by† () *

success	criteria		

Model	

Analysis	

utilizes 1…*

supports 1…*

can invoke *

can be considered in *

*

*

Stakeholder	

Principle	

can prescribe *

can be prescribed
by 0,1

can consider or
uniquely specify *

	

	 	 (initial	release	for	review)	

	 15	

3 Viewpoints
As	generally	considered	in	architecting	literature	(e.g.,	[3],	[4],	[5],	[6],	[7],	[8],	[9]),	Viewpoints	
articulate	 Stakeholder	 Concerns	 in	 a	 practicable	 form	 and	 they	 establish	 expectations	 for	 the	
Views	that	respond	to	these	Concerns.	In	the	framework	set	forth	here,	Concerns	are	kept	sepa-
rate	from	Viewpoints,	but	both	are	related	to	Stakeholders,	such	that	their	mutual	contributions	
to	 Views	 are	 handled	 appropriately.	 This	 permits	 an	 association	 between	 the	 Viewpoints	 de-
scribed	 here	 and	 kinds	 of	 Concerns	 that	 generally	motivate	 these	 Viewpoints.	 The	 Viewpoint	
descriptions	below	are	consequently	organized	by	recurring	Concern	themes.	
The	Viewpoints	have	been	organized	in	two	categories:	conceptual	and	realizational.	It	should	be	
understood,	however,	that	some Viewpoints will necessarily stipulate both conceptual and realiza-
tional View content.	This	is	generally	appropriate	where	conceptual	issues	are	narrow	and	apply	
within	a	similarly	 limited	realizational	scope,	or	where	a	conceptual-realizational	dichotomy	 is	
not	useful.	

3.1 Conceptual
Conceptual	Views	generally	address	both	the	approach	to	be	taken	in	response	to	an	issue	and	an	
assessment	 of	 the	 closure	 of	 this	 approach	 (Is	 the	 defined	 approach	 actually	 realizable?	 Can	
constraints	be	met?	How	well?	Is	there	sufficient	tolerance	to	variation	to	protect	development?	
Etc.).	As	necessary,	 they	add	any	remaining	details	or	constraints	needed	 to	affirm	this,	where	
there	is	dependence	on	design	choices	made	elsewhere.	Analyses	are	expected	to	figure	promi-
nently	in	conceptual	Views,	particularly	in	regard	to	implications	of	the	total	architecture	on	that	
aspect	of	the	architecture	to	which	the	View	is	dedicated.	
The	delineation	between	an	approach	and	its	assessment	in	a	View	is	seldom	distinct	or	precise.	
These	aspects	are	complementary	though,	in	the	sense	that	an	approach	emphasizes	separation	
of	concerns,	giving	weight	to	some	point	of	view	such	that	its	interests	are	satisfied,	whereas	an	
assessment	 emphasizes	 harmony	within	 an	 integrated	 architecture,	 showing	 that	 this	 point	 of	
view	can	be	accommodated	among	other	coupled	interests	without	losing	the	integrity	of	a	well-
considered	approach.	
A	 common	aspect	 of	 assessment	 analyses	 is	 to	 consider	 specific	 cases	 arising	 from	 realization	
that	could	be	addressed	only	 in	generalities	by	 the	approach.	 In	a	 typical	conceptual	View,	 the	
approach	might	define	a	pattern	of	composition	or	interaction,	declaring	general	constraints	that	
would	apply	for	all	cases.	Assessment	would	then	inspect	each	realized	instance	in	turn,	confirm-
ing	 that	 constraints	are	met	 in	each	case	 (and	barring	exceptions,	 as	discussed	below).	Where	
this	 confirmation	 is	 contingent	 on	 additional	 information	 that	 has,	 as	 yet,	 remained	 open,	 as-
sessment	might	further	constrain	such	contributing	factors,	as	necessary	to	ensure	closure.	For	
instance,	 an	 approach	 for	 managing	 power	 would	 routinely	 define	 an	 allocation	 method	 for	
power	loads,	but	particular	allocations	can	only	be	addressed	in	assessment,	once	all	the	realized	
loads	are	identified.	
Frequently,	 the	 information	 contributed	by	 a	 realizational	 instance	 is	 its	 own	particular	 set	 of	
constraints,	 to	be	combined	and	reconciled	with	those	of	the	approach,	such	that	the	contribu-

	 	 (initial	release	for	review)	

	 16	

tion	 of	 the	 conceptual	 View	 is	 to	 provide	 the	 pattern	 of	 implementation	 by	 which	 such	 con-
straints	 can	 be	met,	 while	 realizational	 Views	 provide	 the	 particulars	 of	 one	 instance	 of	 that	
pattern,	which	can	then	be	specifically	addressed.	For	instance,	an	approach	for	addressing	the	
mechanical	configuration	of	a	system	would	routinely	include	the	definition	of	different	types	of	
shapes,	among	which	various	geometric	relationships,	according	to	type,	would	be	constrained2
—something	that	can	only	be	addressed	fully	in	assessment,	once	all	the	shapes	and	their	rela-
tionships	are	identified.	

Similar	situations	arise	where	the	variant	in	a	pattern	is	a	type	of	activity,	rather	than	a	type	of	
thing.	 In	 these	cases,	assessments	would	examine	each	specialized	scenario	 in	 turn,	 something	
that	can	only	be	addressed	once	all	the	activities	of	that	type	are	identified	as	integrated	Scenari-
os	in	realizational	Views.	
Each	of	these	examples	describes	analyses	that	are	familiar	and	routine.	For	some,	analyses	are	
most	 appropriate	 relative	 to	 constraints	 (e.g.,	 requirements)	 rather	 than	 design,	 because	 an	
architecture	should	close	for	any	implementation	that	complies	with	constraints.	These	analyses	
would	 be	 updated	 as	 constraints	mature,	 but	 they	would	 be	 expected	 to	 hold	 over	 time	 once	
constraints	are	settled.	
For	 a	 few	 other	 analyses,	 there	 are	 general	 expectations	 during	 development	 that	 projected	
performance	 for	 the	 current	 design	 is	 reported	 regularly	 as	 it	 evolves.	 Such	 cases	 typically	
address	tolerance	to	variation	(e.g.,	margins),	where	routine	reassessment	is	necessary	in	order	
to	safeguard	against	erosion	of	this	tolerance.	These	reporting	aspects	of	assessments	should	be	
expected	to	change	over	time.	
Such	reports	are	often	in	tabular	form,	because	they	iterate	across	a	set	of	related	instances	or	
cases,	 as	 described	 above.	 However,	 there	 is	 no	 set	 expectation.	 Wherever	 such	 a	 report	 is	
warranted,	 in	 whatever	 form	 it	 appears,	 the	 appropriate	 architectural	 home	 for	 it	 is	 in	 some	
conceptual	 View’s	 assessment,	 either	 directly	 or	 by	 clear,	 controlled	 reference	 (e.g.,	 to	 some	
auxiliary	view).	
In	all	cases,	the	ambition	of	each	assessment	is	to	provide	a	validation	of	the	approach,	where	the	
analyses	provided	and	the	mutual	acceptance	of	flow-down	constraints	in	the	realized	architec-
ture	combine	to	give	assurance	that	objectives	are	achievable.	
There	 may	 nonetheless	 be	 cases	 that	 take	 exception	 to	 a	 prescribed	 approach,	 whether	 by	
specially	allowed	departures	or	(in	problematic	cases)	by	formal	waiver.	Where	exceptions	are	
negotiated,	these	should	be	identified	and	justified	as	part	of	the	conceptual	View.	On	the	other	
hand,	 waivers	 are	 (by	 definition)	 acknowledge	 escapes	 from	 a	 considered	 architectural	 ap-
proach,	 so	 they	 are	 accordingly	 justified	 and	 approved	 elsewhere	 by	 extraordinary	means.	 In	
either	case	 though,	analyses,	allocations,	and	so	 forth	should	make	explicit	 reference	 to	excep-
tions	and	consider	them	in	the	reported	results.	

__	
Following	are	descriptions	for	particular	conceptual	Viewpoints.	General	guidance	above	applies,	
but	particular	Viewpoints	would	be	 intended	provide	more	directed	 advice	 for	what	might	be	

	
2	 Solids	 can’t	 intersect,	 fields	 of	 view	 and	 articulation	 volumes	 can’t	 be	 blocked,	 everything	must	 be	 attached	 to	
something,	items	must	fit	within	assigned	enclosures,	etc.	

	 	 (initial	release	for	review)	

	 17	

included	 in	 governed	Views,	 and	 to	 provide	 additional	 supporting	 information,	 representation	
and	analysis	conventions,	expectations	for	resulting	products,	and	so	on.	
In	most	cases,	what	follows	are	only	brief	descriptions	of	the	intended	Viewpoints.	However,	in	a	
few	 selected	 cases,	 referenced	 below,	more	 elaborate	 descriptions	 have	 been	 provided	 in	 Ap-
pendices	that	show	in	more	detail	what	such	Viewpoints	might	be	expected	to	provide.	

3.1.1 Mission Concept:	As	necessary,	Views	governed	by	a	“mission	concept”	Viewpoint	can	
serve	as	bridges	from	Stakeholder	Concerns,	to	the	various	Views	that	address	them.	In	this	role,	
they	can	define	the	top-level	structure	of	project	products,	initiating	functional	decomposition	of	
the	project	system.	
Mission	concept	Views	can	also	provide	a	direct	assessment	of	 the	project	system	architecture	
relative	to	success	criteria.	This	could	involve	independent	summarizations	of	assessments	from	
subordinate	Views,	or	a	compilation	of	evidence	from	multiple	Views	that	supports	an	integrated	
argument	for	compliance,	 including	robust	margins	against	success	criteria.	Part	of	this	assess-
ment	should	address	the	top-level	realizational	breakdown	of	the	project	system,	supporting	an	
assertion	of	balanced	and	thorough	treatment	of	all	project	system	Elements.	

3.1.2 Science:	Views	governed	by	a	“science”	Viewpoint	are	appropriate	for	all	missions	with	
science	objectives	(most	of	those	performed	by	JPL).	Besides	addressing	the	technical	aspects	of	
collecting	science	data,	science	Views	also	consider	the	data’s	suitability	to	the	science	objectives	
of	the	mission	and	means	by	which	scientific	results	are	produced	and	communicated.	

Objectives, Investigations, and Measurements

Conceptual	Views	governed	by	this	Viewpoint	establish	the	overall	pattern	of	science	activity	for	
a	mission,	explaining	generally	what	science	data	sets	must	be	acquired	to	meet	science	objec-
tives	(typically	Level	1	requirements),	and	how	this	is	accomplished	via	a	combination	of	mission	
and	system	features.	

A	 common	 feature	 of	 governed	 Views	 will	 be	 a	 science traceability matrix	 for	 the	 project	 (or	
something	equivalent),	 laying	out	 the	 intended	 investigations	and	an	approach	 to	 their	accom-
plishment.	By	this	means,	Views	should	address	broadly	how	well	the	design	meets	its	intent,	as	
rolled	 up	 from	 lower-level	 conceptual	 Views	 and	 from	 realizational	 capabilities.	 For	 example,	
this	would	be	a	reasonable	home…	

• for	defining	each	of	measurement	types	needed	to	fulfill	the	approach,	
• for	tracing	effectiveness	of	the	defined	instrument	and	mission	designs	in	addressing	re-
quired	science	investigations,	including	a	variety	of	coverage	statistics	or	maps,	and	with	al-
lowance	for	failures	or	other	threats,	

• for	presenting	analyses	that	show	metrics	relating	capabilities	and	plans	to	progress	over	
time	in	reaching	each	science	success	criterion,	and	

• for	an	assessment	of	any	compromise	situations	where	the	assertion	of	science	priorities	
was	needed	in	order	in	order	to	resolve	competing	interests.	

Other	analyses	should	also	be	considered	where	they	assess	the	overall	capability	of	the	mission	
to	accommodate	science	 interests,	such	as	 flexibility	 for	continued	mission	refinement,	adapta-

	 	 (initial	release	for	review)	

	 18	

bility	and	operational	responsiveness	to	scientific	discovery,	potential	for	an	extended	mission,	
and	so	on.	

Observation Strategy, Opportunities, and Planning

Conceptual	Views	governed	by	this	Viewpoint	address	mission	design	aspects	of	the	observation	
strategy,	 laying	 out	 constraints	 on	 trajectory	 and	 pointing	 that	 determine	 coverage,	 viewing	
geometry	 and	 lighting,	 and	 other	 observational	 factors	 (e.g.,	 speed	 or	 environment)	 that	 are	
compelled	by	 science	objectives,	 as	broadly	determined	by	 the	approach	defined	 in	Objectives	
and	Investigations	Views.	
Checkout	and	calibration	opportunities	should	also	be	addressed.	These	are	analogous	to	observ-
ing	opportunities,	but	relative	to	supporting	data	needed	to	understand	and	adjust	measurement	
collection	performance,	rather	than	to	the	science	measurements	themselves.	This	includes	the	
identification	 of	 activities,	 targets,	 times,	 and	 so	 on	 that	must	 be	 included	 in	mission	 plans	 in	
order	to	provide	this	complementary	data	set.	
These	Views	are	the	primary	source	of	reconciled	science	constraints	on	a	mission’s	trajectory.	
Given	a	variety	of	science	 interests,	governed	Views	should	reflect	a	compromise	of	competing	
factors	that	must	be	reconciled	across	the	instrument	suite	and	within	engineering	restrictions.	
As	 this	 evolves,	 Views	 should	 address	 the	 scientific	 adequacy	 of	 the	 current	 mission	 design	
trajectory	and	associated	observation	plans.	
Where	an	approach	cannot	assert	a	priori	what	science	opportunities	may	be	specifically,	Views	
must	instead	inspect	the	set	of	all	potential	opportunities	identified	in	the	current	mission	plan.	
Therefore,	analyses	such	as	coverage	assessments,	a	summarized	under	Objectives	and	Investi-
gations	Views,	would	be	addressed	in	detail	in	Observation	Planning	Views.	
Assessment	of	 checkout	 and	 calibration	opportunities	 should	 similarly	 assess	 the	 current	mis-
sion	 design	 trajectory	 and	 associated	 checkout	 and	 calibration	 plans.	 Details	 of	 supporting	
analyses	and	addition	of	supporting	refinements	would	be	included.	

Potential	supporting	refinements,	as	driven	by	particular	measurement	capabilities,	operational	
considerations,	or	other	issues	can	also	be	added.	

Sensing and Data Acquisition

Conceptual	Views	governed	by	this	Viewpoint	address	a	related	collection	of	observation	capa-
bilities,	as	needed	to	acquire	particular	science	data	sets.	Each	is	usually	assigned	to	one	instru-
ment	(or	a	small	subset	of	the	instruments)	with	particular	performance	needs,	accompanied	by	
additional	conditions	on	the	mission	plan	and	supporting	spacecraft	capabilities,	such	that	each	
data	 set	 has	 the	 necessary	 measurement	 quality	 and	 coverage,	 capacity	 for	 correlation	 with	
other	data	sets,	acceptable	size	relative	to	storage	and	downlink	capabilities,	etc.	
Topics	can	cover	items	such	as	1)	margin	of	the	realizationally	defined	system	(instruments	and	
their	 accommodation,	 mission	 plans,	 etc.),	 relative	 to	measurement	 requirements,	 2)	 implica-
tions	 of	 performance	 limitations,	 operational	 restrictions,	 or	 other	 factors	 identified	 in	 the	
mission	and	system	designs,	especially	for	which	further	constraints	may	be	needed	in	order	to	
ensure	 satisfactory	 results,	 or	 any	 additional	 capabilities	 not	 strictly	 required,	 but	 available,	
should	 opportunities	 arise.	 To	 the	 extent	 that	 measurement-specific	 constraints	 must	 be	 im-

	 	 (initial	release	for	review)	

	 19	

posed	 on	 the	 trajectory,	 on	 delivery	 and	 pointing	 performance,	 or	 on	 other	 capabilities,	 these	
should	be	directed	for	reconciliation	by	other	Views.	

Science Data Management

Conceptual	Views	governed	by	this	Viewpoint	address	the	handling	of	scientific	data	generated	
during	a	mission.	This	would	typically	be	confined	to	operations	occurring	after	downlink,	but	it	
could	begin	with	its	initial	production	on	the	flight	system,	if	there	are	scientific	considerations	
in	the	methods	by	which	raw	data	is	subsequently	stored,	processed,	or	transported	before	being	
resident	in	ground	systems.	For	instance,	in	a	highly	autonomous	system,	early	stages	of	science	
data	management	might	occur	onboard.	
Science	data	management	begins	with	archiving	and	curation,	in	order	to	track	and	characterize	
everything	 that	 is	collected.	Views	would	address	how	and	where	 this	 is	 to	be	performed,	and	
how	other	sources	of	relevant	 information	are	 integrated	(e.g.,	navigation	and	pointing,	 instru-
ment	status,	timing…).	To	be	considered	as	well	are	further	data	products	developed	to	present	
more	refined	renderings	of	the	data	and	contribute	to	the	extended	science	data	archive.	
Views	should	also	address	the	distribution	of	science	data,	in	all	its	forms,	considering	accessibil-
ity,	searchability,	or	other	performance	factors	that	govern	it	availability.	This	typically	involves	
rules	of	precedence	among	science	groups	established	during	the	course	of	development.	

Depending	on	the	nature	of	the	mission	and	its	scientific	objectives,	there	may	also	be	expecta-
tions	regarding	the	scientific	analysis	and	interpretation	of	data,	with	expectations	governing	the	
content,	manner,	and	timing	of	reported	results,	including	to	the	broader	public	audience.	

3.1.3 Engineering:	 Views	governed	by	 an	 “engineering”	Viewpoint	define	 the	plans	 and	 sys-
tems	 that	must	be	 engineered	 in	order	 to	 satisfy	mission	objectives.	Capabilities	of	both	 flight	
and	ground	(and	other	systems,	as	appropriate)	are	covered.	Regardless	of	whether	a	combined	
flight-ground	discussion	is	called	for,	or	flight	or	ground	dominates	in	a	particular	area,	appro-
priate	coverage	for	each	is	explored	within	the	Viewpoint.	

Mission

Mission Design	—	To	be	provided	

Trajectory and Integrated Targeting	—	Conceptual	Views	governed	by	this	Viewpoint	address	
the	 numerous	 competing	 demands	 on	 flight	 system	 trajectory,	 describing	 how	 these	 demands	
can	be	efficiently	and	safely	met	within	practical	physical	capabilities	of	the	launch,	 flight,	 tele-
communication,	 and	 other	 systems.	 These	 Views	 establish	 an	 overall	 approach	 for	 a	mission,	
which	is	then	elaborated	in	detail,	considering	performance	needs	regarding	geometric	relation-
ships	 (location,	 orientation,	 etc.)	 that	 are	 important	 to	 a	 variety	 of	 project	 system	 functions.	
These	relationships	exist	primarily	between	features	of	the	flight	system	and	external	objects	of	
interest,	 where	 quality	 of	 knowledge	 or	 control	 is	 important;	 and	 because	 of	 relative	motion,	
time	is	also	a	factor.	
Views	should	assess	broadly	how	well	the	overall	system	and	mission	design	meets	the	demands	
upon	it.	This	would	be	a	reasonable	home	for	summarizing	margin	relative	to	driving	parameters	
of	 the	mission	design,	especially	with	respect	to	one	or	more	design	reference	missions,	which	

	 	 (initial	release	for	review)	

	 20	

should	 be	 defined	 in	 a	 realizational	 View.	 Views	 should	 also	 consider	 and	 reconcile	 needs,	 as	
manifest	 in	 a	 set	 of	 related	 realizational	 Scenarios,	 allocating	 the	 resulting	 consolidated	 set	
among	navigation,	pointing,	delta-v,	and	time	management	capabilities	within	various	Elements	
of	the	project	system.	These	are	shared	assets,	as	exposed	in	realization	for	both	project	system	
and	 external	 Elements,	 so	 analyses	must	 demonstrate	 that	 the	 defined	 system	meets	mission	
needs.	These	results	would	comprise	 the	usual	suite	of	navigation,	pointing,	and	 time	analyses	
and	their	associated	top-level	allocation	budgets,	potentially	 imposing	additional	constraints	 in	
order	to	ensure	that	each	Scenario	can	be	handled.	

Launch Services and Performance	—	To	be	provided	

Telecommunications Strategy and Opportunities	—	Conceptual	Views	governed	by	 this	View-
point	 address	 telecommunication	 and	 radiometric	 needs,	 accommodating	 constraints	 imposed	
by	 physical	 and	 operational	 limitations	 (e.g.,	 data,	 trajectory,	 power,	 pointing,	 etc.)	 as	well	 as	
predefined	infrastructure	(e.g.,	ground	stations,	orbital	relays,	etc.),	in	order	to	arrive	at	a	strate-
gy	that	is	well	suited	to	the	mission.	
Views	should	assess	each	of	the	demands	on	this	capability	that	arise	from	operational	Scenarios	
defined	 for	 data	 management	 and	 transport,	 navigation,	 gravity	 science,	 and	 perhaps	 others,	
which	 are	 then	 manifest	 in	 a	 set	 of	 related	 realizational	 Scenarios.	 These	 will	 likely	 involve	
shared	assets,	as	exposed	in	realization	for	both	project	system	and	external	Elements,	so	anal-
yses	must	demonstrate	 that	allocations	(capability,	 time,	bands,	etc.)	 from	the	defined	systems	
meets	 mission	 needs.	 The	 results	 would	 comprise	 the	 usual	 suite	 of	 link	 analyses	 and	 their	
associated	 allocation	 budgets,	 as	 prescribed	 by	 the	 Viewpoint,	 potentially	 imposing	 additional	
constraints	in	order	to	ensure	that	each	Scenario	can	be	handled.	

Data Management and Transport	—	Conceptual	Views	governed	by	this	Viewpoint	address	the	
end-to-end	flow	of	data	within	the	project	system.	Such	data	arises	from	many	different	sources,	
both	 flight	and	ground,	and	needs	 to	move	 to	many	different	destinations,	also	both	 flight	and	
ground.	There	are	connections	and	intermediaries	along	the	way,	which	must	meet	performance	
and	 integrity	constraints	 that	vary	according	 to	data	and	circumstance.	Moreover,	 these	assets	
must	be	shared	among	competing	demands.	The	approach	described	in	these	Views	lays	out	the	
general	methods,	principles,	organizing	structure,	and	capabilities	by	which	this	array	of	needs	
are	to	be	addressed.	
View	assessments	should	identify	and	address	each	of	the	variants	that	arise.	For	example,	this	
would	be	a	reasonable	home	for	analyses	of	science	data	 throughput,	 latency,	and	related	per-
formance	measures—each	relative	to	link	rates,	onboard	data	storage	capacity,	downlink	oppor-
tunities,	and	so	on.	Similar	analyses	would	be	needed	to	address	various	uplink	capabilities	(for	
nominal	and	contingency	situations),	secure	data	transport,	etc.	These	variants	are	determined	
by	 considering	 all	 realized	 data	 source-destination	 paths	 among	 project	 system	 Elements,	 all	
realized	Scenarios	of	data	movement	(including	overlapping	needs),	and	the	technical	capabili-
ties	assigned	to	all	realized	Elements	within	the	end-to-end	data	flow.	

Time Management	—	Conceptual	Views	governed	by	this	Viewpoint	address	the	performance	
of	clocks	used	throughout	the	system,	defining	the	means	by	which	needed	accuracy	and	stability	
are	 accomplished.	 There	 are	many	 clocks,	 both	 flight	 and	 ground,	 each	with	 different	 perfor-
mance.	 Therefore,	 some	 correspondence	 among	 them	must	 be	 established	 in	 order	 to	 ensure	
adequate	coordination	and	correlation	of	activities	in	different	parts	of	the	system,	in	accordance	

	 	 (initial	release	for	review)	

	 21	

with	a	variety	of	needs.	Views	lay	out	the	general	methods,	principles,	organizing	structure,	and	
capabilities	by	which	these	needs	are	to	be	addressed.	
Views	 should	 gather	 and	 address	 each	 of	 the	 variants	 that	 drive	 clock	 performance	 and	 time	
management	 functions.	 These	 variants	 are	 determined	 by	 considering	 all	 realized	 clocks	 and	
clock	 correlation	 features	 among	 project	 system	 Elements,	 and	 all	 realized	 Scenarios	 of	 time	
usage	and	coordination.	

Operations

Autonomy Strategy	—	Conceptual	Views	governed	by	this	Viewpoint	address	 the	division	of	
responsibilities	between	mission	operators	 and	 flight	 system	autonomy,	 the	 latter	 referring	 to	
planning	 and	 reactive	 control	 functions	 allocated	 to	 the	 flight	 system	without	 “ground	 in	 the	
loop”.	The	functions	involved	would	include	planning	and	execution	of	flight	system	activities	for	
both	routine	and	anomalous	situations,	as	well	as	all	associated	ground	support	capability.	

For	 some	 functions,	 this	operational	 split	 is	 generally	not	 static,	 varying	by	both	 circumstance	
and	experience.	It	is	also	not	an	all-or-nothing	choice,	comprising	a	mix	of	responsibilities	across	
functions.	Therefore,	the	approach	described	in	these	Views	enumerates	the	spectrum	of	mission	
Scenarios	 that	 must	 be	 differently	 accommodated	 and	 describes	 for	 each	 the	 selected	mix	 of	
functions	and	the	criteria	by	which	the	allocation	is	made,	 including	any	degrees	of	freedom	in	
this	allocation	that	must	be	preserved	for	subsequent	discretion	by	operators	during	the	mission.	
Also	addressed	 is	 the	means	by	which	operators	 can	adequately	 assess	 flight	 system	behavior	
and	circumstances,	and	then	exercise	their	discretion	in	authorizing	flight	system	autonomy.	

Having	 addressed	 how	 responsibilities	 are	 divided,	 further	 guidance	 for	 the	 flight	 system	 is	
provided	 in	 the	Planning	 and	Execution	 Viewpoint,	 and	 for	mission	 operators	 in	 the	Mission	
Operations	and	Mission	Planning	and	Activity	Generation	Viewpoints.	

Mission Operations	—	Conceptual	Views	governed	by	this	Viewpoint	address	the	spectrum	of	
capabilities	 and	 activities	 needed	 to	 successfully	 operate	 a	 system	 during	 its	 mission.	 This	
includes	 a	 definition	 of	 plans,	 methods,	 teams,	 and	 supporting	 tools	 and	 procedures	 used	 by	
operators,	 as	 well	 as	 direction	 regarding	 the	 operational	 attributes	 of	 deployed	 systems	 and	
plans	 for	 their	usage.	As	 the	 culmination	of	 long	preparation,	 the	 resulting	mission	operations	
approach	must	reflect	an	integration	of	these	factors	that	works	smoothly,	reliably,	and	efficient-
ly	in	the	presence	of	unfolding	changes	over	the	course	of	the	mission.	Views	should	establish	a	
general	approach	for	these	issues.	

Views	should	also	consider	the	patterns	of	planning,	team	organization,	monitoring	and	control,	
analysis,	and	so	on	that	have	been	defined	in	the	Approach,	addressing	each	of	their	instances	in	
realization	 for	 adherence	 to	 the	 approach	 and	 for	 further	 elaboration	 of	 detail,	 as	 needed	 for	
particular	 cases.	 For	 example,	 if	 there	 is	 a	 general	 pattern	 for	 flight	 system	 resource	manage-
ment,	 then	 for	 each	 instance	 of	 a	managed	 resource	 that	 is	 realized	 among	 flight	 system	 Ele-
ments,	 an	 assessment	 should	 ensure	 that	 the	 necessary	 operational	 components	 of	 resource	
management	for	that	particular	item	are	in	place,	levying	additional	constraints	as	necessary	to	
ensure	satisfactory	performance	(e.g.,	constraints	on	assessment	rate	or	margin).	Similarly,	most	
integrated	Scenarios	should	be	identified	as	realizational	instances	of	activities	to	be	conducted	
by	operations,	and	then	assessed	according	to	the	established	approach,	and	so	on.	

	 	 (initial	release	for	review)	

	 22	

Scenarios & Operating Behavior	—	To	be	provided	

Flight System Disciplines

Instruments	—	To	be	provided	

Planning and Execution	—	To	be	provided	

Physical Structure and Configuration	—	To	be	provided	

Mass and Inertial Properties

See	Detailed Viewpoint Example, Appendix A.1	

Attitude, Articulation, Maneuvering, and Deployment	—	To	be	provided	

Propulsion	—	To	be	provided	

Energy and Temperature	—	To	be	provided	

Radio	—	To	be	provided	

Telemetry	—	To	be	provided	

Mission Robustness, Fault Tolerance, & Redundancy	—	To	be	provided	

Electrical Design (including interference management)	—	To	be	provided	

Computing, Networking, and Data Storage	—	To	be	provided	

Software	—	To	be	provided	

Materials, Processes, & Contamination Control	—	To	be	provided	

Quality and Reliability	—	To	be	provided	

Environmental Compatibility	—	Conceptual	 Views	 governed	 by	 this	 Viewpoint	 identify	 envi-
ronmental	issues	that	can	arise	in	the	planned	mission	and	describe	the	various	means	by	which	
the	project	will	 characterize	and	address	each	aspect	of	 this	environment.	Environments	 com-
prise	both	external,	artificial	or	natural	phenomena	as	well	as	 internally	 induced,	physical	side	
effects	from	one	system	part	onto	another.	In	general,	constraints	may	be	imposed	on	the	mis-
sion	or	flight	system	designs	in	order	to	limit	the	severity	of	these	environments.	Uncertainty	is	
addressed	by	asserting	conservative	bounds	within	which	designs	must	be	tolerant.	The	selected	
approach	 should	 define	 the	 nature	 of	 these	 provisions	 and	 should	 quantify	 bounds	 where	
a	priori	criteria	can	be	asserted.	

Views	should	complete	the	quantification	of	environmental	constraints,	as	determined	by	infor-
mation	 available	 from	 the	 realizational	 design.	 For	 example,	 a	 design	 reference	 mission	 is	 a	
realizational	compilation	of	limiting	mission	Scenarios	that	is	purposefully	intended	to	establish	
engineering	 bounds	 on	 driving	 aspects	 of	 the	 mission	 plan.	 All	 constraints	 appealing	 to	 the	
design	reference	mission	for	definition	should	derive	from	View	considerations.	Similarly,	where	

	 	 (initial	release	for	review)	

	 23	

specific	reference	is	made	to	parts	or	properties	that	derive	from	system	design,	these	Views	are	
the	appropriate	home	for	associated	constraints.	

Ground System Disciplines

Mission Planning and Activity Generation	—	To	be	provided	

Engineering Performance Analysis	—	To	be	provided	

Data Handling, Display, and Archiving	—	To	be	provided	

Tracking and Navigation	—	To	be	provided	

Science System	—	To	be	provided	

Integration & Test

Venues & Integration Flow	—	To	be	provided	

Simulation & Support Capabilities	—	Conceptual	Views	governed	by	this	Viewpoint	define	the	
set	 of	 project-unique	 support	 equipment,	 facilities,	 and	 related	 items	 that	 the	 project	 must	
produce	in	order	to	enable	or	assist	the	integration	and	test	of	other	flight	and	ground	Elements	
of	 the	 project	 system.	 This	 View	 describes	 the	 types	 of	 items	 that	 are	 needed,	 according	 to	
various	patterns	 of	 support,	 and	provides	 general	 criteria	 for	 establishing	 the	 capabilities	 and	
performance	 of	 such	 items.	 For	 instance,	 there	 might	 be	 patterns	 for	 enabling	 test	 of	 partial	
systems	 during	 integration,	 or	 patterns	 for	 closing	 loops	 around	 system	 functions	 that	 can’t	
operate	 normally	 in	 a	 test	 environment,	 or	 patterns	 for	 non-interfering	 monitors	 of	 system	
interfaces,	etc.	Similar	patterns	can	be	defined	for	integration	and	test	activities.	
Assessments	 should	address	each	 instance	of	 the	established	patterns,	 further	elaborating	any	
specific	 needs	 that	 arise	 from	 the	 particular	 details	 of	 this	 case.	 In	 most	 cases,	 patterns	 will	
involve	 items	 of	 the	 system	being	 integrated	 or	 tested,	 so	 corresponding	 elaboration	 for	 such	
cases	will	define	the	associated	support	capabilities	needed	to	enable	that	process.	

	 	 (initial	release	for	review)	

	 24	

System Instrumentation	—	To	be	provided	

Transportation	—	To	be	provided	

Launch Preparation	—	To	be	provided	

3.1.4 Programmatics:	The	purpose	of	Views	governed	by	 “programmatics”	Viewpoints	 is	 to	
address	 the	 composition	 and	 structure	 of	 the	 organizations	 responsible	 for	 developing	 and	
operation	a	system	and	to	define	the	plans,	processes,	methods,	rules,	resources,	and	so	on	under	
which	 their	work	 is	 performed.	 These	 are	 necessarily	 part	 of	 an	 architecture	 description,	 be-
cause	they	greatly	influence	the	composition	and	structure	of	the	architected	system.	

Development

Project Implementation	—	To	be	provided	

Systems Engineering	—	Conceptual	Views	governed	by	 this	Viewpoint	 establish	 the	process	
for	 developing	 and	 validating	 the	 project	 system	 architecture,	 and	 for	 asserting	 architectural	
guidance	throughout	implementation	and	test.	As	an	important	part	of	this,	they	also	address	the	
manner	in	which	architectural	choices	are	narrowed	(e.g.,	through	Trades	and	Analyses),	and	in	
which	tolerance	to	variation	is	maintained	across	the	life	cycle,	whether	through	management	of	
margins,	 preservation	 of	 design	 alternatives,	 or	 provisions	 for	 operational	 contingencies,	 as	
necessary	 to	 address	 uncertainties.	 The	 particulars	 of	 these	 measures	 are	 further	 developed	
according	to	principles	and	oversight	explained	in	these	Views.	

Views	 should	 also	 summarize	 the	 assessment	 of	 each	 aspect	 of	 the	 process	 established	 in	 the	
approach	 and	 elaborated	 in	 subordinate	 Views.	 These	 can	 address	 a	 set	 of	 related	 issues	 for	
which	a	tailored	aspect	of	the	process	has	been	warranted—typically	involving	the	definition	of	
one	or	more	categories	of	interest,	for	which	various	instances	should	be	identified,	tracked,	and	
documented.	Different	subordinate	Views	would	address	different	categories.	
For	each	identified	case,	an	up-to-date	assessment	should	be	provided	of	current	status,	relative	
to	the	criteria	established	in	the	approach	for	items	in	each	category.	Where	criteria	should	apply	
across	 all	 designs	 that	 comply	 with	 requirements,	 assessment	 should	 be	 relative	 to	 what	 is	
allowed	 by	 requirements.	 Where	 criteria	 should	 apply	 to	 the	 current	 design	 (e.g.,	 margins),	
assessment	should	be	relative	to	the	current	design.	

	 	 (initial	release	for	review)	

	 25	

System Development	—	To	be	provided	

Risk Management	—	To	be	provided	

Inheritance & New Technology	—	To	be	provided	

Project & System Level Functional V&V	—	To	be	provided	

Software Development and IV&V	—	To	be	provided	

Business

Flight Hardware Logistics	—	To	be	provided	

Acquisition	—	To	be	provided	

Cost & Schedule	—	To	be	provided	

Management Structure	—	To	be	provided	

Work Breakdown

See	Detailed Viewpoint Example, Appendix A.2	

Information and Configuration Management	—	To	be	provided	

Mission Assurance	—	To	be	provided	

Security	—	To	be	provided	

Project Implementation	—	Conceptual	Views	governed	by	this	Viewpoint	broadly	consider	the	
programmatic	 aspects	 of	 developing,	 implementing,	 and	 operating	 the	 project	 system.	 This	 is	
accomplished	mainly	 through	 processes	 for	managing	 the	 variety	 of	 efforts	 conducted	 by	 the	
project	team,	and	through	policies	that	establish	overall	guidelines	and	priorities.	Where	suita-
ble,	 these	may	be	elaborated	 in	 subordinate	Views,	with	 focus	on	crosscutting	 topics	most	ap-
propriately	considered	at	this	higher	level.	
Guidance	is	provided	in	this	Viewpoint	for	all	phases	of	a	project’s	lifecycle,	typically	beginning	in	
pre-project	development,	where	initial	architecting	occurs,	and	ending	in	project	closeout.	Views	
governed	by	this	Viewpoint	would	be	similar	to	typical	project	implementation	plans.	

	 	 (initial	release	for	review)	

	 26	

Project Reviews	—	To	be	provided	

External Communications	—	To	be	provided	

3.1.5 Public Policy:	Views	governed	by	“public	policy”	Viewpoints	address	a	broad	spectrum	
of	Stakeholder	 interests	beyond	the	immediate	objectives	of	a	NASA	science	project.	These	can	
involve	 effects	 that	 a	 project’s	 actions	may	 have	 on	 safety,	 on	 future	 projects,	 on	 community	
support,	and	so	on.	

Environmental Safety

To	be	provided	

Planetary Protection

Conceptual	Views	governed	by	this	Viewpoint	lay	out	a	gamut	of	diverse	measures	taken	during	
development	and	operations	to	successively	reduce	the	likelihood	of	violating	planetary	protec-
tion	 criteria	 to	 an	acceptable	 level	 (as	driven	by	 success	 criteria	 associated	with	 the	mission’s	
classification).	Each	stage	in	this	reduction	imposes	constraints	on	the	mission	and	system	that	
must	be	analyzed.	 In	addition,	a	variety	of	assumptions	must	be	posed	regarding	environment,	
reliability,	biological	survival,	and	other	factors	that	contribute	to	the	cumulative	probability.	

Assessments	 should	 present	 an	 analysis	 of	 these	 measures	 that	 confirms	 the	 viability	 of	 the	
chosen	Approach.	 In	addition	 to	evidence	validating	any	 supporting	assumptions,	 this	analysis	
would	include	an	accounting	of	identified	realizational	Elements	that	participate	in	the	analysis,	
along	with	realizational	Scenarios	upon	which	analysis	is	constructed.	

Orbital Debris

Conceptual	Views	 governed	by	 this	Viewpoint	 are	 typically	 simple,	mainly	 explaining	 the	pro-
ject’s	approach	to	avoiding	the	release	of	material	 (by	various	means,	accidental	or	otherwise)	
that	might	remain	in	Earth	orbit.	This	results	in	general	constraints	on	various	Elements	of	the	
flight	 system	 (e.g.,	 deployable	 items,	 pyro	 actuations,	 energetic	 devices,	 etc.),	 and	on	 its	 initial	
trajectory.	

Views	should	assess	the	planned	trajectory,	operational	plans,	and	characteristics	of	realizational	
Elements	identified	as	potentially	relevant	to	debris	management	constraints,	showing	that	the	
combined	hazard	is	acceptable.	

Public Information

To	be	provided	

3.2 Realizational
Realizational	 Views	 broadly	 address	 the	 fulfilment	 or	 instantiation	 of	 conceptual	 notions	 in	
practicable	 form.	 Therefore,	 they	 necessarily	 deal	 with	 concrete products,	 with	 their	 planned
deployments and usage,	 and	 with	 the	 actual	 entities	 comprising	 their	 operational context

	 	 (initial	release	for	review)	

	 27	

(e.g.,	with	 realized	 interfaces	 to	 other	 realized	 components	 in	 integrated	 scenarios).	 These	
represent	the	culmination	of	conceptual	notions	in	real	entities	that	can	be	built	and	utilized	to	
achieve	architectural	objectives.	
The	 essential	 purpose	 of	 a	 particular	 realizational	View	 is	 to	 gather	 and	 reconcile	 all	 relevant	
assertions	 about	 a	 particular	 kind	 of	 deliverable	 product	 within	 the	 architected	 system	 (all	
instances	of	which	share	a	common	description),	or	about	a	particular	related	item	in	an	external	
system	 or	 environment,	 or	 about	 some	meaningful	 composition	 of	 such	 things.	 These	 are	 the	
realizational	Elements	of	the	architecture.	
Separate	 realizational	 Views	would	 typically	 describe	 distinct	 kinds	 of	 Elements	 or	 their	 inte-
grated	compositions.	The	emphasis	on	kind	here	is	important,	because	the	realizational	Element	
item	addressed	by	 a	 realizational	View	may	be	 instantiated	 in	multiple	delivered	units	 of	 that	
kind.	 Moreover,	 as	 part	 of	 an	 architecture	 description,	 Views	 need	 assert	 only	 that	 which	 is	
relevant	 to	 the	architecture.	 If	units	of	different	designs	 can	 satisfy	 the	 same	constraints,	 then	
any	of	 them	would	be	 acceptable,	 and	 the	 realizational	Element	 effectively	describes	 them	all.	
Even	where	only	a	single	specific	instance	is	intended,	kind	may	still	be	relevant	as	an	expression	
of	 the	 features	 it	 shares	 with	 others	 (e.g.,	 Jupiter	 is	 a	 particular	 planet,	 but	 all	 Solar	 System	
planets	orbit	the	Sun).	
The	 character	 of	 each	 realizational	 Element	 is	 established	 via	 its	 identification	 with	 various	
conceptual	 Elements.	 A	 conceptual	 Element	 is	 merely	 a	 restrictive	 representation	 of	 some	
realizational	Element	(or	a	class	of	such	Elements	by	inheritance);	so	conversely,	a	realizational	
Element	embodies	each	conceptual	Element	that	it	realizes.	The	distinction	between	them	lies	in	
the	information	exposed,	which	in	conceptual	Views	is	topic-specific,	and	in	realizational	Views	
is	item-specific.	
Just	as	one	might	start	with	something	real	and	treat	it	from	different	conceptual	points	of	view,	
one	might	also	bring	different	conceptual	points	of	view	into	convergence	in	some	real	thing.	In	
reality,	both	approaches	evolve	in	partnership,	with	no	a	priori	precedence	between	conceptual	
and	realizational	Views	(as	for	instance	in	concepts	always	being	developed	before	realizations,	
which	is	practically	impossible).	From	an	architectural	point	of	view,	conceptual	and	realization-
al	Views	are	 concurrently	progressing	peers,	 each	needing	 to	be	 reconciled	 routinely	with	 the	
other.	 This	 reconciliation	 is	 inevitably	 iterative,	 as	 developments	 in	 each	 prompt	 evolution	 in	
others.	 Co-development	 of	 conceptual	 and	 realizational	 Views	 often	 progresses	 by	 expanding	
each	other’s	scope,	especially	during	early	development.	Realization	may	expand	to	meet	newly	
identified	conceptual	needs.	Conceptual	scope	must	broaden	as	new	realizations	are	added.	

As	peers,	the	concept–realization	mapping	is	navigable	in	both	directions.	That	is,	a	realizational	
View	must	be	cognizant	of	all	conceptual	Elements	that	are	realized	by	any	subject	realizational	
Element;	and	conversely,	a	conceptual	View	must	be	cognizant	of	all	realizational	Elements	that	
realize	its	conceptual	Elements.	This	mapping	is	consequently	a	central	means	(the	other	being	
by	 top-down	conceptual	 elaboration)	by	which	 lateral	 architectural	 connections	are	made	and	
mutual	consistency	is	established.	In	this	essential	binding	role,	realizational	Views	bring	togeth-
er	 what	 separation	 of	 concerns	 among	 conceptual	 Views	 has	 kept	 apart,	 and	 they	 ground	 in	
actionable	Requirements	the	constraints	that	have	converged	in	deliverable	products.	

An	 essential	 feature	 of	 a	 good	 architecture	 is	 tolerance	 to	 variation,	 whether	 such	 variation	
arises	 from	acquisition	choices,	development	uncertainties,	advancing	scope,	manufacturing	or	
performance	 tolerances,	 measures	 taken	 for	 decoupling,	 margin,	 or	 other	 reasons.	 Therefore,	

	 	 (initial	release	for	review)	

	 28	

when	a	realizational	View	is	about	a	product,	it	is	generally	not	about	a	specific	design	or	imple-
mentation.	Rather,	 the	 intent	 is	 to	 reflect	 and	embrace	 the	 range	of	possibilities	 (different	de-
signs,	 parameters,	 configurations,	 providers,	 or	whatever)	 that	 are	 declared	 acceptable	within	
the	conceptual	architecture.	A	realizational	View	narrows	what	the	conceptual	Views	allow	only	
to	the	extent	reflected	in	conceptual	mapping	choices	(i.e.,	which	concepts	map	to	which	realiza-
tions).	 Should	 that	 seem	 inadvisably	 generous,	 there	 is	 likely	 a	 neglected	 gap	 in	 conceptual	
considerations	that	would	have	supplied	the	neglected	constraints.	

The	 same	 principle	 applies	when	 a	 realizational	 View	 is	 about	 a	 specific,	 preexisting,	 external	
item,	which	may	nonetheless	be	subject	to	uncertainty	or	change.	Whether	this	is	another	system	
or	an	environmental	item,	it	is	still	necessary	to	characterize	the	range	of	possibilities	that	must	
be	accommodated	or	tolerated.	

__	

Following	are	descriptions	for	particular	realizational	Viewpoints.	As	for	conceptual	Viewpoints,	
general	guidance	above	applies,	but	particular	Viewpoints	would	be	 intended	 to	provide	more	
directed	advice.	

There	 are	 likely	 to	 be	more	 realizational	 Views	 than	 conceptual	 Views,	 given	 that	 conceptual	
breakdowns	overlap	in	a	variety	of	ways	across	a	realizing	system.	
Collections	of	realizational	Views	are	typically	organized	by	hierarchical	product	breakdown,	by	
staged	deployments,	by	operational	activities,	and	so	on,	depending	on	the	nature	of	 the	 items	
addressed	by	the	realizational	Views.	

3.2.1 Composition:	 The	 following	 Viewpoints	 address	 the	 hierarchical	 division	 of	 a	 system	
into	its	separate	implementation	items	and	their	primary	deployed	compositions	for	the	purpose	
of	creating	assignable	units	of	responsibility.	

Product Breakdown

To	be	provided	

Flight System	—	To	be	provided	

Ground System	—	To	be	provided	

Integration and Test System	—	To	be	provided	

Science System	—	To	be	provided	

Modularity	—	To	be	provided	

External Services

To	be	provided	

	 	 (initial	release	for	review)	

	 29	

Telecommunication and Radiometric Services	—	To	be	provided	

Assembly and Test Facilities	—	To	be	provided	

Transportation Services	—	To	be	provided	

Launch Services	—	To	be	provided	

Environment

To	be	provided	

Dynamic	—	To	be	provided	

High-energy Radiation	—	To	be	provided	

Thermal Effects	—	To	be	provided	

Pressure	—	To	be	provided	

Electromagnetics	—	To	be	provided	

Celestial Bodies	—	To	be	provided	

In situ Characterization	—	To	be	provided	

Other hazards	—	To	be	provided	

3.2.2 Science Datasets:	Views	governed	by	“science	dataset”	Viewpoints	address	 the	penul-
timate	 objective	 of	 most	 space	 missions,	 which	 is	 the	 science	 data	 they	 return.	 These	 Views	
address	 its	planning	relative	 to	science	objectives,	 its	collection	and	processing	 for	subsequent	
analysis,	 its	curation	and	archiving,	and	 its	distribution.	The	quality	and	completeness	of	 these	
datasets	relative	to	mission	science	objectives	is	a	key	aspect	of	science	traceability	for	a	project.	

3.2.3 Mission Plan:	 Views	 governed	 by	 “mission	 plan”	 Viewpoints	 describe	 circumstances	
during	a	mission	in	which	the	system	must	perform.	The	intention	established	for	such	Views	is	
not	 to	 specify	 a	 particular	mission	 plan,	 but	 rather	 to	 establish	 a	 range	 of	 possibilities	 that	 a	
given	system	might	encounter,	either	because	particular	plans	will	continue	to	evolve,	or	because	
other	uncertainties	prevent	specificity.	

Within	the	bounds	of	the	mission	plan	they	assert,	these	Views	may	also	express	current	particu-
lar	 plans,	much	 the	way	 that	 particular	 design	might	 be	 described	 for	 a	 hardware	 unit.	 Infor-
mation	of	this	sort	can	be	useful	 for	point	analyses,	but	always	with	the	understanding	that	all	
variations	 within	 the	 bounds	 of	 the	 mission	 plan	 must	 also	 be	 tolerable.	 The	 narrower	 the	
bounds	drawn	by	the	mission	plan,	the	less	tolerant	it	will	be	to	system	variations.	

Launch and Trajectory

To	be	provided	

	 	 (initial	release	for	review)	

	 30	

Mission Activities

To	be	provided	

3.2.4 Deployments:	 Views	 governed	 by	 “deployment”	 Viewpoints	 address	 the	 different	
configurations	 that	a	 system	design	must	 support	over	 the	 course	of	 its	development,	 integra-
tion,	testing,	preparation,	and	operation.	
There	can	be	many	such	deployments	to	define.	Some	deployments	will	be	tailored	specifically	to	
testing	 particular	 functions	 or	 testing	 in	 particular	 simulated	 environments,	 where	 additional	
support	 capabilities	 must	 also	 be	 developed.	 Some	 may	 be	 deliberately	 stressful,	 requiring	
dedicated	qualification	units.	Some	may	be	narrowed	in	scope,	such	as	in	single	string	test	beds	
or	in	software	testbeds.	Some	may	require	emulators	for	flight	equipment	that	isn’t	available	or	
that	can’t	provide	realistic	behavior	under	test	conditions.	Some	may	exercise	interfaces	that	are	
used	only	 for	 test.	Some	may	need	particular	 facility	accommodations.	Some	may	add	environ-
mental	 situations	 that	 must	 be	 tolerated.	 Some	 may	 represent	 different	 flight	 configurations	
related	 to	 articulations,	 separations,	 and	 the	 like.	 Some	 may	 involve	 different	 interoperation	
configurations	in	a	distributed	system.	And	so	on.	
Each	such	deployment	involves	either	a	different	combination	of	Elements,	or	different	Relation-
ships	 among	 these	 Elements.	Many	 components	 besides	 those	 deployed	 eventually	 in	mission	
operations	will	be	needed.	Each	deployment	(and	 the	components	 in	 it)	will	also	be	subject	 to	
different	 Requirements,	 according	 to	 its	 composition	 and	 purpose.	 Therefore,	 no	 architecture	
description	is	complete	without	diligent	consideration	to	all	deployments	that	expose	significant	
variations.	Documentation	of	these	deployments	provide	the	basis	for	asserting	that	the	appro-
priate	requirements	have	been	levied	on	all	the	various	instantiations	of	system	elements.	

Integration and Test Configurations

To	be	provided	

Transport and Storage Configurations

To	be	provided	

Operational Configurations

To	be	provided	

◼	

	 	 (initial	release	for	review)	

	 31	

4 Process
The	 process	 of	 architecting	 responds	 to	 the	 need	 to	 develop	 a	 design	 space	 for	 a	 system	 that	
accomplishes	a	given	objective.	For	JPL	missions,	the	need	is	typically	articulated	by	the	need	to	
collect	measurements	in	support	of	one	or	more	scientific	hypotheses.	The	approach	to	collecting	
the	 measurements	 is	 further	 constrained	 by	 programmatic	 considerations	 (cost,	 schedule),	
available	 technology,	 and	 the	 physics	 of	 collecting	 useful	 data	 from	distant	 objects.	Defining	 a	
design	space	that	reconciles	and	balances	these	Concerns	is	the	purpose	of	architecting.	
For	 example,	 a	principal	 investigator	 (PI)	 can	make	a	 case	 to	NASA	 to	 fund	 the	 collection	of	 a	
certain	 dataset	 of	 interest.	 The	 PI	 is	 one	 Stakeholder,	 who	 has	 Concerns	 about	 the	 type	 and	
quality	of	the	data,	but	the	NASA	funding	source	is	another	Stakeholder,	who	has	Concerns	about	
cost	and	schedule.	These	Concerns	must	be	turned	into	the	quantitative	success	criteria	for	the	
project.	The	architecting	process	considers	different	options	and	approaches	for	getting	the	data	
to	 be	 reviewed	 and	 assessed;	 this	 is	 a	 necessary	 aspect	 to	 negotiating	 an	 appropriate	 set	 of	
success	 criteria.	 This	 illustrative	 example	 uses	 the	 top	 most	 View	 of	 a	 project,	 but	 the	 same	
pattern	 applies	 to	 each	project	 component,	where	 each	delivering	 team	 responds	 to	 incoming	
constraints	by	developing	a	design	space.	
The	 process	 description	 below	 uses	 the	 terminology	 and	 follows	 the	 guidance	 from	
ISO/IEC	15288	 [10]	 and	 the	 NASA	 Systems	 Engineering	 Handbook	 [11].	 There	 are	 three	 core	
ideas	that	shaped	this	process:	(1)	Framing	and	Focus:	Separation	of	problem	formulation	as	a	
separate	 activity,	 deserving	 of	 the	 same	 focus	 as	 synthesis	 and	 evaluation;	 (2)	 Lifecycle	 ap-
plicability:	Application	of	architecting	across	all	phases	of	the	JPL	project	lifecycle,	but	acknowl-
edging	 that	 the	 nature	 and	 role	 of	 architecting	 activities	 depends	 on	 the	 lifecycle	 phase;	 (3)	
Iteration:	Definition	of	an	iterative	approach	to	defining	a	design	space,	with	a	need	for	quanti-
tative	criteria	for	completing	each	iteration.	

Architecting	 is	 not	 just	 a	method	 that	 is	 applicable	 at	 the	 highest	 levels	 of	 system	design;	 the	
engineering	of	a	product	 can	be	made	more	 rigorous	by	application	of	architectural	principles	
(e.g.,	 identification	 of	 Stakeholders,	 iterative	 problem	 formulation	 and	 synthesis	 cycles).	 The	
process	stops	when	the	probability	of	delivering	an	Element	that	satisfies	the	technical	(perfor-
mance	and	functional)	constraints,	within	the	programmatic	(cost	and	schedule)	constraints,	 is	
deemed	acceptable.	
A	process	architecture	can	be	described	in	an	architecture	description.	The	architecting	process	
for	 defining	 a	 process	 architecture	 is	 therefore	 outside	 the	 scope	 of	 this	 methodology.	 The	
approach	here	is	simply	to	assert	this	process,	as	applied	to	the	architecting	of	systems.	
The	architecting	process	described	here	applies	to	both	technical	and	programmatic	aspects	of	a	
development.	These	are	bound	by	overlapping	Concerns	of	performance,	cost,	safety,	and	so	on	
that	must	be	traded	against	one	another.	
A	brief	overview	of	the	NASA/JPL	project	lifecycle	is	included	below,	followed	by	a	delineation	of	
the	architecting	process,	and	a	description	of	the	role	of	architecting	in	each	phase	of	the	lifecy-
cle.	While	this	process	description	is	intended	for	use	on	JPL	flight	projects,	it	is	generic	enough	
to	be	applied	in	developing	any	design	solution.	

	 	 (initial	release	for	review)	

	 32	

4.1 Context: the NASA/JPL Project Lifecycle
The	 NASA/JPL	 project	 lifecycle	 definition	 organizes	 the	 lifecycle	 of	 a	 project	 into	 2	 phases:	
Formulation	 and	 Implementation.	 Within	 each	 of	 these	 NASA	 lifecycle	 phases,	 one	 or	 more	
Project	lifecycle	phases	are	defined	(in	addition,	a	pre-formulation	project	lifecycle	phase	is	also	
defined).	 Each	 project	 lifecycle	 phase	 is	 delimited	 by	 a	 Key	 Decision	 Point	 (KDP),	 where	 the	
project	maturity	is	assessed,	and	a	determination	is	made	as	to	whether	the	project	is	ready	to	
proceed	into	the	next	phase	of	development	(see	Figure	1).	Within	each	phase,	there	are	required	
Life-Cycle	 Reviews	 (LCRs)	 that	 “provide	 a	 periodic	 assessment	 of	 the	 program's	 or	 project's	
technical	and	programmatic	status	and	health	at	key	points	 in	the	life	cycle”	(ref	7120.5E).	For	
each	LCR	(colloquially	referred	to	“gate	reviews”),	the	JPL	Flight	Project	Practices	[12]	define	the	
set	of	Gate	Products	that	a	JPL	flight	project	must	provide,	and	the	required	maturity	for	each	of	
these	Gate	Products.	

	
Figure	1:	NASA/JPL	Project	Lifecycle	(ref	FPPs)	

The	set	and	maturity	of	required	Gate	Products	at	each	LCR	define	the	end	state	that	the	project	
teams	 strive	 for.	 The	 iteration	 cycles	 described	 in	 the	 following	 section	 provide	 a	 means	 for	
planning	the	necessary	work	to	result	at	these	end	states.	Each	iteration	provides	an	opportunity	
to	assess	 the	maturity	of	 the	project	work	 to	date,	 and	an	opportunity	 to	adjust	 the	goals	 and	
focus	of	future	iterations	to	ensure	the	reach	the	required	maturity	state.	The	number	of	 itera-
tion	cycles	will	depend	on	the	needs,	size	and	nature	of	each	project.	

The	necessary	 information	 to	 generate	most	Gate	Products	 is	 captured	 in	 the	 architecture	de-
scription.	 While	 in	 principle	 all	 of	 the	 content	 necessary	 to	 produce	 Gate	 Products	 could	 be	

Lifecycle
Phases

IMPLEMENTATIONFORMULATION

NASA
Decision
Points

PDR1

Other Reviews
and Events

(1) Review is followed by a JPL CMC. If the review immediately precedes a KDP, a Mission
Directorate and/or Agency PMC/GPMC, as appropriate, are required prior to/with the KDP.

(2) The SRR and MDR may be combined
(3) SIR is a “soft gate”, project may initiate Phase D work immediately upon completion of Phase C

work products, absent a notice of discontinuance from the Program Manager
(4) CERRs are established at the discretion of Program Offices.

08.05.2013

Pre-Phase A:
Concept
Studies

Phase A:
Concept &

Technology
Development

Phase C:
Final Design &

Fabrication

Phase B:
Preliminary Design

& Technology
Completion

Phase D:
System Assembly,
Integration & Test,

Launch & Checkout

Phase E:
Operations &
Sustainment

A
SS

IG
N

ED

M
IS

SI
O

N
S

MCR1

C
O

M
PE

TE
D

M

IS
SI

O
N

S

PDR1

Down Select

NASA
Project
Reviews

NASA
Decision
Points

NASA
Project
Reviews

ASM – Acquisition Strategy Meeting
CDR – Critical Design Review
CERR – Critical Events Readiness Review
CMC – Center Management Council
DR – Decommissioning Review
DRR – Disposal Readiness Review
EMR – Extended Mission Review
EOPM – End of Prime Mission
FRR (LV) – Flight Readiness Review Launch Vehicle

GPMC – Governing Program Management Council
KDP – Key Decision Point
LRR (LV) – Launch Readiness Review Launch Vehicle
MCR – Mission Concept Review
MDR – Mission Definition Review
MRB – Mission Readiness Briefing
MRR – Mission Readiness Review
ORR – Operations Readiness Review
PDR – Preliminary Design Review

PIR – Proposal Implementation Review
PLAR – Post Launch Assessment Review
PMC – Program Management Council
PMSR – Project Mission System Review
SIR – System Integration Review
SMSR – Safety and Mission Success Review
SR – Senior Review
SRR – System Requirements Review

CDR1,6

KDP A KDP DKDP C

SIR1,3CDR1,6

SRR2 MDR1,2

Project Selection

PMSR1

KDP B

Legend

Phase F:
Closeout

Launch
SMSR, FRR (LV),

LRR (LV)

KDP E KDP F

Final
Archival of

DataEOPM5

KDP DKDP C KDP E KDP F

JPL
Project
Reviews

Notes

MRB

SIR1,3 MRR1ORR

Step 17 Step 2

ASM

DRR

DRR

Approval for
Implementa-

tion

Approval for
Formulation

Proposal
Reviews

PIRProposal
Reviews

PLAR CERR1,4

MRR1 PLARORR CERR1,4

(5) When missions are extended beyond their prime mission, JPL conducts an EMR, NASA
conducts an SR; the extended mission remains in Phase E.

(6) When there are multiple (>3) copies of a system, a Production Readiness Review is held.
(7) Projects selected with a one-step proposal process start in Phase A and conduct the reviews

identified for Assigned Missions beginning with the SRR

= Reviews conducted with NASA-appointed Standing Review Board

DR1

DR1

	 	 (initial	release	for	review)	

	 33	

captured	in	an	architectural	description,	in	practice	some	information	and	content	would	remain	
outside	of	the	architecture	description	(e.g.,	high-level	plans	and	agreements,	and	content	which	
already	has	purpose-built	methods	and	tools	(e.g.,	network	schedules	and	JPL	project-line	work	
agreements)).	Where	the	Gate	Product	content	is	derived	from	the	architectural	description,	the	
Gate	Products	are	generated	by	assembling	content	from	the	Views	and	other	categories	in	the	
architecture	 framework.	 Because	 the	 content	 of	 the	 architecture	 description	 is	 structured,	 the	
content	can	be	retrieved	and	assembled	with	standard	queries,	which	can	be	re-used	to	produce	
updates	 to	 Gate	 Products	 as	 the	 content	matures.	 This	 effectively	 defines	 a	 template	 for	 Gate	
Products	that	can	be	reused	throughout	the	project	and	between	projects,	resulting	in	standard-
ized	artifacts	and	reduced	effort	in	artifact	generation.	

4.2 Core Ideas
The	next	 sections	 describe	 a	 detailed	 set	 of	 steps	 to	 apply	 the	 principles	 and	 abstractions	 de-
scribed	in	earlier	section.	However,	this	process	description	is	based	on	a	few	core	ideas	that	are	
easily	articulated:	
1. Understand	the	problem:		Spend	the	time	to	interact	with	all	the	system	Stakeholders	to	

ensure	 that	 the	 system	under	 development	 is	 being	 designed	 to	 the	 appropriate	 criteria.	
Document	 these	criteria	and	revisit	 these	understandings	periodically	as	system	develop-
ment	proceeds.	Document	which	Stakeholders	care	about	which	constraints	(provenance),	
and	why	they	care	(rationale).	

2. Decompose	the	problem:	 	Sub-divide	the	problem	into	separable	aspects	that	can	be	ad-
dressed	individually.	This	separation	of	concerns	corresponds	to	the	conceptual	and	reali-
zational	Views	defined	in	the	previous	section.	

3. Bound	 the	 solution	 space:	 	 For	 each	 aspect,	 develop	 an	 approach	 that	 responds	 to	 the	
constraints.	Document	 the	approach	 in	a	 functional	block	diagram	 that	 captures	 the	 rele-
vant	Elements,	their	Relationships	with	other	Elements,	and	the	Function	(purpose)	of	each	
Element	in	that	context.	Document	any	Trades	or	Scenarios	used	in	the	development	of	the	
solution.	 Document	 the	 salient	 characteristics	 (Properties)	 of	 the	 Elements	 and	
Relationships,	and	identify/document	consequent	performance	constraints	on	those	Prop-
erties	(these	ultimately	become	Requirements).	Perform	analyses	to	assert	that	the	solution	
satisfies	the	initial	constraints.	

4. Reconcile	solutions:	 	Assess	 the	consistency	of	each	aspect	with	all	of	 the	other	aspects.	
Perform	this	assessment	by	mapping	each	realizational	Element	to	the	appropriate	concep-
tual	Elements.	Perform	trades	and	adjust	the	proposed	solutions	to	resolve	inconsistencies	
or	implementation	issues	in	realization.	Use	the	results	of	these	assessments	to	re-negotiate	
incoming	constraints	if	an	adequate	solution	cannot	be	found.	

These	basic	 ideas	are	applied	 in	 the	 following	process	description.	While	 this	approach	 is	con-
sistent	with	the	above	ideas,	should	not	be	interpreted	as	the	only	way	in	which	they	might	be	
applied.	

4.3 Process Description
There	are	two	iteration	cycles	that	organize	the	steps	in	the	methodology:	an	outer	cycle	and	an	
inner	cycle.	The	outer	cycle	is	concerned	with	problem	definition:	identifying	Stakeholders	and	
Concerns,	decomposing	the	problem,	and	negotiating	updates	to	Success	Criteria.	The	inner	cycle	

	 	 (initial	release	for	review)	

	 34	

is	concerned	with	synthesis	and	evaluation:	articulation	and	assessment	of	approaches/options,	
the	selection	and	integration	of	these	options,	and	the	identification	of	additional	constraints	that	
result	from	this	selection.	Several	iterations	of	the	synthesis	and	evaluation	cycle	occur	for	each	
iteration	of	the	problem	definition	cycle.	

Organizing	this	work	as	a	set	of	iterations	is	a	means	to	define	and	schedule	the	tasks	and	interim	
goals	needed	to	achieve	the	project	lifecycle	phase	end	state.	By	breaking	down	the	effort	into	a	
set	of	iterations,	this	approach	provides	points	in	time	during	the	development	process	that	can	
be	used	in	assessing	the	progress	of	the	project	team	in	performance	of	the	work.	These	assess-
ments	can	then	be	used	in	planning	and	scheduling	work	needed	in	future	iterations.	Note	that	
not	all	work	can	be	planned	in	advance,	and	in	planning	goals	and	objectives	for	each	iteration	
resources	 should	 be	 reserved	 for	 dealing	with	 tasks	 that	 are	 outside	 of	 the	 iteration	 planning	
process	(e.g.,	ad	hoc	tasks	and	Stakeholders/external	teams	working	to	different	schedules).	

The	result	of	the	architecting	work	is	an	architecture	description	of	the	system.	The	process	of	
successive	iterations	is	an	additive	process	that	completes	when	the	probability	of	delivering	an	
Element	 that	 satisfies	 the	 technical	 (performance	 and	 functional)	 constraints,	 within	 the	 pro-
grammatic	(cost	and	schedule)	constraints,	is	deemed	acceptable.	At	this	juncture,	the	definition	
can	be	handed	off	to	a	developer/supplier	to	provide.	After	this	point,	as	the	design,	implementa-
tion,	 and	 operations	 processes	 proceed,	 it	 is	 beneficial	 to	 assess	 the	 adequacy	 of	 the	 defined	
architecture	 (e.g.,	 Were	 the	 margins,	 in	 fact,	 adequate?	 Were	 all	 of	 the	 concerns	 adequately	
addressed	by	the	end	product?),	and	document	these	findings	so	that	future	projects	can	lever-
age	this	information.	Organizations	responsible	for	viewpoints	may	choose	to	update	the	defini-
tions,	or	adjust	the	related	processes	to	improve	future	application.		

4.3.1 Problem Definition Cycle
The	focus	of	this	activity	is	to	ensure	that	the	system	objectives	are	clear,	the	initial	constraints	
are	known	and	the	Concerns	of	all	of	 the	Stakeholders	are	adequately	addressed.	At	the	begin-
ning	of	a	project	the	object	may	be	stated	in	an	unclear	fashion,	and	only	a	subset	of	constraints	
may	be	explicitly	declared.	In	addition,	it	may	be	unclear	if	a	feasible	solution	exists	to	satisfy	the	
stated	need.	The	problem	definition	cycle	provides	a	structured	way	to	engage	the	Stakeholders	
and	 provide	 direction	 to	 the	 project	 team.	 The	 project	 leadership	 decides	 on	 the	 number	 of	
problem	definition	cycles	to	perform	within	each	project	lifecycle	phase.	
Gate	 reviews	are	part	of	 the	NASA	project	 lifecycle.	Generally,	one	or	more	problem	definition	
cycles	are	performed	between	gate	reviews.	Gate	reviews	have	particular	criteria	which	must	be	
satisfied	to	move	to	the	next	project	phase,	characterized	by	the	delivery	of	documents	that	have	
achieved	specific	levels	of	maturity.	These	criteria	determine	the	set	and	maturity	of	the	Views	
that	must	be	completed	by	the	gate	review.	Content	in	the	architecture	description	evolves	and	
matures,	but	 “concept”	 (or	 “formulation”	or	 “preliminary	design”)	 is	not	a	measurable	stage	of	
development.	We	need	definitive	criteria	 for	gauging	progress.	Reviews	play	a	vital	role	where	
objectivity	is	problematic.	

	 	 (initial	release	for	review)	

	 35	

Steps	in	the	problem	definition	cycle	
1. Identify	Stakeholders	and	engage	them	to	refine	the	nature	of	the	problem	and	determine	

significant	aspects	of	the	mission.	
a. Example	Stakeholders	are	the	project	scientist/PI	and	the	funding	source	

(NASA/SMD).	
b. The	significant	aspects	that	each	Stakeholder	is	interested	in	are	documented	in	

Concerns.	These	are	the	motivating	issues	for	the	project.	
c. Performed	by:	Project	Manager	(PM),	Project	Scientist	(PS)	and	Project	System	En-

gineer	(PSE)	
d. Needed	Input:	initial	statement	of	need	

2. Review	and	agree	on	current	set	of	mission	objectives	and	constraints	(e.g.,	mission	suc-
cess	criteria,	L1	requirements).	

a. These	are	the	mission	Success	Criteria.	
b. Initially,	the	set	is	based	on	the	judgement	of	the	involved	engineers	and	managers,	

but	is	informed	and	shaped	by	work	performed	in	subsequent	iterations.	
c. Performed	by:	Project	Manager	(PM),	Project	Scientist	(PS)	and	Project	System	En-

gineer	(PSE)	
d. Needed	Input:	List	of	Stakeholders	and	their	Concerns	

3. Identify	the	set	of	conceptual	and	realizational	Views	needed	to	capture	the	response	to	
the	current	set	of	Success	Criteria,	and	to	assess	feasibility	at	this	stage	in	the	project	
lifecycle.	

a. While	each	project	is	unique,	many	of	the	Stakeholders	and	Concerns	will	be	the	
same	from	project	to	project.	Therefore,	Viewpoints	that	respond	to	these	Con-
cerns	can	be	re-used.	New	Viewpoints	can	be	defined	if	existing	Viewpoints	do	not	
cover	the	set	of	Stakeholder	Concerns.	

b. Typically,	the	set	of	Views	is	drawn	from	the	established	norms	for	dividing	the	
work	with	good	separation	of	concerns—Mission	Design,	Systems	Engineering,	
Project	Management,	etc.—that	are	part	of	the	JPL	guidance	for	flight	projects	(in-
stitutional	WBS,	Flight	Project	Practices,	etc.).	

c. The	set	of	realizational	Views	will	increase	as	the	architecture	description	becomes	
more	detailed	(as	additional	products	are	defined	at	lower	levels	of	design).	

d. Assign	View	development	responsibility	to	an	individual	or	team.	
e. This	is	a	subset	of	the	Views	needed	for	the	system	as	a	whole.	
f. The	content	and	maturity	of	these	Views	depends	on	the	point	in	the	project	lifecy-

cle	and	focuses	on	key	questions	that	need	to	be	resolved.	
g. Performed	by:	Project	System	Engineer	(PSE)	
h. Needed	Input:	Project	Success	Criteria,	pre-defined	Viewpoints	

4. Assess	the	progress	of	any	prior	Problem	Formulation	cycles,	and	determine	the	goals	of	
this	iteration,	given	the	required	state	at	the	next	LCR.	

a. These	objectives	provide	direction	for	the	set	of	synthesis	cycles.	
b. Performed	by:	Project	System	Engineer	(PSE)	

5. Perform	one	or	more	iterations	of	the	synthesis	cycle,	working	in	the	Views	and	auxiliary	
views	(Models,	Analyses)	to	communicate	and	capture	descriptions	of	project	Elements	
and	their	constraints.	

6. Use	the	outcome	of	this	work	to	assess	compliance	with	the	set	of	mission	Success	Crite-
ria.	

a. Compliance	is	shown	through	the	results	of	Analyses.	

	 	 (initial	release	for	review)	

	 36	

b. The	documented	approach	to	meeting	the	Success	Criteria,	and	resulting	analysis,	
provides	a	basis	for	negotiating	updates	to	Success	Criteria.	Early	in	the	mission	
lifecycle	changes	to	Success	Criteria	typically	come	about	due	to	a	better	under-
standing	of	the	problem	or	solution	space,	or	from	changes	to	the	statements	of	
need.	In	later	phases,	it	is	sometimes	necessary	to	update	Success	Criteria	due	to	
problems	in	the	Implementation	phases,	including	failures	during	operations.	

c. Performed	by:	Project	System	Engineer	(PSE)	
7. Repeat	cycle	until	the	Success	Criteria	reach	the	required	maturity	level	for	the	current	

stage	of	the	project.	
a. e.g.,	at	MCR,	need	PRELIM	L1	requirements.	
b. Should	changes	to	the	set	of	Success	Criteria	occur	in	the	Implementation	phases,	

new	iterations	of	the	problem	formulation	cycle	may	need	to	be	planned	in	re-
sponse.	

4.3.2 Synthesis Cycle
The	 goal	 of	 this	 activity	 is	 to	 ensure	 that	 the	 definition	 of	 project	 Elements	 is	 captured	 in	 a	
consistent	and	structured	way.	As	different	approaches	to	meeting	the	mission	success	criteria	
are	introduced	and	assessed,	they	are	captured	in	the	appropriate	Views.	As	the	set	of	Trades	are	
identified	and	completed,	 the	resulting	Elements	and	their	necessary	characteristics	 (including	
constraints),	are	documented.	Each	iteration	of	the	synthesis	cycle	focuses	on	a	particular	subset	
of	the	work	to	go,	allowing	both	a	mechanism	for	planning	this	work	and	a	way	to	react	to	chang-
es	or	incomplete	tasks	from	prior	iterations.	The	goal	is	to	reach	a	satisfactory	solution	(design	
space)	to	the	current	set	of	defined	project	success	criteria	appropriate	for	a	particular	point	in	
the	 project	 lifecycle.	 Iterations	 of	 the	 synthesis	 cycle	 early	 in	 the	 project	 lifecycle	 inform	 the	
selection	and	set	of	success	criteria,	whereas	later	iterations	serve	to	apply	the	constraints	to	the	
full	set	of	technical	and	programmatic	domains.	

Steps	in	synthesis	cycle:	
1. Define	goals	of	the	iteration	cycle	(completion	state	of	Views	and	other	products).	

a. In	support	of	problem	formulation	goals	and	required	artifact	maturity	at	next	LCR	
b. Review	current	completion	state	of	each	conceptual	View.	

i. Open	Trades,	incomplete	information	
c. Review	current	completion	state	of	each	realizational	View	

i. Open	Trades,	incomplete	information	
d. Assess	progress	to	date	and	progress	needed	to	achieve	maturity	by	next	LCR.	

i. Adjust	goals	of	current	and	future	iterations	accordingly	
2. Determine	the	set	of	identified	conceptual	and	realizational	Views	to	be	addressed	in	this	

iteration.	
a. The	set	and	expected	maturity	of	each	View	will	depend	on	how	the	project	has	

planned	to	work	of	the	project	teams.	
b. Map	objectives	and	constraints	to	each	View.	
c. The	Conceptual	View	structure	is	expected	to	remain	static	from	project	to	project,	

whereas	the	set	of	realizational	Views	will	vary.	

	 	 (initial	release	for	review)	

	 37	

3. Within	each	conceptual	View,	define	a	set	of	alternatives	(possible	approaches)	to	satisfy-
ing	the	proposed	constraints.	

a. Articulate	each	alternative	in	a	functional	block	diagram	(FBR).	
i. Use	the	FBDs	to	identify	conceptual	Elements,	Relationships,	and	Functions.	

b. Document	any	Scenarios	needed	to	describe	intended	Element	interaction.	
c. Identify	characteristics	of	the	Elements	(Properties	and	constraints)	needed	to	

provide	the	required	function/performance.	
d. Trade	the	alternatives,	and	use	to	make	decisions	on	approach,	or	negotiate	on	the	

incoming	set	of	constraints.	
i. A	Trade	is	assessing	candidate	sets	of	new	constraints.	

4. For	each	realizational	view,	define	a	set	of	real	alternatives	that	utilize	the	alternatives	
specified	in	the	conceptual	views.	

a. For	each	alternative,	identify	the	conceptual	options	that	are	used	in	the	definition	
of	that	alternative.	This	may	be	captured	in	a	realizational	Trade.	

b. Within	each	alternative,	the	Function	of	each	defined	real	Element	must	be	identi-
fied.	This	is	done	by	making	choices	about	how	the	set	of	conceptual	elements	are	
realized,	and	may	also	may	be	captured	in	realizational	Trades.	These	Trades	may	
result	in	reconsideration	of	the	associated	conceptual	approaches.	It	is	expected	
that	there	will	be	an	interplay	between	the	realizational	alternatives	being	consid-
ered	in	this	step,	and	the	conceptual	alternatives	being	considered	in	the	prior	
step.	

c. Document	the	Elements,	interfaces	(or	other	Relationships),	Functions,	Scenarios	
and	constraints	on	the	Elements	in	each	alternative.	

d. Assess	the	alternatives	for	implementation	feasibility.	This	may	trigger	additional	
realizational	Trades,	or	requests	for	new	conceptual	alternatives	to	be	developed.	

i. implementation	feasibility	=	we	can	actually	build	a	system	to	perform	
these	Functions	within	the	cost/schedule	constraints	

5. Evaluate	the	option	space,	and	select	a	specific	option	in	each	conceptual	View,	and	a	spe-
cific	realization.	

a. This	establishes	a	new	baseline,	that	includes	a	set	of	derived	constraints	that	must	
be	satisfied	to	ensure	satisfy	incoming	constraints.	

b. Assess	completeness	of	selected	approaches,	document	work	to	go	(this	can	be	au-
tomated	with	pattern	completeness	checks).	

c. Identify	drivers	and	issues	with	incoming	constraints.	
d. Generate	artifacts	to	capture	current	baseline,	as	derived	from	selected	options	in	

conceptual	and	realizational	Views.	
6. Assess	accomplishments	in	cycle	vs	goals.	

a. Identify	incomplete	work,	and	determine	where/whether	to	include	in	future	iter-
ation	cycles.	

7. Repeat	cycle	as	needed	to	reach	a	satisfactory	solution	(design	space)	to	the	incoming	
constraints.	

4.4 Application Across the Mission Lifecycle
The	 sections	 below	 describe	 the	 role	 of	 architecting	 in	 each	 project	 lifecycle	 phase,	 the	 set	 of	
LCRs	in	that	phase,	and	the	set	of	architectural	Views	needed	to	support	the	systems	engineering	
gate	products	required	at	each	LCR.	

	 	 (initial	release	for	review)	

	 38	

Content	in	the	following	sections	are	taken	from	the	following	sources:	

• Descriptions	of	mission	lifecycle	phases	are	taken	from	the	NASA	Space	Flight	Program	and	
Project	Management	Handbook	[13]	

• Descriptions	of	lifecycle	reviews	(“gate	reviews”)	are	taken	from	the	NASA	FY2021	Budget	
Request	Executive	Summary	[14]	and	from	the	JPL	Institutional	Project	Review	Plan	[15]	

Each	section	below	includes	a	summary	of	the	architecting	process	and	the	key	categories	of	the	
architectural	description	needed	at	each	gate	review.	For	each	gate	review,	a	detailed	listing	that	
correlates	all	the	gate	products	to	the	architectural	Views	that	contribute	content	to	these	prod-
ucts	is	in	Appendix	C.	

4.4.1 The Role of Architecting in pre-Formulation
Pre-Formulation	 activities	 involve	 Design	 Reference	Mission	 analysis,	 feasibility	 studies,	 tech-
nology	 needs	 analyses,	 engineering	 systems	 assessments,	 and	 analyses	 of	 alternatives	 that	
typically	 are	 performed	 before	 a	 specific	 project	 concept	 emerges.	 Pre-Formulation	 activities	
include	 identifying	risks	 that	are	 likely	 to	drive	the	project’s	cost	and	schedule	and	developing	
mitigation	plans	for	those	risks.	Pre-Formulation	activities	include	only	a	single	project	lifecycle	
phase:	Concept	Studies.	
The	pre-formulation	phase	is	the	most	important	phase	for	architecting.	This	is	the	phase	where	
decisions	are	made	that	shape	the	direction	and	success	of	 the	entire	project,	and	the	decision	
process	must	be	done	in	a	principled	and	transparent	manner.	The	primary	focus	in	this	phase	is	
problem	formulation	(understanding	the	purpose	of	the	mission	and	associated	constraints	via	
interaction	 with	 stakeholders)	 and	 defining	 the	 largest	 possible	 design	 space.	 While	 a	 point	
design	 is	often	developed	 in	 this	phase,	 its	purpose	 is	 to	assert	evidence	of	a	 feasible	solution,	
rather	 than	 providing	 a	 basis	 for	 design	 iteration.	 Architecting	 provides	 a	 means	 to	 connect	
stakeholder	concerns	to	the	definition	of	the	design	space.	Documenting	these	connections,	and	
their	rationale,	must	be	part	of	the	products	generated	in	the	architecting	process.	Analyses	are	
used	 to	produce	evidence	 that	 the	characteristics	of	 the	selected	design	space	are	sufficient	 to	
meet	the	negotiated	mission	success	criteria.	
Concept Studies Phase Life-cycle Reviews

Mission Concept Review	—	The	Mission	Concept	Review	(MCR)	evaluates	 the	 feasibility	and	
merit	of	the	proposed	concept(s).	Further,	it	examines	the	maturity	of	the	concept(s)	and	associ-
ated	planning	to	determine	if	the	definition	is	adequate	to	begin	formulation.	
To	support	the	objectives	of	the	MCR,	the	architecture	description	captures	much	of	the	content	
needed	for	MCR	gate	products	(see	Table	1).	A	few	key	examples	are	provided	below:	

• Preliminary	Level	1	requirements,	with	supporting	rationale	and	analysis,	in	the	Stakehold-
ers	and	Concerns	categories	

• A	self-consistent	set	of	Preliminary	Level	2	project	Elements,	their	Functions,	interfaces	and	
operating	Scenarios	in	the	Project	System	realizational	View	

• Project	work	breakdown	structure	(WBS),	and	the	assignment	of	defined	project	Elements	
to	the	WBS	in	the	Work	Breakdown	conceptual	View	

	 	 (initial	release	for	review)	

	 39	

• Preliminary	Level	2	(Project,	Science)	and	Level	3	(Spacecraft,	Payload)	requirements,	with	
supporting	rationale	and	analysis,	traceable	to	and	consistent	with	Level	1	requirements,	
queried	from	the	element	realizational	Views	

See	Appendix	C	 for	 the	 full	set	of	architectural	Views	and	content	 in	the	Architectural	Descrip-
tion,	and	the	mapping	to	the	required	gate	products.	

4.4.2 The Role of Architecting in Formulation Phases
Project	Formulation	consists	of	 two	sequential	phases,	denoted	as	Phase	A	(Concept	and	Tech-
nology	 Development)	 and	 Phase	B	 (Preliminary	 Design	 and	 Technology	 Completion).	 During	
Formulation,	the	project	explores	the	full	range	of	implementation	options,	defines	an	affordable	
project	concept	to	meet	requirements,	and	develops	needed	technologies.	The	activities	in	these	
phases	include	developing	the	system	architecture;	completing	mission	and	preliminary	system	
designs;	acquisition	planning;	conducting	safety,	technical,	cost,	and	schedule	risk	trades;	devel-
oping	 time-phased	 cost	 and	 schedule	 estimates	 and	documenting	 the	basis	of	 these	 estimates;	
and	preparing	the	Project	Plan	for	Implementation.	
The	Formulation	phase	is	the	phase	most	associated	with	system	architecting.	Not	only	are	the	
top-level	elements	and	interfaces	baselined,	but	preliminary	design	responses	to	the	architecture	
are	 developed	 and	 assessed.	Many	 of	 the	 products	 typically	 associated	with	 “architecting”	 are	
produced	 in	 this	phase:	mission	and	 system	element	descriptions,	 requirements	documents	 at	
Levels	1-4,	interface	requirements	documents,	compliance	assessments	(design	report)	and	risk	
assessment	(e.g.,	PRA,	FT,	FMECA).	The	methodology	described	in	this	document	ensures	that	all	
the	 relevant	 aspects	 of	 a	mission	 are	 included	 in	 the	 formulation	of	 the	 architecture,	 and	 that	
these	aspects	are	properly	reconciled	in	a	realizable	system.	In	particular,	the	development	and	
documentation	of	Trades	is	critical,	as	it	is	this	assessment	of	alternatives	that	is	the	bulk	of	the	
engineering	work	occurring	in	this	phase.	
An	 architecture	 description	 provides	 a	 living	 repository	 in	which	 engineering	 teams	may	per-
form	their	work,	and	it	is	the	source	of	content	when	a	document	release	is	needed.	The	method-
ology	 supports	 iterative	 spiral	 development:	 successive	 stages	 of	 constraint	 definition	 and	
refinement	 that	 are	 assessed	 at	 each	 review.	 The	 use	 of	 Viewpoints	 provides	 a	 time-saving	
element	in	document	generation,	as	they	provide	a	consistent	basis	for	templates	for	gate	prod-
ucts	and	other	deliverables.	If	both	the	architecture	and	the	design	response	are	captured	in	an	
accessible	 form,	 then	 automated	 generation	 of	 resource	 margin	 reports,	 risk	 assessments,	
requirements	compliance	(design	report)	and	margin	assessments	can	be	conducted.	
By	the	end	of	 the	phase,	sufficient	analyses	have	been	performed	to	assert	acceptable	 levels	of	
residual	risk	(e.g.,	acceptable	approach,	margins	and	reserves)	to	proceed	with	the	implementa-
tion	phase.	

Phase A Life-Cycle Reviews

The	purpose	of	 Phase	A	 is	 to	develop	 a	proposed	mission/system	architecture	 that	 is	 credible	
and	 responsive	 to	 program	 requirements	 and	 constraints	 on	 the	 project,	 including	 resources.	
The	 Phase	A	 work	 products	 need	 to	 demonstrate	 that	 the	 maturity	 of	 the	 project’s	 mis-
sion/system	definition	and	associated	plans	are	sufficient	to	begin	Phase	B,	and	the	mission	can	
probably	be	achieved	within	available	resources	with	acceptable	risk.	

	 	 (initial	release	for	review)	

	 40	

System Requirements Review	—	The	System	Requirements	Review	 is	 the	 lifecycle	 review	 in	
which	 the	 decision	 authority	 evaluates	whether	 the	 functional	 and	performance	 requirements	
defined	for	the	system	are	responsive	to	the	program’s	requirements	on	the	project	and	repre-
sent	achievable	capabilities.	[14]	
The	System	Requirements	Review	evaluates	 the	project	 requirements	 to	determine	 if	 they	are	
responsive	to	the	program’s	requirements	on	the	project	and	represent	achievable	capabilities.	
This	review	also	evaluates	the	status	of	the	requirement	decomposition,	and	flow-down,	and	the	
plans	for	completing	the	requirements	definition.	[15]	

To	support	the	objectives	of	the	SRR,	the	architecture	description	captures	much	of	the	content	
needed	for	SRR	gate	products	(see	Table	2).	A	few	key	examples	are	provided	below:	

• Baseline	Level	1	requirements,	with	supporting	rationale	and	analysis,	in	the	Stakeholders	
and	Concerns	elements.	These	capture	the	discussions,	particularly	between	the	sponsor	
(e.g.,	NASA	Planetary	Science	Division)	and	the	project	on	the	primary	project	constraints.	

• A	self-consistent	set	of	Baseline	Level	2	and	Level	3	project	Elements,	their	Functions,	inter-
faces	and	operating	Scenarios	in	the	Project	System	realizational	View	

• Baseline	Level	2	(Project,	Science)	and	Level	3	(Spacecraft,	Payload)	requirements,	with	
supporting	rationale	and	analysis,	traceable	to	and	consistent	with	Level	1	requirements,	
queried	from	the	element	realizational	Views	

• Key/Driving	Level	4	requirements	queried	from	Level	4	element	realizational	Views	
• Baseline	Systems	Engineering	approaches	and	policies,	documented	in	the	Systems	Engi-
neering	conceptual	View	

Mission Definition Review (leads to KDP-B)	—	The	Mission	Definition	Review	is	the	lifecycle	re-
view	 in	which	 the	 decision	 authority	 evaluates	 the	 credibility	 and	 responsiveness	 of	 the	 pro-
posed	mission/system	architecture	to	the	program	requirements	and	constraints	on	the	project,	
including	 available	 resources,	 and	 determines	 whether	 the	 maturity	 of	 the	 project’s	 mis-
sion/system	definition	and	associated	plans	are	sufficient	to	begin	the	next	phase,	Phase	B.	

KDP-B	is	the	lifecycle	gate	at	which	the	decision	authority	determines	the	readiness	of	a	program	
or	project	to	transition	from	Phase	A	to	Phase	B.	Phase	B	is	the	second	phase	of	Formulation	and	
means	that:	

• The	proposed	mission/system	architecture	is	credible	and	responsive	to	program	require-
ments	and	constraints,	including	resources;	

• The	maturity	of	the	project’s	mission/system	definition	and	associated	plans	is	sufficient	to	
begin	Phase	B;	and	

• The	mission	can	likely	be	achieved	within	available	resources	with	acceptable	risk.	
The	Mission	(Instrument)	Definition	Review	evaluates	 the	preliminary	planning,	 requirements,	
mission	and	system	(instrument)	descriptions,	and	estimated	life-cycle	cost	to	assess	the	maturi-
ty	of	 the	project	and	 the	progress	made	 in	defining	 the	mission	(instrument).	Additionally,	 the	
MDR	 (IDR)	 evaluates	 the	 project’s	 plans	 to	 determine	 if	 they	 are	 sufficient	 to	 transition	 to	
Phase	B.	(ref.	Institutional	Project	Review	Plan,	Rev.	9,	JPL	Rules!	DocID	75512).	

	 	 (initial	release	for	review)	

	 41	

To	support	the	objectives	of	the	MDR,	the	architecture	description	captures	much	of	the	content	
needed	for	MDR	gate	products	(see	Table	3).	A	few	key	examples	are	provided	below:	

• Preliminary	System	Safety	and	Mission	Assurance	Plans	derived	from	the	Mission	Assur-
ance	conceptual	View		

• Preliminary	Mission	Operation	Concept	document,	which	uses	as	its	basis	the	integrated	
Scenarios	from	the	Project	System	realizational	View	

• Preliminary	Environmental	Requirements	Document	derived	from	environmental	con-
straints	and	assumptions	captured	in	the	Environmental	Compatibility	conceptual	View	

• Preliminary	Design	Report,	captured	as	a	design	compliance	Analysis,	that	utilizes	the	in-
formation	in	the	architecture	description	(structure,	composition,	requirements)	to	assess	
the	preliminary	design	descriptions	

• Preliminary	Launch	Services	Requirements	document,	consistent	with	the	needs,	elements	
and	interfaces	of	the	mission	

• A	Phase	B	Project	Task	Plan	drawn	from	Management	Structure	and	Work	Breakdown	
Views	that	are	consistent	with	the	project	elements,	and	institutional	guidance	

Phase B Life-Cycle Reviews

The	 purpose	 of	 Phase	B	 is	 for	 the	 project	 team	 to	 complete	 their	 technology	 development;	
engineering	prototyping;	heritage	hardware	and	software	assessments	using	the	Systems	Engi-
neering	Handbook,	NASA/SP-2007-6105	Rev	1,	Appendix	G;	and	other	risk-mitigation	activities	
identified	 in	 the	 project	 Formulation	 Agreement	 and	 to	 complete	 the	 preliminary	 design.	 The	
project	demonstrates	that	its	planning,	technical,	cost,	and	schedule	baselines	developed	during	
Formulation	 are	 complete	 and	 consistent;	 the	 preliminary	 design	 complies	 with	 its	 require-
ments;	 the	 project	 is	 sufficiently	mature	 to	 begin	 Phase	C;	 and	 the	 cost	 and	 schedule	 are	 ade-
quate	to	enable	mission	success	with	acceptable	risk.	

Preliminary Design Review (leads to KDP-C)	—	The	Preliminary	Design	Review	is	 the	 lifecycle	
review	in	which	the	decision	authority	evaluates	the	completeness/consistency	of	the	planning,	
technical,	cost,	and	schedule	baselines	developed	during	Formulation.	This	review	also	assesses	
compliance	of	the	preliminary	design	with	applicable	requirements	and	determines	if	the	project	
is	sufficiently	mature	to	begin	Phase	C.	
KDP-C	is	the	lifecycle	gate	at	which	the	decision	authority	determines	the	readiness	of	a	program	
or	project	 to	begin	 the	 first	stage	of	development	and	transition	 to	Phase	C	and	authorizes	 the	
Implementation	of	the	project.	Phase	C	is	first	stage	of	development	and	means	that:	

• The	project’s	planning,	technical,	cost,	and	schedule	baselines	developed	during	Formula-
tion	are	complete	and	consistent;	

• The	preliminary	design	complies	with	mission	requirements;	
• The	project	is	sufficiently	mature	to	begin	Phase	C;	and	
• The	cost	and	schedule	are	adequate	to	enable	mission	success	with	acceptable	risk.	

The	project	Preliminary	Design	Review	evaluates	the	project’s	maturity	and	readiness	to	proceed	
with	 implementation.	This	review	evaluates	 the	completeness	and	consistency	of	 the	planning,	
technical,	 and	 cost	 baselines	 developed	 during	 formulation.	 It	 assesses	 the	 compliance	 of	 the	
design	with	applicable	requirements.	

	 	 (initial	release	for	review)	

	 42	

To	support	the	objectives	of	the	PDR,	the	architecture	description	captures	much	of	the	content	
needed	for	PDR	gate	products	(see	Table	4).	A	few	key	examples	are	provided	below:	

• Baseline	Project	Verification	and	Validation	Plan,	with	traceable	compliance	to	the	SEMP	
and	relevant	institutional	guidance,	and	documenting	types	of	equipment	and	processes,	in	
the	Project	&	System	Level	Functional	V&V	conceptual	View	

• Preliminary	Science	Data	Management	Plan,	drawn	from	the	Science	Data	Management	
conceptual	View,	and	consistent	with	the	defined	project	science	datasets,	defined	systems	
and	operating	Scenarios	

• Baseline	office	implementation	plans,	with	traceable	compliance	to	the	project	policies,	the	
SEMP,	and	institutional	guidance	via	office-specific	development	conceptual	Views	

• Baseline	compliance	matrices	for	the	JPL	Flight	Project	Practices,	Design	Principles	and	
Systems	Engineering	Practices,	with	traceable	compliance	from	the	policy	statements	to	
project	technical	elements	and	programmatic	processes	

• Baseline	Spacecraft	Flight	Software	requirements	document	queried	from	the	Flight	Soft-
ware	realizational	View		

• Baseline	Flight	System	I&T	Plan,	describing	the	needed	equipment,	deployments	and	over-
all	I&T	flow,	as	Elements	and	Scenarios	in	the	FS	I&T	realizational	view,	and	consistent	with	
the	project	elements	and	V&V	policies	

4.4.3 The Role of Architecting in Implementation Phases
Project	 Implementation	 consists	 of	 Phases	C,	 D,	 E,	 and	 F.	 During	 Phase	C	 (Final	 Design	 and	
Fabrication)	 and	 Phase	D	 (System	 Assembly,	 Integration	 and	 Test,	 Launch	 and	 Checkout),	 the	
primary	activities	are	developmental	in	nature,	including	acquisition	contract	execution.	Phase	C	
includes	completion	of	final	system	design	and	the	fabrication,	assembly,	and	test	of	components,	
assemblies,	and	subsystems.	Phase	D	includes	system	assembly,	integration,	and	test;	prelaunch	
activities;	 launch;	 and	 on-orbit	 checkout	 (robotic	 projects)	 or	 initial	 operations	 (human	 space	
flight	projects).	All	activities	are	executed	according	to	the	Project	Plan	developed	during	Formu-
lation.	KDP	E	marks	approval	to	launch.	After	successful	on-orbit	checkout	or	initial	operations,	
the	project	transitions	to	Phase	E.	The	start	of	Phase	E	(Operations	and	Sustainment)	marks	the	
transition	 from	system	development	and	acquisition	activities	 to	primarily	 systems	operations	
and	 sustainment	 activities.	 In	 Phase	F	 (Closeout),	 project	 space	 flight	 and	 associated	 ground	
systems	are	 taken	out	of	 service	and	safely	disposed	of,	 although	scientific	 and	other	analyses	
might	continue	under	project	funding.	
In	 Implementation	 the	 role	 of	 system	 architects	 and	 architectural	 description	 shifts	 from	 the	
active	 generation	 and	 assessment	 of	 the	 system	 architecture	 to	 assessment	 of	 selected	 design	
choices	 and	 reactions	 to	 unanticipated	 circumstances.	 In	 the	 latter	 case,	 a	 well-documented	
system	architecture	provides	the	necessary	context	and	tools	to	assess	options	and	implications	
when	design	choices	or	 implementation	plans	must	 change	or	have	unexpected	consequences.	
Since	 these	 changes	 in	 direction	 usually	 occur	 at	 times	 of	 significant	 daily	 expenditure	 by	 a	
project,	 there	 is	pressure	 to	quickly	arrive	at	 alternative	 solutions.	Without	a	 readily-available	
repository	and	expertise	 to	assess	 the	 implications	of	 such	decisions,	 there	 is	a	greater	 risk	of	
making	a	poor	choice.	In	addition,	the	architectural	description	provides	a	resource—in	its	Views	
(rationale),	Trades,	Analyses,	 etc.—that	provides	context	needed	 in	 the	development	of	 Imple-
mentation	phase	products	such	as	V&V/I&T	plans	and	procedures.	The	availability	and	use	of	an	

	 	 (initial	release	for	review)	

	 43	

architectural	 description	 in	 this	 phase	 preserve	 continuity	 and	 consistency	 of	 the	 approach	
defined	in	the	Formulation	phase.	

Phase C Life-Cycle Reviews

Project	 Implementation	 begins	 with	 Phase	C	 as	 the	 project	 team	 implements	 the	 project	 in	
accordance	with	the	Project	Plan.	The	purpose	of	Phase	C	is	to:	

• Complete	and	document	the	final	design	that	meets	the	detailed	requirements;	
• Ensure	that	the	systems	engineering	activities	are	performed	to	determine	if	the	design	is	
mature	enough	to	proceed	with	full-scale	implementation	within	the	constraints	of	the	
Management	Agreement;	

• Perform	qualification	testing;	
• Develop	product	specifications	and	begin	fabrication	of	test	and	flight	architecture	(e.g.,	
flight	article	components,	assemblies,	subsystems,	and	associated	software);	

• Develop	detailed	integration	plans	and	procedures;	and	
• Ensure	that	all	integration	facilities	and	personnel	are	ready	and	available.	

Critical Design Review	—	The	Critical	Design	Review	is	the	lifecycle	review	in	which	the	deci-
sion	 authority	 evaluates	 the	 integrity	 of	 the	 project	 design	 and	 its	 ability	 to	meet	mission	 re-
quirements	 with	 appropriate	 margins	 and	 acceptable	 risk	 within	 defined	 project	 constraints,	
including	available	resources.	This	review	also	determines	whether	the	design	is	appropriately	
mature	to	continue	with	the	final	design	and	fabrication	phase.	

The	Critical	Design	Review	evaluates	 the	 integrity	 of	 the	project	 design	by	 reviewing	 the	 con-
sistency	 among	 the	 mission,	 systems,	 and	 operations	 designs	 that	 incorporate	 the	 results	 of	
lower-level	detailed	designs	and	 test	 results	of	 early	hardware	models,	plus	modeling,	 simula-
tion,	and	analysis	of	the	systems’	behavior	and	performance.	The	capabilities	and	design	margins	
of	the	project	systems,	together	with	the	available	programmatic	reserves	and	unused	technical	
resources,	are	reviewed	to	assess	the	risk	to	perform	within	sponsor-imposed	constraints.	The	
status	of	the	project’s	significant	risks,	the	effectiveness	to	date	of	the	safety	and	mission	assur-
ance	programs,	and	the	progress	made	against	management	plans	are	also	reviewed.	

To	support	the	objectives	of	the	CDR,	the	architecture	description	captures	much	of	the	content	
needed	for	CDR	gate	products	(see	Table	5).	A	few	key	examples	are	provided	below:	

• Baseline	Design	Report,	captured	as	a	design	compliance	Analysis,	that	utilizes	the	infor-
mation	in	the	architecture	description	(structure,	composition,	requirements)	to	assess	
the	detailed	design	descriptions	

• A	Phase	CD	Project	Task	Plan	drawn	from	Management	Structure	and	Work	Breakdown	
Views	that	are	consistent	with	the	project	elements	and	institutional	guidance	

• Baseline	Mission	Plan	drawn	from	the	integrated	Scenarios	in	the	Project	System	and	oth-
er	element	realizational	Views	

• Baseline	Navigation	Plan,	with	traceable	compliance	to	relevant	requirements,	policies	
and	mission	Scenarios,	as	captured	in	the	Navigation	conceptual	View	and	consistent	with	
elements	defined	in	the	Ground	System	realizational	View	

System Integration Review (leads to KDP-D)	 —	 The	 System	 Integration	 Review	 (SIR)	 is	 the	
lifecycle	review	in	which	the	decision	authority	evaluates	the	readiness	of	the	project	and	associ-
ated	 supporting	 infrastructure	 to	 begin	 system	 assembly,	 integration,	 and	 test.	 This	 lifecycle	

	 	 (initial	release	for	review)	

	 44	

review	 also	 evaluates	 whether	 the	 remaining	 project	 development	 can	 be	 completed	 within	
available	resources,	and	determine	if	the	project	is	sufficiently	mature	to	begin	Phase	D.	
KDP-D	is	the	lifecycle	gate	at	which	the	decision	authority	determines	the	readiness	of	a	project	
to	continue	in	Implementation	and	transition	from	Phase	C	to	Phase	D.	Phase	D	is	a	second	phase	
in	Implementation;	the	project	continues	in	development	and	means	that:	

• The	project	is	still	on	plan;	
• The	risk	is	commensurate	with	the	project’s	payload	classification;	and	
• The	project	is	ready	for	assembly,	integration	and	test	with	acceptable	risk	within	its	Agen-
cy	baseline	commitment.	

The	System	Integration	Review	(SIR)	evaluates	the	project’s	plans	for	the	remaining	pre-launch	
development	including	whether	available	resources	are	adequate	and	the	project’s	readiness	to	
start	 system	 assembly,	 I&T,	 and	 the	 planning	 for	 launch	 site	 operations	 (instrument	 system	
integration,	test,	and	calibration).	The	SIR	also	reviews	the	requirements	and	plans	for	and	status	
of	the	project	verification	and	validation	(V&V)	activity	
To	 support	 the	 objectives	 of	 the	 SIR,	 the	 architecture	 description	 captures	 some	 content,	 less	
than	 prior	 reviews,	 since	 much	 of	 the	 content	 needed	 for	 SIR	 gate	 products	 (see	 Table	 6)	 is	
outside	of	the	architecture	description.	Examples	of	content	that	is	included	in	the	AD	are:	

• Updates	to	the	Science	Data	Management	Plan	
• Updates	to	the	Design	report	
• Updates	to	the	MOS	Functional	design	document	
• Updates	to	the	Flight	System	I&T	Plan	

Pre-Ship Review	—	The	Pre-Ship	Review	(PSR)	evaluates	the	completeness	of	the	flight	system	
(or	instrument)	test	program,	and	assesses	the	readiness	to	proceed	with	shipment	of	the	flight	
system	to	the	launch	site	(or	instrument	to	the	spacecraft	contractor	facility),	and	I&T	at	the	next	
higher	 level	 of	 integration.	 The	 review	 also	 assesses	 the	 progress	 toward	 completion	 of	 the	
development	activities	planned	before	launch.	

To	support	the	objectives	of	the	PSR,	the	primary	role	of	the	architecture	description	is	to	pro-
vide	content	 (system	descriptions,	 trades,	analyses)	 for	 the	Certificate	of	Flight	Readiness.	The	
full	set	of	PSR	gate	products	is	contained	in	Table	7.	

Phase D Life-Cycle Reviews

The	purpose	of	Phase	D	is	to	perform	system	AI&T;	complete	validation	testing;	 finalize	opera-
tions	preparations;	complete	operational	training;	resolve	failures,	anomalies,	and	issues;	certify	
the	system	for	launch;	launch	the	system;	and	complete	on-orbit	system	checkout.	

Operations Readiness Review	—	The	Operations	Readiness	Review	evaluates	the	readiness	of	
the	 MOS	 (Instrument	 Operations	 System	 (IOS))	 and	 all	 of	 its	 component	 Elements,	 e.g.,	 GDS	
(Science	Data	System	(SDS)),	to	support	launch	and	flight	operations.	
To	support	the	objectives	of	the	ORR,	the	architecture	description	captures	some	of	the	content	
needed	for	ORR	gate	products	(see	Table	8).	A	few	key	examples	are	provided	below:	

• A	Phase	E	Project	Task	Plan	drawn	from	Management	Structure	and	Work	Breakdown	
views	that	are	consistent	with	the	project	elements,	and	institutional	guidance	

	 	 (initial	release	for	review)	

	 45	

• A	Decommissioning/Disposal	Plan	with	traceable	compliance	to	relevant	requirements,	
policies	and	Scenarios,	as	captured	in	the	Project	System	realizational	View	

• Updates	to	the	Navigation	Plan	

Mission Readiness Review (leads to KDP-E)	—	The	Mission	Readiness	Review	(MRR)	evaluates	
the	readiness	of	the	project	and	all	project	systems	to	support	launch	and	the	mission.	
In	this	initial	assessment,	none	of	the	gate	products	for	the	MRR	are	expected	to	derive	from	the	
Architecture	Description.	The	full	set	of	MRR	gate	products	is	contained	in	Table	9.	

Phase E Life-Cycle Reviews

During	Phase	E,	the	project	implements	the	Project	Plan/Missions	Operations	Plan	developed	in	
previous	phases.	Mission	operations	may	be	periodically	punctuated	with	Critical	Event	Readi-
ness	Reviews	(CERR),	e.g.,	a	trajectory	correction	maneuver	or	orbit	insertion	maneuver.	

Below	is	a	 list	of	Phase	E	 life-cycle	reviews,	but	a	description	of	 the	role	of	 the	AD	in	these	re-
views	has	been	deferred	to	a	future	version	of	this	document:	

• Post-launch	Assessment	Review	(PLAR)	
• Critical	Event	Readiness	Review	(CERR)	
• Decommissioning	Review	(DR)	

Phase F Life-Cycle Reviews

During	 Phase	F,	 the	 project	 implements	 the	 Decommissioning/Disposal	 Plan	 developed	 and	
approved	in	Phase	E.	The	project	dispositions	all	spacecraft	ground	systems,	data,	and	returned	
samples,	 including	 safe	 and	adequate	disposal	of	 the	 spacecraft.	The	project	 team	dispositions	
other	 in-space	 assets.	 The	project	 team	 closes	 out	 all	 project	 activities	 in	 accordance	with	 the	
Decommissioning/Disposal	Plan.	

Below	is	a	 list	of	Phase	F	 life-cycle	reviews,	but	a	description	of	 the	role	of	 the	AD	 in	 these	re-
views	has	been	deferred	to	a	future	version	of	this	document:	

• Disposal	Readiness	Review	

4.5 Application at Increasing Levels of Design
Architecting	 is	 a	 method	 that	 is	 generally	 applicable,	 not	 just	 at	 the	 highest	 levels	 of	 system	
design.	 The	 engineering	 of	 any	 product,	 regardless	 of	 the	 level	 of	 detail,	 can	 be	 made	 more	
rigorous	 by	 application	 of	 architectural	 principles	 (identification	 of	 stakeholders,	 iterative	
problem	formulation	and	synthesis	cycles,	etc.).	
As	an	example,	below	is	a	brief	JPL	example	of	the	interface	between	o	Flight	 system	 engineering	
and	subsystem	engineering:	

• FSE	team	generates	constraints	(L4	requirements)	on	the	spacecraft	avionics	
• Avionics	team	develops	a	set	of	options,	based	on	these	constraints	and	concerns	of	other	
identified	Stakeholders	(e.g.,	line	management,	regarding	workforce	availability)	

• Review	and	assessment	of	options	includes	both	the	FSE	team,	and	the	other	identified	
stakeholders	

	 	 (initial	release	for	review)	

	 46	

• Discussion	and	negotiation	of	requirements	occurs	
• Upon	agreement,	the	baseline	set	of	requirements	and	approach	are	documented,	along	
with	any	remaining	issues/concerns	to	be	addressed	in	future	work	

◼	

	 	 (initial	release	for	review)	

	 47	

5 Training, Tools, etc.
The	 methodology	 described	 here	 is	 practicable	 only	 when	 those	 expected	 to	 practice	 it	 are	
prepared	and	properly	supported	in	its	application.	Therefore	training,	tools,	and	other	support	
to	practitioners	is	a	key	aspect	of	this	methodology.	

5.1 Core Ideas
To	understand	any	methodology,	it	is	necessary,	not	just	to	learn	it	as	a	pedagogical	exercise,	but	
to	practice	 it	 in	 realistic	 circumstances	on	practical	 applications	with	expert	 guidance	and	cri-
tique	 to	 keep	 everything	 on	 track.	 Similarly,	 to	 the	 extent	 that	 tools	 are	 needed	 to	 support	 a	
methodology,	 it	 is	necessary,	not	 just	 to	 learn	how	to	use	 the	 tools,	but	 to	appreciate	concepts	
that	they	manifest	and	techniques	for	exploiting	them	effectively.	And	finally,	in	both	respects,	it	
is	necessary,	not	just	to	address	the	deployment	of	this	methodology,	but	also	to	establish	expec-
tations	for	the	quality,	coverage,	and	efficiency	of	its	results.	
These	 considerations	 prompt	 a	 rather	 involved	 approach	 to	 training	 for	 practitioners	 in	 this	
methodology.	Classes	are	the	starting	point	for	this	training,	but	they	serve	mainly	as	an	intro-
duction	to	key	concepts	and	their	motivations.	These	must	be	accompanied,	initially	by	dialog	to	
clarify	 issues	 and	 explore	 their	 implications,	 but	 then	 directly	 by	 hands-on	 experience	 with	
realistic	 applications,	 all	 supported	 by	 rich	 documentation	 that	 explains	 in	 depth	 the	 ideas	
involved.	
In	this	process,	both	simple	and	complex	worked	examples	are	needed	to	facilitate	understand-
ing	of	the	products	to	be	developed,	the	steps	needed	to	develop	them,	and	the	metrics	used	to	
assess	their	status.	Practitioners	must	appreciate	more	than	just	the	desired	end	state,	so	train-
ing	necessarily	includes	examples	that	reflect	various	stages	in	a	project’s	evolution,	with	exer-
cises	to	explore	issues	of	moving	from	one	level	of	maturity	to	another.	
Experience,	 capabilities,	 habits,	 and	 required	 contributions	 will	 differ	 markedly	 among	 those	
asked	 to	 learn	 this	 methodology.	 The	 combination	 of	 lessons,	 examples,	 documentation,	 and	
coaching	 addresses	 this	 diversity	 to	 some	 extent.	 Nonetheless,	 there	will	 always	 be	 gaps	 and	
shortfalls,	where	training	can’t	provide	all	of	the	needed	support.	Therefore,	the	potential	need	
for	ad	hoc	support	is	must	be	considered	in	deploying	this	methodology,	especially	in	its	initial	
utilizations.	

Finally,	as	proficiency	 is	gained	with	 this	methodology,	 it	will	be	necessary	 to	adapt	 to	 lessons	
learned	 and	 to	 new	 ideas	 for	 improving	 its	 effectiveness	 or	 reach.	 Collection	 of	 feedback	 and	
incorporation	 of	 these	 observations	 into	 future	 deployments,	 including	 training	 and	 tools,	 is	
essential	to	the	performance	of	this	methodology.	

5.2 Training Requirements
First	 and	 foremost,	 it	 is	 important	 to	 state	 that	 the	 objective	 of	 training	 is	 to	 create	 a	 shared	
understanding	of	principles,	concepts,	properties,	and	relationships.	This	shared	understanding	
is	 essential	 to	 ensure	 that	 collaboration	 is	 effective	 and	 efficient	 across	 disciplines	 within	 a	

	 	 (initial	release	for	review)	

	 48	

project	and	across	projects	over	time.	While	training	may	incorporate	elements	of	instruction	in	
the	 mechanics	 of	 using	 specific	 tools	 and	 services,	 these	 are	 incidental	 details	 that	 have	 no	
meaning	or	value	except	in	the	context	of	process	objectives.	
By	way	of	illustration,	consider	the	result	of	effective	training	in	digital	filter	design.	We	would	
expect	 a	 person	 who	 completed	 such	 training	 to	 demonstrate	 competent	 understanding	 of	 a	
variety	of	topics,	including	the	definition	of	a	filter,	the	basics	of	difference	equations,	causality,	
impulse	 response,	 the	 difference	 between	 infinite	 and	 finite	 impulse	 response,	 magnitude	 re-
sponse,	phase	response,	etc.	These	concepts	can	be	explained	(and	learned)	using	nothing	more	
than	paper	and	pencil.	Application	 in	practice	typically	 involves	specialized	software	tools	 that	
solve	synthesis	problems	that	are	beyond	the	practical	ability	of	humans.	But	facility	with	those	
tools	is	not	a	substitute	for	deep	understanding	of	the	principles	involved.	
Systems	 engineering	 is	 no	different–except	 for	 the	 facts	 that	 systems	 is	 relatively	 broad	 and	
relatively	 new	 so	 that	 its	mathematical	 underpinnings	 are	 not	 as	 strong.	 Systems	 engineering	
can,	however,	be	practiced	with	a	great	deal	more	formal	rigor	than	is	common	at	JPL	at	present;	
the	methodology	described	 in	 this	document	 is	one	step	 in	a	 long	process	of	raising	the	bar	of	
rigor.	
With	 that	 in	mind	we	can	 lay	out	 some	requirements	of	an	effective	architecture	 training	pro-
gram.	
The	 objective	 of	 architecting	 training	 should	 be	 to	 equip	 engineers	 to	 do	 architecting,	 not	 to	
become	 experts	 in	 architecting	 methodology.	 The	 distinction	 is	 fundamentally	 about	 what	
engineers	do	because	they	understand	it	to	be	good	practice	vs.	how	they	conceive	it	to	fit	into	an	
abstract	formal	framework.	
Consider	pilot	training.	Trainees	are	given	an	introduction	to	flight	dynamics	because	it	explains	
how	certain	phenomena	are	coupled	(air	temperature	and	lift,	for	example)	in	a	way	that	informs	
strategy	 for	maintaining	 control	 of	 the	 aircraft.	 They	 are	 given	 taught	 how	 to	 use	 both	 visual	
examination	 of	 the	 flight	 environment	 (terrain,	 horizon,	 weather,	 traffic)	 and	 instruments	 to	
make	observations	of	speed,	altitude,	attitude,	rates,	etc.	
A	well-trained	pilot	integrates	all	this	information	in	such	a	way	that	she	can	confidently	execute	
a	control	strategy	 for	 landing	under	 ideal	conditions	as	well	as	 in	a	crosswind	with	 traffic	and	
natural	obstacles.	
Much	of	the	theory	of	architecting	applies	here:	

• There	are	Stakeholders:	pilot,	crew,	passengers,	owner,	people	on	the	ground,	etc.	
• Those	Stakeholders	have	Concerns:	safety,	comfort,	travel	time,	cost,	etc.	
• There	are	various	Viewpoints	associated	with	those	Concerns:	airspeed,	altitude,	attitude,	
separation,	efficiency,	etc.	

• There	are	many	Views:	the	literal	view	out	the	windshield,	instrument	displays,	etc.	
• And	so	on.	

A	well-trained	pilot	has	an	intuitive	understanding	of	these	things	and	their	relations.	She	knows	
that	 landing	short	of	the	runway	is	to	be	avoided.	She	knows	that	airspeed	affects	 lift	and	turn	
radius.	She	knows	that	a	turn	coordinator	provides	a	view	of	roll	and	yaw	and	their	coupling	that	
helps	her	apply	the	correct	rudder	and	aileron	inputs	to	execute	a	standard	rate	(3°/s)	turn.	

	 	 (initial	release	for	review)	

	 49	

She	knows	all	 these	 things	without	ever	using	 the	words	Stakeholder,	Concern,	Viewpoint,	View,	
etc.	 Ironically,	 forcing	her	 to	ponder	 the	definition	of	Viewpoint	would	serve	more	as	a	distrac-
tion	than	an	enhancement	of	her	knowledge.	
Similar	considerations	apply	to	mission	architecting	at	JPL.	Years	of	success	(and	the	occasional	
failure)	have	led	to	a	set	of	more-or-less	canonical	practices	that,	due	to	lack	of	a	formal	frame-
work,	are	often	executed	with	less	than	desirable	rigor.	Unifying	the	practices	in	a	formal	frame-
work	 is	 important	 for	 the	Laboratory	but	 the	 individual	practitioner	need	not	understand	 that	
framework	in	detail	nor	how	the	elements	of	practice	are	classified	by	it.	Instead,	the	individual	
practitioner	benefits	from	numerous	secondary	effects	of	formalism,	including	

• careful	use	of	controlled	vocabulary	for	concepts,	e.g.,	component,	interface,	function,	re-
quirement,	etc.,	

• careful	use	of	controlled	vocabulary	for	quantities,	e.g.,	mass,	temperature,	spatial	resolu-
tion,	etc.,	

• careful	use	of	controlled	vocabulary	for	relations,	e.g.,	contains,	performs,	presents,	authoriz-
es,	supplies,	etc.,	

• consistent	reuse	of	description	and	analysis	perspectives,	e.g.,	Viewpoints,	and	
• consistent	reuse	of	description	and	analysis	products,	e.g.,	Views.	

These	desirable	attributes	of	good	practice	must	first	be	encoded	in	written	line	doctrine.	That	is,	
the	 line	 discipline	 experts	 must	 commit	 to	 writing,	 with	 examples,	 instructions	 that	 embody	
them	 and	 require	 compliance	 of	 their	 employees.	 If	 something	 is	 good	 practice,	 we	 should	
require	 it.	 If	not,	we	shouldn't.	Training	must	 follow	this	doctrine	and	refer	 to	 it	often.	But	 the	
message	of	the	training	must	be	primarily	to	inform	and	reinforce	principles	and	practices,	not	
methodology.	
Like	 our	 well-trained	 pilot,	 our	 well-trained	 architect	 is	 intimately	 familiar	 with	 architecture	
practices	in	the	domain	of	space	flight,	and	expects	to	see	(and	to	produce)	a	large	set	of	familiar	
canonical	 products	 (i.e.,	 Views)	 regarding	 science	 objectives,	 scientific	measurements,	 acquisi-
tion,	 information	 systems,	 mission	 design,	 navigation,	 attitude	 control,	 configuration	manage-
ment,	etc.	He	has	an	intuitive	sense	that	"this	is	a	good	way	to	do	things",	reinforced	by	the	fact	
that	the	practice	is	fundamentally	regular	and	rational	and	largely	uniform	from	one	project	to	
another.	

To	summarize,	 the	doctrine	and	associated	training	material	must	be	 informed	and	disciplined	
by	the	formal	methodology	of	architecting,	but	the	elements	of	the	formalism	need	not	appear	in	
the	training	 itself.	 Instead	the	training	should	emphasize	the	principles	of	space	mission	archi-
tecting	and	prescribe	practices	that	respect	those	principles	and	produce	useful	products.	
The	members	of	a	large	project	team	bring	a	diverse	set	of	skills,	experiences,	dispositions,	and	
assignments.	 Training	 in	 architecting	 should	 consequently	 be	 tailored	 to	 that	 diversity	 so	 that	
people	know	what	 they	need	 to	do	 to	do	 their	 jobs	well	 and	 can	easily	 add	 to	 their	 skills	 and	
knowledge	as	required.	

Developing	architecting	expertise	may	extend	over	years,	so	it	is	important	that	training	materi-
als	be	of	such	granularity	that	a	budding	architect	may	discover	a	gap	in	her	knowledge,	browse	
available	materials	 to	 find	 applicable	 content,	 read	 a	 few	 pages	 of	 exposition	with	 illustrative	
examples,	perhaps	watch	a	short	video,	and	then	return	better	prepared	to	her	tasks.	

	 	 (initial	release	for	review)	

	 50	

Conventional	 lecture-style	 training	 has	 utility,	 but	 just	 as	 in	 pilot	 training,	 there	 are	 limits	 to	
what	you	can	learn	and	internalize	without	actually	doing	the	job.	Mentor/protégé	relationships	
are	key	here.	Aspiring	architects	should	acquire	the	basics	through	course	and	reference	materi-
als,	 but	 the	 deeper	 understanding	 comes	 from	 observing	 those	who	 have	mastered	 the	 skills,	
supporting	 those	 experts	 by	 carrying	 out	 directed	 assignments,	 and	 acting	 as	 lead	 under	 the	
guidance	of	experts.	
It	is	important	to	recognize	and	reward	those	who	have	mastered	architecting,	in	part	to	provide	
incentives	for	others	to	work	toward,	but	also	to	clarify	the	responsibility	of	those	with	mastery	
to	mentor	 and	 consult	 for	 others	 outside	 their	 narrow	 day-to-day	 jobs	 responsibilities	 and	 to	
maintain	currency	of	their	own	skills	and	knowledge.	
Beyond	 the	purely	pedestrian	knowledge	 transfer	of	mentorship,	 a	most	 important	effect	 is	 to	
establish	 the	 expectation	 of	 excellence	 and	 instill	 in	 the	 trainee	 the	 idea	 that	we	 do	 excellent	
work,	not	because	some	customer	or	auditor	demands	it,	but	because	are	personally	and	institu-
tionally	committed	to	it.		

5.3 Necessary Tooling Features
In	 the	methodology	addressed	here,	an	architecture	 framework	establishes	the	essential	struc-
ture	 of	 an	 architecture	 description,	 while	 particular	 Viewpoints	 establish	 key	 concepts	 for	
recurring	topic	areas.	In	addition,	though,	we	also	need	supporting	infrastructure	(i.e.,	tools	and	
an	environment	to	host	them)	to	provide	the	mechanisms	by	which	these	ideas	can	be	expressed	
and	related	to	one	another.	

Chief	among	 these	 is	 formalism	of	 the	architecture	 framework	 into	an	ontology,	which	defines	
the	entities	to	be	described,	their	properties,	and	the	rules	governing	their	associations	with	one	
another.	 This	 becomes	 the	 basis	 that	 enables	 the	 systematic	 and	 disciplined	 deployment	 of	
automated	reasoning,	data	management,	document	generation,	and	other	tooling	that	supports	
the	architecting	process.	The	architecture	framework	itself	is	the	beginning	of	such	an	ontology,	
but	with	recognition	 from	the	outset	 that	 the	categories	and	relations	 it	establishes	are	only	a	
start.	Viewpoints	and	the	architecture	descriptions	that	conform	to	them	extend	these	 ideas	to	
whatever	extent	is	needed	to	address	the	topics	at	hand.	These	in	turn	extend	to	descriptions	of	
detailed	design	and	other	matters	beyond	 the	scope	of	architecture.	Therefore,	 tools	 for	archi-
tecting	must	reside	amicably	within	a	larger	ontology	of	information.	

Viewpoints	provide	much	of	this	extension,	providing	recurring	guidance	that	may	be	used	over	
many	projects.	 Besides	 general	 guidance	 though,	 they	 are	 also	 an	 integral	 aspect	 of	 tooling	 in	
that	their	contributions	to	the	architecting	ontology	become	part	of	the	architecting	infrastruc-
ture.	These	extensions	must	be	available	to	users	in	such	a	way	that	the	guidance	of	Viewpoints	
is	apparent	in	their	use,	making	it	easy	to	follow,	while	avoiding	violations.	This	applies	not	just	
to	 individual	 entries	 into	 an	 architecture	 description,	 but	 to	 the	 structure	 overall	 as	well.	 For	
instance,	 common	 patterns	 of	 interaction	 among	 the	 parts	 of	 a	 system	 should	 be	 simple	 to	
deploy,	whether	in	primary	Views	or	in	the	auxiliary	views	that	support	them.	Furthermore,	 in	
order	 to	manage	 the	 complexity	 of	 an	 architecture	description,	 there	must	 be	 straightforward	
means	 of	 controlling	 scope,	 hiding	 lower	 level	 information,	 honoring	 good	 separation	 of	 con-
cerns,	and	so	on,	all	of	which	place	demands	on	the	supporting	infrastructure.	

The	 content	 of	 an	 architecture	 description	 comprises	 many	 separate	 items	 (Concerns,	 Views,	
Scenarios,	 etc.),	 but	 for	an	architecture	description	 to	maintain	 its	 integrity	over	 the	 course	of	

	 	 (initial	release	for	review)	

	 51	

development,	these	items	must	remain	consistent	with	one	another.	Key	notions	in	this	endeavor	
include	 adherence	 to	 the	 ontology,	 an	 assured	 single	 source	 for	 any	 given	 assertion,	 timely	
assessments	of	constraint	violations,	and	the	like,	all	of	which	can	be	automated	within	a	compe-
tent	 implementation.	 Users	 should	 never	 feel	 like	 they	 need	 to	 be	 careful	 because	 their	 infra-
structure	is	not.	
Finally,	there	must	be	provisions	for	controlling	the	authorship	of	assertions	in	an	architecture	
description	 and	 for	managing	 their	maturation	 over	 time.	 Permissions	must	 be	managed	 at	 a	
level	 that	 is	 not	 onerously	detailed,	 but	 that	 is	 also	not	 so	broad	 as	 to	 impede	progress	while	
everyone	 coordinates.	 Tooling	 must	 provide	 fluid	 support	 to	 processes	 of	 delegation,	 change	
control,	negotiation,	and	so	on.	
Broadly	 speaking,	 architecting	 tooling	 must	 support	 four	 broad	 categories	 of	 activities;	 we	
address	each	briefly.	

5.3.1 Authoring
Authoring	denotes	the	creation	of	novel	content,	 typically	 in	the	 form	of	assertions.	Novel	here	
simply	means	refers	 to	assertions	that	were	not	 in	effect	until	asserted	by	some	authority.	For	
example,	a	decision	to	employ	solar	electric	power	generation	for	a	mission	would	take	the	form	
of	a	set	of	assertions	about	the	design	and	characteristics	of	the	flight	system	power	subsystem	
that	are	taken	to	be	true	precisely	because	the	cognizant	design	authority	has	declared	them	to	
be	true.	All	engineering	content	originates	in	such	declarations.	

Because	we	want	authored	content,	once	created,	to	retain	its	meaning	indefinitely,	it	is	impera-
tive	 that	 all	 such	 content	 be	 traceable	 to	 the	 (sole)	 authority	 who	 declared	 it	 and	 any	 other	
necessary	 provenance	 (e.g.,	 date,	 person	 acting	 as	 such	 authority	 on	 that	 date,	 etc.)	 It	 is	 also	
imperative	that	the	assertions	themselves	employ	only	the	controlled	vocabulary	of	the	applica-
ble	 ontologies	 (although	 the	 provenance	may	 contain	 natural	 language	 narrative).	 Finally,	 the	
authored	assertions	must	be	indexed	and	stored	in	such	a	way	that	every	version	of	every	asser-
tion	must	be	locatable	by	search	and	retrieved	promptly	into	the	indefinite	future.	
Authored	assertions	are	 in	a	very	real	 sense	 the	primary	product	of	architecting	 (and	systems	
engineering	in	general).	JPL	spends	hundreds	of	millions	of	dollars	annually	to	make	assertions	
in	which	 our	 sponsors	 and	 the	 taxpayers	 can	have	 confidence.	We	 should	 curate	 and	 steward	
those	assertions	accordingly.	

5.3.2 Integration
Architecting	 is	almost	by	definition	concerned	with	complex	endeavors	requiring	collaboration	
among	multiple	parties	in	which	each	party	is	responsible	for	authoring	some	novel	assertions,	
but	every	party	needs	 to	understand	some	assertions	made	by	some	other	parties.	 Integration	
refers	to	the	collecting	and	combining	of	content	from	multiple	sources,	reconciliation	of	possible	
conflicts,	and	harmonization	of	viewpoints.	These	integrations	may	correspond	to,	for	example,	
system	design	baselines	at	nominated	milestones	(e.g.,	Critical	Design	Review)	but	they	may	just	
as	well	 correspond	 to	 trade	options,	 speculative	 investigations,	 change	proposals,	 etc.	 Integra-
tions	may	be	compared,	combined,	etc.	The	tooling	must	not	be	limited	to	a	single	instance	of	the	
system	design,	but	 instead	must	permit	 arbitrary	 snapshots	of	 various	perspectives	at	various	
stages	of	maturity,	one	of	which	will	customarily	be	designated	the	current	baseline.	

	 	 (initial	release	for	review)	

	 52	

Integration	capabilities	should	also	 include,	as	necessary,	adapters	 to	mediate	 interaction	with	
external	 tools	 and	 sources,	 translating	 at	 the	 boundary	 from	 external	 (possibly	 proprietary)	
representations	into	those	using	the	consensus	ontologies.	

5.3.3 Analysis
We	denote	by	analysis	the	extraction	of	inferences	that	can	be	drawn	from	assertions.	It	encom-
passes	a	spectrum	from	rudimentary	syntax	checks	to	semantic	reasoning	to	discipline-specific	
simulations	and	computations	of	figures	of	merit.	
The	technical	world	today	abounds	in	high-quality	mathematical	and	engineering	analysis	tools	
from	 the	 very	 general	 to	 the	 extremely	 specific.	 An	 architectural	 analysis	 facility	 should	 not	
attempt	to	reproduce	such	capabilities	but	instead	should	focus	on	model	transformation	capa-
bilities	 for	 translating	 authored	 architectural	 descriptions	 into	 appropriate	 analytical	 problem	
specifications	that	can	be	solved	by	existing	tools.	
Analysis	 results,	 along	with	 their	 provenance,	 should	 be	managed	 just	 as	 authored	 assertions	
are:	annotated,	indexed,	and	saved	indefinitely.	

5.3.4 Reporting
Reporting	similarly	encompasses	a	broad	range	of	capabilities,	from	generating	a	single	spread-
sheet	to	producing	a	professionally-design	and	typeset	technical	document	with	included	figures,	
tables,	 appendices,	 indices,	 etc.	 Reporting	 products	 will	 include	 ad	 hoc	 artifacts	 to	 address	 a	
particular	 topic,	 products	 generating	 specifically	 for	 expert	 review	 that	 include	 comments	 and	
annotations	for	and	by	reviewers,	and	final,	formal	gate	products	mandated	by	official	process.	
As	is	the	case	with	analysis,	there	is	an	abundance	of	powerful	tools	for	reporting	in	the	technical	
world	today.	The	objective	of	architecting	tooling	is	to	harness	those	capabilities	for	our	needs.	

5.4 Summary
The	 training	and	 tool	principles	and	 features	described	above	combine	 for	 some	useful	opera-
tional	properties,	including	

• the	ability	to	build	modeling	capability	incrementally	by	drawing	on	past	efforts,	
• the	ability	to	advance	and	evolve	modeling	tools	without	invalidating	past	models,	
• effective	interaction	with	specialized	tools	through	the	use	of	common	knowledge	repre-

sentation	standards,	
• the	ability	to	model	at	varying	levels	of	abstraction	and	reconcile	the	consistency	of	those	

representations,	
• direct	traceability	between	model	content	and	its	projections	into	tailored	products	for	

team	members	and	reviewers,	
• support	for	concurrent	trades	at	all	levels	and	stages	of	development,	and	
• rapid,	frequent	global	assessment	of	satisfaction	of	all	committed	constraints.	

◼	

	 	 (initial	release	for	review)	

	 53	

Appendices
Appendix A Expanded Viewpoint Examples
A.1 Mass & Inertial Properties Viewpoint
As	a	basic	characteristic	of	all	material	objects,	mass	and	associated	inertial	properties	play	key	
roles	in	many	engineering	considerations.	

For instance, the mass of flight systems and the apportionment of mass among their parts have im-
plications on launch, trajectory design, structure, pointing control, entry, descent, and landing, etc., so
these are tracked as technical resources and subject to management (FPP 6.4) and margin (FPP 5.25)
policies.

The distribution of mass in items that are rigid (or nearly so) is characterized by center of mass and
moments of inertia, which determine how items rotate in response to forces imposed on them (e.g.,
engine thrust, motor torque, gravity gradient, and others). These can have broad implications to con-
trol authority, vibration modes, structural loads, and so on.

The masses of external Elements are also of interest (e.g., celestial body masses that affect the tra-
jectory).

The	Mass	&	Inertial	Properties	Viewpoint	addresses	all	such	cross-cutting	 issues	of	mass	man-
agement	as	it	relates	to	spacecraft,	both	during	flight	and	(as	necessary)	during	ground	handling.	
Masses	 of	 ground	 system	 Elements	 are	 not	 usually	 managed,	 except	 as	 they	 relate	 to	 flight	
system	handling.	
Although	mass	management	issues	may	arise	directly	from	Concerns,	they	are	more	commonly	
driven	indirectly	by	launch	(e.g.,	injection	C3),	mission	design	(e.g.,	∆V),	pointing	performance	or	
control	authority	(e.g.,	reaction	wheel	torque	or	momentum	capacity),	environmental	influences	
(e.g.,	 aerodynamic	 drag),	 or	 other	matters	 in	which	 realized	mass	 is	 a	 significant	 factor.	 Such	
constraints	arise	mainly	in	other	conceptual	Views	that	address	topics	where	mass	is	significant.	
As	constraints	arise	in	these	Views	and	are	directed	ultimately	to	realizational	Elements,	they	are	
incorporated	into	Views	governed	by	the	Mass	&	Inertial	Properties	Viewpoint.	
The	purpose	of	Views	governed	by	this	Viewpoint	is	to	ensure…	

• that	all	such	issues	are	identified,	
• that	the	motivating	constraints	for	each	are	clearly	stated	and	negotiated,	
• that	all	contributors	to	their	satisfaction	are	enumerated	and	tracked,	and	
• that	control	is	exercised	throughout	development	in	a	manner	that	mitigates	risk.	

Allocations

Mass	management	generally	 involves	at	 least	 the	 combined	masses	of	 all	material	objects	 in	a	
deployed	system.	Management	of	this	composite	property	is	typically	accomplished	by	subdivid-
ing	a	 collective	mass	allocation	among	both	 identified	 components	of	 the	 system	and	 reserves	
(i.e.,	 set-asides	 for	 unanticipated	 changes).	 More	 involved	 inertial	 properties	 (e.g.,	 center	 of	
mass)	follow	a	similar	pattern,	except	that	additional	component	properties	besides	mass	(e.g.,	
item	locations)	are	 involved	 in	calculating	the	composite	 inertial	property,	 in	which	case	 these	
additional	properties	must	be	tracked	along	with	mass.	

	 	 (initial	release	for	review)	

	 54	

Mass	and	inertial	property	allocations	are	established	in	Views	governed	by	the	Mass	&	Inertial	
Properties	Viewpoint.	
Each	 component	 of	 an	 allocation	 should	 be	 aligned	 unambiguously	with	 a	 delegated	 develop-
ment	authority	(typically	via	some	work	breakdown	structure).	Initial	allocations	may	be	coarse-
ly	 defined,	 and	 further	 sub-allocated	 as	 the	 architecture	 and	 authority	 structure	mature.	 Each	
sub-allocation	 is	 typically	 governed	 by	 the	 authority	 at	 that	 level.	 Thus,	 the	 ultimate	 depth	 of	
sub-allocation	 would	 generally	 correspond	 to	 the	 depth	 of	 work	 breakdown	 asserted	 by	 the	
architecture.	However,	this	may	need	to	be	tailored	for	some	projects,	so	any	View	responding	to	
this	 Viewpoint	 should	 declare	 the	 method	 to	 be	 applied	 for	 that	 system.	 Every	 allocation	 is	
treated	as	a	Requirement.	
Components	 contributing	 to	mass	 and	other	 inertial	 properties	 are	 tracked	 via	 tables,	 one	 for	
each	 mass-related	 constraint	 that	 must	 be	 managed.	 In	 each	 case,	 table	 entries	 address	 all	
components	 covered	 directly	 or	 indirectly	 by	 the	 associated	 constraint.	 Sub-allocations	 are	
addressed	 in	 tables	 of	 the	 same	 form,	 but	 these	 are	 routinely	 combined	 into	 a	 single	 “rollup”	
table	that	itemizes	the	entire	allocation	tree	for	the	originating	constraint.	

For	a	combined	mass	constraint	(e.g.,	mass	carried	to	ejection	by	a	launch	vehicle),	each	entry	in	
a	mass	table	should…	

• identify	a	deliverable	component	of	the	composite	with	the	constraint,	
• state	the	mass	allocation	for	that	component	(typically	a	not-to-exceed	maximum,	though	
probabilistic	measures	are	also	possible),	and	

• provide	a	current	estimate	for	mass	upon	delivery	(or	other	relevant	milestone),	as	de-
clared	in	component	realizations.	

The	 itemization	 of	 deliverable	 components	 is	 commonly	 shared	with	 a	master equipment list.	
However,	 mass	 management	 frequently	 requires	 lists	 specific	 to	 particular	 deployments	 or	
situations,	so	these	should	not	be	conflated.	
Mass	 estimates	 should	 be	 in	 a	 statistically	 meaningful	 form	 that	 provides	 an	 objective	 and	
realistic	 expression	 of	 uncertainty	 (e.g.,	 no	 hidden	 distortions)	 and	 that	 supports	 an	 objective	
assessment	of	risk	at	each	level	(e.g.,	a	maturity	assessment).	In	each	case,	the	basis for estimate	
should	be	 explained.	 If	 a	 project	 chooses	 to	 assert	 standard	uncertainties	 relative	 to	maturity,	
these	should	be	declared	in	the	View.	
For	 more	 involved	 inertial	 properties,	 additional	 properties	 must	 be	 included	 in	 allocation	
tables,	and	allocations	and	estimates	must	address	 these	properties	as	well.	Where	allocations	
address	component	properties	in	combination,	care	should	be	taken	to	ensure	that	all	are	within	
the	purview	of	the	assigned	authority.	If	this	is	not	possible	(e.g.,	one	property	being	the	mount-
ing	location	provided	by	another	component),	then	separate	entries	should	be	maintained	for	the	
separable	contributions.	

Components	are	sometimes	added	 to	systems	exclusively	 to	deal	with	 inertial	property	uncer-
tainty.	 A	 common	 example	 is	 the	 addition	 of	 ballast	 to	 control	 center	 of	mass	 location.	 Other	
matters	that	can’t	be	completely	resolved	a	priori	may	also	contribute	to	mass	coupling.	Common	
examples	 would	 include	 propellant	 for	 delta-V,	 and	mass	 for	 chassis	 or	 support	 structure.	 In	
these	cases,	the	mass	of	the	added	component	may	need	to	vary	in	relation	with	the	masses	of	
other	 components.	 Mass	 redistribution	 due	 to	 kinematic	 and	 dynamic	 effects	 must	 also	 be	
considered	(e.g.,	articulated	appendages,	tethered	connections,	or	propellant	migration	between	

	 	 (initial	release	for	review)	

	 55	

tanks).	There	may	also	be	situations	where	non-inertial	properties	are	driven	by	mass	(e.g.,	tank	
volume	 as	 a	 function	 of	 propellant	 mass).	Wherever	 such	 dependencies	 occur,	 estimates	 and	
allocations	must	be	tailored	accordingly.	
In	a	component	with	propulsive	capability,	 the	proportion	of	mass	 in	expendable	propellant—
the	“wet”	mass—is	tracked	separately	from	the	remaining	“dry”	mass.	In	a	staged	system,	com-
bined	 propellant	 and	 “dry”	 masses	 must	 generally	 be	 tracked	 separately	 for	 each	 stage.	 This	
typically	 includes	 the	 split	 of	 adapter	 mass	 between	 launch	 vehicle	 and	 spacecraft,	 but	 kick	
stages,	 jettisoned	 items	 (e.g.,	 probes	 or	 covers),	 and	 so	 on	 must	 also	 be	 considered.	 Similar	
considerations	may	also	apply	 for	 systems	 that	are	subject	 to	externally	 induced	 forces.	These	
can	include	radiation	pressures,	gravity	gradients,	and	aerodynamic	forces	(e.g.,	aerobraking	or	
atmospheric	entry	and	descent).	
It	this	variety	of	cases,	each	tracked	configuration	comprises	a	deployment	of	the	system,	defined	
as	 the	 set	of	 components	 that	 it	 contains,	 and	 in	 some	cases	 the	 state	of	 those	 components	or	
their	relationships	to	one	another	(e.g.,	articulation,	fill	fraction,	etc.).	Not	all	deployment	will	be	
subject	to	mass	or	inertial	property	constraints,	but	those	that	are	must	be	managed.	

Management

Historically,	estimated	mass	has	tended	to	grow	over	the	course	of	development.	It	is	necessary	
to	choose	a	method	for	handling	this	issue.	

One way is to produce estimates that include projections of potential growth relative to current un-
derstanding and given relevant precedents. In this approach, component estimates are effectively un-
biased (i.e., expected mass at delivery), with reserves held only for additions associated with changes
to the composition of the system (e.g., new components, different component requirements, or other
unanticipated component design changes).

Another approach is to carry margin for “normal” growth at a composite level. In this approach,
component estimates account only for present understanding, while allowance for growth is carried at
a higher level, either as additional reserves or as a separate margin allocated for growth.

Further variations of these approaches can carry reserves and margins at just the top level or distrib-
uted among two or more levels.

Each	View	governed	by	this	Viewpoint	should	include	a	mass management plan	 that	defines	an	
approach	appropriate	to	the	project.	This	approach	must	define	under	which	authority	margins	
and	reserves	are	to	be	held,	and	how	allocations	to	margins	and	reserves	are	to	be	adjusted	as	a	
function	 of	 development	 maturity	 (usually	 tied	 to	 major	 schedule	 milestones	 such	 as	 project	
phase	 transitions).	 Quantified	 guidelines	 for	 mass	 management	 may	 be	 found	 in	 JPL	 Design	
Principles	(6.3.2	System	Mass	Margins),	including	the	convention	to	be	used	in	reporting	margin	
as	a	percentage	value.	

In	addition,	mass	management	plans	should	include	provisions	for	a	programmatic	response	to	
allocation	 violations.	 These	 could	 include	 policies	 governing	 the	 release	 of	 reserves	 (e.g.,	 via	
liens),	identified	descopes	or	plan	changes	triggered	at	defined	thresholds,	or	transfer	to	a	larger	
risk	management	process	where	more	sweeping	changes	are	considered.	
Supporting	 the	mass	management	effort	should	be	parallel	processes	 for	compiling	opportuni-
ties	 for	 improved	 margin	 (either	 reduced	 need	 or	 reduced	 uncertainty)	 and	 for	 identifying	
potential	threats	(e.g.,	development	problems,	or	potential	requirement	changes).	

	 	 (initial	release	for	review)	

	 56	

Reporting Artifacts

Conformance	 relative	 to	mass	 and	 inertial	 property	 constraints	 is	 reported	 on	 a	 regular	 basis	
throughout	development.	Current	estimates	and	allocations	are	reported,	along	with	the	result-
ing	risk	relative	to	allocations,	reserves,	projections	based	on	threats	and	opportunities,	and	so	
on.	
Broad	reporting	requirements	are	typically	asserted	in	a	Systems	Engineering	Management	Plan,	
or	a	Technical	Resource	Management	Plan.	In	addition,	narrower	reporting	may	be	required	in	
accordance	 with	 constraints	 arising	 from	 particular	 areas	 (e.g.,	 a	 Mission	 Plan	 or	 Navigation	
Plan).	
In	each	case,	reported	content	consists	of…	

• allocation	and	estimation	tables,	as	described	above	(both	summary	and	detailed	accounts),	
accompanied	by…	

• itemization	of	changes	from	the	previous	report,	as	well	as	overall	trends,	
• lists	of	opportunities,	threats,	liens,	etc.,	and	
• identification	of	allocation	violations	that	should	prompt	a	programmatic	response.	

Supporting data

To	be	provided	

Definitions

The	following	definitions	are	typical	for	composite	mass	and	inertial	property	budgets.	Rollups	
can	be	managed	via	compositional	hierarchies.	

Prototype Elements (1) Properties extends…
Reference Frame coordinate system (2)
Mounted Object mounting frame(s) (3) Reference Frame
Material Object mass (4)
Solid Material Object inertia tensor (3,4), center of

mass location (3,4)
Material Object, Reference Frame

Liquid Material Object TBD Material Object, Reference Frame
Gaseous Material Object TBD Material Object, Reference Frame

1 likely imported from more general Viewpoints that address basic physics or geometry
2 expressed relative to the Element’s coordinate system
3 defined in terms of physical Element features (typically identifiable points, lines, or planes)
4 includes a constraint relating this Property to Properties of its members, if composite

	

Relationships (1) Properties participants
Attachment 6-DOF displacement (2) two Mounted Objects

1 likely imported from more general Viewpoints that address basic physics or geometry
2 constrained alignment between mounting or coordinate frames

	

	 	 (initial	release	for	review)	

	 57	

Other Properties owner constraint	on
Estimated mass (1) realizational View mass (3)
Allocated mass (2) mass management View mass (3)

1 one for each Element addressed by the realizational View
2 one per each relevant Element
3 of a designated Material Object

	

◼	 	

	 	 (initial	release	for	review)	

	 58	

A.2 Work Breakdown Viewpoint

Overview

A	well-known	reference	describes	the	Work	Breakdown	Structure	(WBS)	as	follows:	
“The WBS is a product-oriented family tree that leads to the identification of the functions, activities,
tasks, subtasks, work packages, and so on, that must be performed for the completion of a given pro-
gram. It displays and defines the system (or product) to be developed, produced, operated, and sup-
ported, and portrays all of the elements of work to be accomplished. The WBS is not an organizational
chart in terms of the project personnel assignments and responsibilities, but does represent and or-
ganization of work packages prepared for the purposes of program planning, budgeting, contracting,
and reporting.” [16]

Note	immediately	that	the	role	of	the	WBS	in	financial	matters	(budgeting,	reporting)	is	second-
ary	 to	 its	 role	 in	 planning	 and	 organizing	 the	work	 to	 be	 performed.	 (That’s	 why	 it’s	 called	
the	Work	Breakdown	Structure.)	In	that	sense	it	is	fundamental,	not	incidental,	to	the	practice	of	
systems	 engineering.	 It	 does,	 of	 course,	 play	 a	 role	 in	 financial	 matters,	 but	 that	 is	 primarily	
because	the	most	rational	way	to	plan	budgets	and	accrue	costs	is	to	align	the	accounting	struc-
ture	with	the	actual	structural	decomposition	of	the	work	to	be	performed.	Financial	structures	
follow	work	structures,	not	the	other	way	around.	

A	simple	endeavor	that	can	be	successfully	accomplished	by	one	person	or	a	small	cooperating	
team	does	not	necessarily	require	a	WBS,	and	it	almost	certainly	does	not	require	a	hierarchical	
WBS	with	multiple	levels.	More	complex	enterprises,	however,	are	characterized	by	the	need	to	
divide	 the	 work	 up	 in	 ways	 that	 can	 be	 delegated	 to	 teams,	 each	 team	 having	 considerable	
discretion	 in	 the	 execution	 of	 its	 tasks,	 including	 the	 further	 subdivision	 of	 those	 tasks	 into	
subtasks	and	their	assignment	to	sub-teams.	This	leads	to	the	familiar	tree-structured	WBS.	We	
say	each	node	in	this	tree	is	an	Authority,	meaning	that	it	represents	the	power	to	author	(that	is,	
to	 create).	 The	 edges	 in	 the	 tree	 represent	 delegation	 of	 authority;	 a	 higher-level	 Authority	
assigns	some	subset	of	its	authoring	power	to	a	lower-level	Authority.	
There	are,	of	course,	other	powers:	the	power	to	require,	to	review,	to	ratify,	to	reject,	to	direct,	
etc.	Each	of	 these	can	be	seen,	however,	as	an	exercise	of	authoring	power:	 to	state	a	 require-
ment,	to	write	a	review,	to	issue	a	statement	of	ratification,	to	issue	a	policy	directive,	etc.	While	
it	may	seem	a	bit	artificial	at	first,	construing	authority	as	the	power	to	create	gives	us	a	simple	
organizing	principle	 for	models	 that	allows	 for	a	natural	association	between	authorities	 (pro-
grams,	projects,	work	packages)	and	the	things	they	produce	(designs,	reports,	hardware,	soft-
ware,	science	data,	etc.).	

With	this	in	mind	we	can	say	that	a	primary	role	of	the	Work	Breakdown	Structure	is	attribution,	
ensuring	that	every	decision	made	over	the	course	of	a	project	is	traceable	to	a	single	authority—
not	directly	to	a	person—but	to	a	persistent	authority	that	endures	regardless	of	the	assignment	
of	any	particular	person(s)	 to	 it.	Project	Systems	Engineering	 is	a	good	example:	every	project	
has	 (according	 to	 the	JPL	Standard	Project	WBS	Template [17])	a	work	package	 for	Project	Sys-
tems	Engineering.	This	package	has	a	more	or	less	clearly-defined	scope	of	authority,	including	
authoring	Level	 2	 requirements.	 Implicit	 in	 the	 allocation	 is	 the	 idea	 that	 the	Level	 2	 require-
ments	 are	 those	 requirements	 and	 only	 those	 requirements	 attributable	 to	 Project	 Systems	
Engineering.	

	 	 (initial	release	for	review)	

	 59	

In	 a	 document-centric	 process	 attribution	 is	 implied	 by	 documents;	 Level	 2	 requirements	 are	
collected	into	a	document	and	the	entire	document	is	attributed	to	Project	Systems	Engineering.	
In	a	more	modern	information-centric	process	the	document	is	a	generated	artifact,	constructed	
by	querying	a	knowledge	repository	 for	L2	requirements	attributable	 to	Project	Systems	Engi-
neering.	 The	 attribution	 in	 this	 case	 is	 explicit.	 (One	 of	 the	 key	 goals	 of	 information-centric	
practice	 is	 to	 supplement	 human	 cognition	 with	 computing;	 doing	 so	 requires	 making	 infor-
mation	explicit.)	

The	Work	Breakdown	View	evolves	as	the	project	evolves.	High-level	architectural	decisions	in	
early	phases	determine	not	only	what	systems	are	to	be	acquired,	but	how	work	is	to	be	delegat-
ed.	A	mission	that	commits	exclusively	early	to	solar	power	will	not	need	to	allocate	resources	or	
delegate	design	authority	to	engineering	radioisotope	thermal	sources.	The	final	WBS	recapitu-
lates	the	project’s	history	of	considering	options,	choosing,	and	delegating.	

The	uniqueness	of	a	WBS	to	a	project	is	at	odds	with	the	desire	to	standardize	management	and	
reporting	 practices	 across	 projects,	 collecting	metrics,	 observing	 trends,	 etc.	 JPL	 has	 grappled	
with	these	opposing	principles	by	publishing	a	guide	to	Work	Breakdown	Structure	Tailoring [18].	
The	result	 is	confusing,	 largely	because	of	the	overloading	of	the	WBS	number	to	indicate	both	
type	and	instance.	For	example,	the	Spacecraft	Work	Package	is	required	to	have	number	“06”.	If	
the	“spacecraft”	is	in	fact	a	multi-module	Flight	System,	it	 is	permissible	to	number	these	mod-
ules	“06A”,	“06B”,	“06C”,	etc.,	and	then	continue	with	the	convention	of	designating	their	subsidi-
ary	packages	“06.01”,	“06A.02”,	...,	“06B.01”,	etc.	This	in	turn	leads	to	absurdities	such	as	multiple	
levels	evident	in	the	WBS	diagram	being	considered	the	same	level,	gaps	in	numbering,	etc.	
A	better	approach	is	to	respect	the	Laboratory's	legitimate	interest	in	standardization	by	defin-
ing	 a	 set	 of	 standard	 Work	 Package	types	 (e.g.,	Spacecraft),	 delegation	 rules	 (e.g.,	Spacecraft	
Systems	 Engineering	must	 be	 subsidiary	 to	 Spacecraft),	 and	 requiring	 each	work	 package	 in	 a	
given	 project’s	WBS	 to	 explicitly	 instantiate	 exactly	 one	 of	 these	 types.	 Then	 any	 project	 can	
construct	 a	WBS	 that	matches	 its	 specifics,	 naming	 and	numbering	 as	 it	 chooses,	 as	 long	 as	 it	
complies	with	the	typing	and	composition	rules.	The	Laboratory,	on	the	other	hand,	could	com-
pare	budget	and	schedule	data	across	projects	by	querying	for	the	type	of	information	of	interest,	
without	regard	to	names	and	numbers.	

Allocations

Of	 course,	 it	 requires	more	 than	mere	 authority	 to	 achieve	many	 things.	 It	may	 require	 time,	
money,	access	to	facilities,	etc.	For	this	reason,	delegation	of	authority	is	accompanied	by	alloca-
tions	in	the	form	of	schedules,	budgets,	priorities,	etc.	These	are	the	Concerns	addressed	by	the	
Work	Breakdown	Viewpoint.	A	complete	Work	Breakdown	View	will	associate	with	each	Work	
Package	 (Authority)	 its	 specific	 responsibilities,	 that	 is,	 the	 things	 it	 is	 expected	 to	 achieve	 or	
produce,	along	with	 its	allocations	of	resources.	These	specifics	represent	exercise	of	authority	
by	the	parent	Work	Package	and	are	therefore	attributable	to	 it.	The	pattern	repeats	as	neces-
sary,	 with	 each	 Work	 Package	 authorizing	 subsidiary	 Work	 Packages	 with	 assignments	 and	
allocations.	The	recursion	terminates	when	every	leaf	Work	Package	requires	no	further	delega-
tion.	

	 	 (initial	release	for	review)	

	 60	

Definitions

Prototype Elements Properties extends…
Authority
Program Authority
Project Authority
Work Package Authority
Supplied Element
Element Supplied Element

	

Relationships Properties participants
Authorizes Authority authorizes Authority
Supplies
◼	 	

	 	 (initial	release	for	review)	

	 61	

A.3 “Level 4” “Engineering” Flight Subsystem Viewpoint
This	“Level	4”	“Engineering”	Flight	Subsystem	Viewpoint	is	intended	for	application	to	JPL	flight	
projects,	which	are	those	that	develop	and	operate	systems	for	missions	in	space.	Flight	projects	
possess	one	or	more	components	that	“fly”,	referred	to	here	as	flight	systems,	which	are	in	turn	
comprised	of	the	flight	subsystems.	This	Viewpoint	is	intended	to	specify	realizational	Views	for	
such	subsystems.	

Definitions

Level	—	Level	designation	is	primarily	a	realizational	consideration.	By	convention,	a	Level	4	
component	of	a	JPL	system	is	a	first-tier	subsystem	within	a	major,	separately	deployed,	project	
Element.	 For	 instance,	 the	 power	 subsystem	 of	 a	 flight	 system	would	 usually	 be	 considered	 a	
Level	4	component.	The	system	comprising	these	subsystems	is	considered	a	Level	3	component	
(e.g.,	the	flight	system),	while	Level	5	components	(e.g.,	a	power	distribution	unit)	comprise	the	
subsystems,	 and	 so	on.	However,	 the	 criteria	 for	 this	 leveling	has	been	 comparatively	 flexible,	
resulting	in	typically	uneven	application	across	most	systems,	prompting	formal	definition	a	few	
years	 ago	 in	Flight	Hardware	Hierarchy	and	Nomenclature	 [19].	These	definitions	 remain	 rec-
ommendations	though,	not	requirements;	and	furthermore,	two	distinct	hierarchies	are	defined,	
where	 one	 finds	 “Assembly/Unit”	 below	 “Subsystem”	 in	 one	 and	 “Assemblies”	 above	 “Subsys-
tem”	in	the	other.	Therefore,	devising	an	appropriate	leveling	structure	for	realization	should	be	
considered	part	of	the	architecting	effort,	not	driven	solely	by	precedent	or	policy.	With	leveling	
established,	one	Level	4	realizational	View	would	typically	be	assigned	for	each	Level	4	subsys-
tem,	and	each	would	be	guided	by	this	Viewpoint.	
Various	 factors	 regarding	 functional	 coherence,	 tight	 integration,	 separable	 developments,	
collocation,	fault	containment,	or	other	criteria	will	generally	determine	a	suitable	realizational	
breakdown.	However,	the	functional	units	of	this	composition	are	commonly	drawn	from	concep-
tual	considerations,	and	from	multiple	points	of	view	(e.g.,	packaging,	 thermal	design,	 isolation	
and	grounding,	radiation	shielding,	etc.).	Therefore,	an	important	role	for	realizational	Views	at	
each	 level	is	 to	 establish	 a	 workable	 implementation	 breakdown	 within	 which	 the	 various	
conceptual	 breakdowns	 can	 been	 reconciled.	 That	 is,	 it	 is	 not	 the	 role	 of	 any	 realizational	
View	 to	 establish	 the	 functional	 decomposition	 of	 a	 system,	 at	 any	 level.	 Rather,	 it	 is	 to	
perform	 a	 mapping	 of	 the	 conceptually	 established	 breakdowns	 onto	 realizable	 components.	
This	 is	 generally	 a	 bilateral,	 iterative	 compromise	 between	 conceptual	 and	 realizational	 inter-
ests,	and	similar	issues	apply	across	levels.	In	the	case	at	hand,	Level	4	Views	can	be	developed	
only	within	the	context	of	higher	and	lower	levels.	As	a	consequence,	descriptions	in	this	View-
point	frequently	refer	to	assertions	established	either	realizationally	at	Level	3	or	in	concepts,	as	
a	way	to	explain	the	role	of	Level	4	and	analogous	concerns	at	that	level.	

Subsystem	—	 In	general	usage,	 the	 term	“subsystem”	has	at	 least	 three	 related	but	distinct	
meanings.	In	one	sense,	a	subsystem	is	a	work	unit	of	a	project’s	development	effort,	commonly	
associated	with	a	particular	work	breakdown	Element.	In	another	sense,	a	subsystem	is	a	func-
tionally	bound	set	of	products	 that	 together	comprise	a	major	deliverable	component	of	a	sys-
tem.	As	a	rule,	work	unit	and	work	product	subsystems	are	paired	one-for-one	(ignoring	histori-
cal	oddities	like	“virtual”	subsystems),	because	the	functional	grouping	of	flight	system	compo-
nents	and	the	assignment	of	responsibility	for	their	collective	delivery	are	deliberately	linked	as	

	 	 (initial	release	for	review)	

	 62	

a	management	strategy	intended	to	ensure	maximal	coherence	of	oversight	within	key	functional	
domains.	
In	 the	 third	 sense,	 a	 subsystem	 is	 the	 subset	 of	 a	 system	 (i.e.,	 a	 sub/system)	 identified	with	 a	
particular	 function.	 Any	 item	whose	 removal	 would	 render	 the	 function	 inoperable	would	 be	
considered	part	 of	 the	 subsystem,	 so	 specifications	of	 subsystem	 functionality	 or	performance	
necessarily	entail	all	such	items.	However,	this	functional	composition	rarely	aligns	exactly	with	
the	work	 product	 subsystems	 noted	 above.	 Such	 overlaps	 are	 often	 close,	 but	 sometimes	 not	
close	at	all.	For	 instance,	the	cables	that	connect	power	subsystem	(second	sense)	components	
are	involved	in	meeting	power	subsystem	(third	sense)	requirements,	and	many	others;	yet	the	
system	harness	is	generally	considered	a	separate	subsystem	(second	sense).	
Because	of	their	apparent	relationships,	these	three	different	meanings	are	often	conflated	to	ill	
effect3	 by	 failing	 to	 distinguish	 between	 the	 entity	 responsible	 for	 performance,	 the	 entity	 as-
signed	for	development,	and	the	entity	that	develops	it.	This	Viewpoint	addresses	subsystems	
in	 the	product	 sense,	with	assertions	directed	primarily	at	a	Level	4	entity	under	devel-
opment,	 invoking	 the	 developer	 sense	 only	where	 choices	 of	 technical	 composition	 are	 influ-
enced	 by	 work	 breakdown,	 and	 invoking	 the	 functional	 sense	 primarily	 as	 a	 way	 to	 achieve	
maximal	design	coherence	within	the	chosen	realizational	decomposition.	
To	simplify	reference	to	these	different	meanings,	notation	from	here	forward	will	be	as	follows:	

• SubSystem	(both	initial	and	internal	capitalization)	will	refer	to	the	developing	entity	that	
is	assigned	delivery	responsibility	(sense	1).	

• Subsystem	or	subsystem	(no	internal	capitalization;	initial	capitalization	by	context)	will	
refer	to	the	delivered	subsystem	(sense	2),	the	focus	of	this	Viewpoint.	

• Sub/system	or	sub/system	(internal	slash;	no	internal	capitalization;	initial	capitalization	
by	context)	will	refer	to	a	functional	composition	(sense	3).	

Flight	—	Even	the	term	“flight	system”	may	be	ambiguous.	Some	projects	have	chosen	to	ap-
ply	 this	 term	 to	 every	 part	 of	 the	 overall	 system	 that	 leaves	 Earth,	 including	 all	 stages	 of	 the	
launch	 stack.	 Others	 refer	 spacecraft,	 orbiter,	 probe,	 or	 otherwise,	 rather	 than	 flight	 system.	
Intentions	here	 take	 the	particular	 view	 that	 flight	 systems	are	 those	parts	of	 the	 spacebound	
system	that	are	developed	or	tailored	exclusively	to	meet	mission	objectives.	This	could	include	
kick	 stages,	 carriers,	 or	other	Elements	 that	 are	 abandoned	at	 some	point,	 depending	on	 their	
specificity	to	the	project,	and	it	includes	items	that	perform	their	intended	functions	only	during	
in	situ	 operations	 that	 involve	 no	 flying.	 Flight	 systems	 also	 spend	 a	 substantial	 part	 of	 their	
existence	 in	 ground-based	 testing	 before	 launch,	 during	which	 they	 don’t	 fly	 (except	 possibly	
during	 transport),	 but	 for	 which	 there	 are	 important	 architectural	 implications.	 There	 is	 no	
intent	here,	in	using	the	term	“flight”,	to	exclude	such	considerations.	

Engineering	—	For	 the	purposes	of	 this	example	Viewpoint,	 “engineering”	 flight	 subsystems	
(generally	numbering	around	ten)	are	the	focus	of	attention.	However,	from	a	strictly	technical	
point	of	view,	the	engineering/science	dichotomy	is	somewhat	artificial,	especially	given	Level	4	
considerations.	Some	components	are	not	cleanly	one	or	 the	other,	doing	double	duty	 for	both	

	
3	One	is	likely	to	find	requirements	that	begin	“Subsystem	X	shall	design…”,	suggesting	that	the	design	work	is	to	be	
verified,	but	not	the	implemented	design.	Also,	system-level	performance	requirements	are	often	levied	on	subsys-
tems	 (sense	2),	 even	 though	 the	 targeted	 subsystems	 cannot	 alone	 ensure	 conformance,	 due	 to	dependencies	on	
other	subsystems.	Such	misdirection	generally	leads	to	a	crisscrossed	maze	of	laterally	traced	requirements.	

	 	 (initial	release	for	review)	

	 63	

engineering	and	science,	and	the	distinction	is	even	less	apparent	in	systems	dominated	by	one	
large	 instrument,	 which	 may	 significantly	 subsume	 “engineering”	 functionality.	 For	 in	situ	
exploration,	 both	 science	 and	 engineering	 share	 mutual	 interests	 (for	 different	 reasons)	 in	
assessing	the	context	of	their	operation;	and	so	on.	Thus,	a	general	science	instrument	Viewpoint	
at	this	level	would	be	quite	similar	to	that	presented	here.	
With	such	observations	in	mind,	the	aim	of	this	“Level	4”	“Engineering”	Flight	SubSystem	View-
point	 is	 to	 address	 those	 aspects	 of	 any	 flight	 subsystem,	 instruments	 included,	 that	 are	 not	
exclusively	 about	 their	 ability	 to	 acquire	 science	data.	 Therefore,	 this	Viewpoint	 is	 necessarily	
non-specific	regarding	the	differences	that	distinguish	subsystems	from	one	another.	Instead,	it	
addresses	 those	 issues	 that	 are	 often	 shared.	 It	 is	 evident,	 nonetheless,	 that	 broad	 classes	 of	
subsystems	recur	across	most	flight	systems	(power,	telecom,	attitude	control,	instruments,	etc.),	
so	further	detailed	specializations	of	this	Viewpoint	for	application	to	different	subsystem	
classes	are	expected	and	essential.	

Exclusions

Modularity	—	Besides	partitioning	 into	subsystems,	other	realizational	partitions	ordinarily	
arise	in	describing	a	flight	system	from	a	work	product	point	of	view,	a	common	one	being	the	
notion	 of	 a	module.	 In	 practice,	 a	 module	 is	 rarely	 comprised	 of	 a	 single	 subsystem,	 nor	 are	
subsystems	necessarily	 part	 of	 just	 one	module	 and	no	 other.	 Instead,	 the	 criteria	 for	module	
definition	generally	have	more	to	do	with	issues	of	integration,	where	for	convenience	or	neces-
sity,	it	is	advisable	to	stage	integration	into	tightly	integrated	sub-units	(i.e.,	modules)	that	may	
then	be	integrated	into	the	final	flight	system.	
Modularity	 can	be	motivated	by	 either	 programmatic	 or	 technical	 considerations—often	both.	
Programmatic	 modularity	 can	 be	 driven	 by	 split	 developments	 (e.g.,	 partnerships	 or	 major	
procurement	 relationships);	 technical	 by	 articulation	 or	 re-separation	 in	 flight	 (e.g.,	 scan	 plat-
forms,	atmospheric	probes,	rovers,	etc.)	or	allowance	for	venue	constraints	(e.g.,	accommodation	
in	 special	 test	 environments).	Whatever	 the	 reason	 though,	modularity	 is	 a	 sufficiently	unique	
issue	 to	 require	a	 separate	Viewpoint.	Modularity	 is	 considered	here	only	 to	 the	extent	 that	 it	
affects	subsystem	configuration.	

Deployments	—	 Over	 the	 course	 of	 its	 existence,	 a	 subsystem	 typically	 exists	 in	 other	 ar-
rangements	other	than	its	final	flight	configuration,	but	where	it	must	nonetheless	satisfy	at	least	
a	 subset	 of	 the	 requirements	 imposed	 upon	 it.	 These	 arrangements	 are	 referred	 to	 here	 as	
deployments.	A	deployment	may	 involve	a	complete	subsystem	in	which	only	a	subset	of	 inter-
faces	is	engaged,	or	it	may	involve	just	a	subset	of	the	subsystem,	where	components	are	missing	
or	 replaced	by	alternate	 implementations	 (e.g.,	 emulations).	Both	variations	often	apply	 in	 the	
same	deployment.	
Deployments	 can	 be	 defined	 for	 both	 flight	 and	 pre-flight	 situations.	Modularity,	 as	 described	
above,	 is	a	possible	motivation,	but	there	are	usually	several	others.	Before	flight,	deployments	
typically	occur	during	stages	of	integration	and	test,	where	a	full	system	has	yet	to	materialize.	
Despite	 their	 incompleteness	 though,	 such	configurations	are	used	 for	a	substantial	 fraction	of	
system	V&V,	so	it	is	important	that	the	tests	performed	in	these	configurations	be	relevant	to	the	
system	as	a	whole,	for	which	there	is	seldom	time	or	capability	to	redo	all	such	tests.	As	a	conse-
quence,	subsystem	requirements	are	likely	to	spill	over	into	non-flight	components	and	interfac-
es	 (e.g.,	 emulators,	 direct	 access	 I/O,	non-flight	 cables,	 etc.)	 or	modes	of	 operation	 (e.g.,	 single	

	 	 (initial	release	for	review)	

	 64	

string	 operation,	 software-only	 testbeds,	 etc.)	 that	 are	 exclusive	 to	 these	 deployments.	 Sub-
System	 Views	 address	 how	 this	 approach	 can	 be	 made	 plausible.	 Similar	 variants	 can	 occur	
during	 flight	when	 separations,	 failures	and	other	 irreversible	 state	 changes,	 and	other	events	
alter	the	configuration	in	profound	ways.	In	these	cases,	too,	it	is	common	(or	should	be,	at	any	
rate)	for	requirements	to	invoke	particular	deployments	in	their	expression.	
The	necessity	and	specification	of	different	deployments	generally	goes	well	beyond	the	exigen-
cies	 of	 individual	 subsystems.	 Therefore,	 deployments	 deserve	 a	 separate	 Viewpoint	 and	 are	
considered	 here	 only	 to	 the	 extent	 that	 they	 affect	 subsystem	 configurations	 and	 the	 require-
ments	that	refer	to	them.	It	should	be	noted,	however,	that	the	extent	of	this	dependency	can	be	
considerable.	

Design and implementation	—	During	the	development	of	an	architecture,	many	options	are	
considered	and	eventually	closed,	as	ideas	converge	on	commitments	for	subsequent	design	and	
implementation.	 The	 resulting	 architectural	 assertions	 constrain	 the	 design,	 but	 they	 do	 not	
categorically	determine	it.	Instead	they	leave	ample	space	within	which	design	can	be	exercised,	
just	 as	 design	must	 leave	 allowance	 for	 variation	 in	 implementation.	 Therefore,	 this	 “Level	 4”	
“Engineering”	 Flight	 SubSystem	 Viewpoint	 is	 directed	 primarily	 toward	 the	 assertions	 that	
establish	 the	 architecture	 within	 which	 design	may	 progress.	 Design	 and	 implementation	 are	
considered	here	only	to	the	extent	that	they	affect	subsystem	architecture	choices.	
Restriction	to	architecturally	dictated	assertions	applies	even	where	cost,	risk,	or	other	consid-
erations	result	 in	such	 limited	options	 that	only	an	already	established	product	 is	plausible.	 In	
this	 case,	while	 allowances	must	 be	made	 for	 heritage	 (effectively,	 another	 constraint),	 asser-
tions	should	nonetheless	express	only	what	is	essential	to	the	integrity	of	the	architecture,	once	
reconciled	 with	 heritage,	 rather	 than	 merely	 reciting	 what	 the	 limited	 choice	 happens	 to	 be.	
Specific	details	are	not	appropriate	to	architectural	Views	guided	by	this	Viewpoint.	They	may	be	
addressed	elsewhere,	as	needed,	but	the	architecture	description	should	focus	on	what	is	neces-
sary	for	this	heritage	to	be	acceptable.	
Similar	 exclusions	 apply	 regarding	 the	 assignment	 of	 implemented	 units	 to	 interchangeable	
placements	 across	 or	 within	 subsystem	 deployments.	 For	 instance,	 the	 SubSystem’s	 sparing	
approach,	 selections	 for	 redundancy,	 diversions	 for	 test,	 and	 so	 on	 are	 not	 addressed	 by	 this	
Viewpoint,	 nor	 are	 considerations	 for	 prototypes,	 qualification	 units,	 or	 other	 such	 products.	
These	topics	may	be	addressed	elsewhere,	as	needed.	

Description

Scope	—	The	scope	of	a	subsystem	View	that	is	developed	in	accordance	with	this	Viewpoint	
would	generally	be	quite	broad,	 if	 considered	 for	 its	 functional	 aspects.	These	are	 likely	 to	 in-
clude	most	of	the	following,	and	possibly	a	few	others:	

• Performance	(range,	resolution	or	sensitivity,	accuracy,	capacity,	noise,	error	rate,	nonline-
arities,	stability,	alignment…)	

• Redundancy	(block/functional,	voting,	usage	rules…)	
• Ports	or	connections	(power,	data,	mechanical/packaging,	thermal,	shielding,	test,	direct	
access…)	

• Environmental	tolerance	(types,	allowed	ranges	and	stability,	interference/disturbance	
to/from	other	components…)	

	 	 (initial	release	for	review)	

	 65	

• Electrical	compatibility	(grounding,	isolation,	interference…)	
• Behavior	(reset	and	startup,	operating	modes,	configuration	management,	dynamics,	I/O,	
warmup/cooldown,	programmability,	damage/waste/hazard	avoidance,	failure	modes,	
fault	detection,	isolation,	containment,	and	recovery…)	

• Deployments	(separation,	release,	extension,	articulation…)	
• Computing	(computers,	software,	algorithms…)	
• Data	flow	(storage,	busses,	networks,	point	to	point	connections…)	
• Time	(clocks,	synchronization…)	
• Reliability	(failure	rate,	lifetime	versus	usage,	environmental	dependencies…)	
• Resources	(tracking	and	management	of	power,	mass,	data,	propellant…)	
• Geometry	(shape,	fields	of	view,	configuration/emission	space,	orientation,	reference	
frame,	sense/actuation	axes,	phasing,	alignment	features…)	

• Other	accommodations	(oversight,	co-alignments,	stray	light…)	
• Operational	needs	and	constraints	(maintenance,	exercise,	calibration,	software	or	parame-
ter	updates,	keep	out	zones,	other	“flight	rules”	…)	

• Testing	(simulated	environment,	emulators,	monitoring	and	recording…)	
All	such	topics	can	influence	a	subsystem	View.	However,	it	is	important	to	note	that	for	the	most	
part,	such	issues	flow	from	conceptual	considerations	that	are	then	mapped	to	the	realiza-
tional	subsystems	addressed	by	this	Viewpoint.	While	a	subsystem	View	may	be	productively	
organized	 in	 correspondence	 with	 conceptual	 divisions	 of	 this	 sort,	 attention	 in	 subsystem	
Views	should	be	to	the	mapping	from	these	conceptual	roots	to	the	selected	set	of	compo-
nents	 that	 will	 realize	 them	 as	 deliverable	 products.	 Except	 to	 the	 extent	 that	 conceptual	
constraints	may	be	narrowed	by	realizational	considerations,	any	added	functional	elaboration	is	
probably	better	suited	to	conceptual	Views.	
As	addressed	 further	here,	 the	mapping	 from	concepts	 to	realization	 is	not	merely	a	matter	of	
declaring	 associations.	 Numerous	 rounds	 of	 development	 are	 involved	 as	 mapping	 proceeds,	
new	 components	 and	 interconnections	 are	 identified,	 constraints	 are	 negotiated	 and	 refined,	
delegation	 to	 lower	 levels,	 and	 so	 on.	 Each	 subsystem	 View	 that	 is	 guided	 by	 this	 Viewpoint	
would	address	this	full	spectrum	of	issues.	

Composition	—	A	Level	4	flight	subsystem	would	have	no	purpose	without	a	conceptual	man-
date.	Concepts	are	vital	 in	establishing	the	functional	structures	(composition	and	interconnec-
tions)	 that	 are	 embodied	by	 subsystems.	Nonetheless,	 the	particular	 composition	of	 any	 given	
subsystem,	as	a	product,	does	not	necessarily	 align	entirely	with	any	of	 its	 various	 conceptual	
counterparts	 (as	 discussed	 above).	 The	 mapping	 of	 conceptual	 Elements	 to	 realizational	 Ele-
ments	is	seldom	determined	by	considerations	regarding	a	single	subsystem	alone.	Even	where	
mapping	 choices	 are	 straightforward,	 or	 are	 guided	 by	 precedent,	 convention,	 or	 functional	
affinities,	this	mapping	should	never	be	taken	for	granted.	Therefore,	a	key	role	of	realizational	
Views	involved	in	this	mapping	is	to	explain	it.	
Examples	of	mapping	alternatives	are	easy	to	find:	

• One	might	choose,	for	instance,	to	assign	the	load-bearing	functions	of	an	actively	articulat-
ed	joint	to	a	mechanical	structure	subsystem,	to	which	a	separate	controlling	actuator	be-
longing	to	another	subsystem	is	then	attached;	or	alternatively,	both	roles	can	be	combined	
in	a	load-bearing	actuator	that	is	assigned	to	just	one	subsystem.	

	 	 (initial	release	for	review)	

	 66	

• A	high	gain	antenna	in	a	telecom	subsystem	might	be	chosen	(or	not)	to	supply	sun	shading	
so	that	a	thermal	subsystem	need	not	supply	a	separate	shade.	

• Drive	electronics	for	a	propulsion	subsystem	engines	and	valves	might	be	part	of	that	sub-
system,	or	part	of	a	power	subsystem,	or	part	of	an	attitude	control	subsystem.	

In	 these	 mappings,	 the	 choice	 is	 not	 just	 which	 sub/system	 Elements	 are	 assigned	 to	 which	
subsystems	(as	in	the	drive	electronics	example	above).	It	may	also	be	whether	or	not	different	
sub/system	Elements	should	be	mapped	to	the	same	subsystem	component	(as	 in	the	antenna	
example),	or	which	sub/system	Elements	should	be	split	across	multiple	subsystem	components	
(as	 in	 the	 actuator	 example).	 It	 is	 likely	 as	 well	 that	 some	 realizational	 Elements	 that	 would	
normally	be	considered	a	single	unit	must	be	partitioned	in	order	to	provide	subsets	that	can	be	
mapped	cleanly	to	conceptual	notions.	

• For	instance,	it	is	common	for	fault	containment	regions	(a	conceptual	notion)	to	straddle	
functional	interfaces,	such	that	the	containment	region	encompassing	one	realizational	unit	
also	incorporates	a	part	of	another	(e.g.,	the	switch	in	a	power	distribution	unit	being	with-
in	the	fault	containment	region	for	the	switched	load).	

In	all	such	matters,	subsystem	assignments	and	cross-subsystem	allocations	are	a	Level	3	mat-
ter—not	 Level	4—unless	 the	 choice	 is	 explicitly	 delegated.	 This	 does	 not	 mean	 that	 Level	4	
concerns	are	irrelevant	to	such	choices.	It	means	only	that	cross-subsystem	considerations	are	to	
be	addressed	at	the	flight	system	level,	given	contributions	from	all	concerned.	
Situations	 like	 this	 highlight	 the	 distinction	 between	 subsystem	as	 a	 developed	 item	 and	 Sub-
System	as	a	developer,	where	the	difference	between	who	and	what	 is	unavoidable	and	signifi-
cant.	 Participation	 in	 the	 Level	3	 mapping	 of	 flight	 system	 functional	 structure	 onto	 Level	4	
components	is	clearly	in	a	Level	4	SubSystem’s	interests.	Indeed,	SubSystems	often	author	major	
portions	of	the	conceptual	Views	that	drive	the	subject	mapping.	Thus,	their	active	involvement	
is	essential,	and	the	allowances	they	assert	regarding	what	choices	are	acceptable	are	a	vital	part	
of	 any	 such	 trades.	 Level	4	 Views	 should	 document	 such	 allowances.	 However,	 Level	3	 is	 the	
deciding	authority;	and	when	choices	are	settled,	those	choices	that	matter	at	Level	3	are	assert-
ed	and	explained	at	Level	3.	Only	where	options	are	overtly	 left	open	and	delegated	 for	 lower	
level	choice	is	Level	4	the	driving	authority,	engaged	correspondingly	with	Levels	5	and	below	(if	
defined).	This	pattern	repeats	across	all	levels.	
A	 frequent	 variant	 of	 this	 pattern	 occurs	 whenever	 the	 existence	 of	 a	 Level	4	 component	 is	
asserted	 for	which	 there	 is	no	specific	conceptual	component	 to	mandate	 it.	This	 is	most	com-
mon	where	the	type	of	component	has	been	conceptually	defined	and	accommodated,	but	with-
out	particular	instances	having	been	preidentified.	Examples	of	this	are	also	easy	to	find:	

• Electrical	power	switches	and	their	associated	power	loads	are	defined	as	part	of	a	concep-
tual	power	sub/system,	but	without	an	a	priori	enumeration	of	particular	switch↔load	
pairs.	At	Level	3,	a	choice	to	assign	switches	to	the	power	subsystem	and	loads	to	other	
subsystems	does	not	completely	determine	the	composition	of	the	power	subsystem.	In-
stead,	whenever	a	component	from	another	concept	is	realized	and	the	realizing	Element	is	
declared	to	be	a	switched	electrical	power	load,	an	associated	switch	must	then	be	asserted	
to	exist	as	part	of	the	power	subsystem.	

• Given	freedom	to	choose,	a	multicomponent	subsystem	(e.g.,	an	instrument)	might	be	inte-
grated	into	different	numbers	of	realizational	units,	depending	on	packaging	choices,	prox-
imity	constraints,	or	other	considerations.	A	Level	4	choice	to	partition	can	lead	to	the	need	

	 	 (initial	release	for	review)	

	 67	

for	external	connecting	cables,	which	might	then	become	part	of	a	separate	harness	subsys-
tem.	

This is an example of interface reification, where a sub/system concept establishes that components
are to have an interface, but without asserting the realization of this interface. If an intermediary com-
ponent (e.g., a cable) must be added to realize the interface, then the interface is said to be reified via
this addition, and new interfaces arise as a consequence (in this case, box and cable connectors).

• The	items	(structure,	chassis,	optics,	etc.)	that	determine	mechanical	alignment	between	
two	flight	system	components	usually	reside	in	different	subsystems.	Conceptually,	the	
manner	of	assessing	end-to-end	alignment	and	sub-allocating	an	error	budget	may	be	de-
fined,	but	the	particular	items	in	each	alignment	chain	are	determined	elsewhere,	wherever	
particular	Level	4	components	realizing	the	chain	are	identified.	

• The	thrusters	in	a	propulsion	subsystem	reside	within	a	conceptually	defined	propulsion	
sub/system	concept,	but	constraints	on	their	number	and	geometrical	arrangement	are	
likely	drawn	from	concepts	for	attitude	control,	mechanical	configuration,	thermal	design,	
and	others.	Thruster	redundancy	would	reflect	a	fault	containment	concept,	and	so	on.	And	
that’s	just	the	thrusters.	Level	3	mapping	will	address	some	of	these	issues,	but	unfolding	
details	will	prompt	substantial	expansion	at	Level	4.	

• Similar	situations	arise	with	mounting	structure	and	mechanical	configuration,	radiation	
shielding,	pointing,	inertial	ballast,	data	management,	and	many	others.	The	realizational	
components	identified	to	fulfill	functional	roles	are	often	complex	elaborations	of	functional	
counterparts	that	have	been	defined	only	in	general	terms.	

A	key	role	of	subsystem	Views	is	to	carry	such	additional	realizational	breakdown	beyond	what	
can	be	 accomplished	 at	 Level	3	 such	 that	 conceptual	 structures	 can	be	 fully	mapped.	Where	 a	
new	 component	 is	 identified	 as	 an	 instance	 of	 some	 defined	 conceptual	 type,	 the	 associated	
conceptual	View	is	liable	to	change	as	well	with	the	introduction	of	additional	constraints	target-
ed	to	that	 instance,	and	the	subsystem	View	can	declare	allowances	that	must	be	made	for	the	
added	component.	Thus,	additions	are	subject	to	the	same	give	and	take	between	conceptual	and	
realizational	concerns	as	in	initial	rounds	of	mapping.	
Whenever	a	Level	4	component	is	identified	with	no	particular	conceptual	precursor	(i.e.,	not	just	
one	of	an	already	defined	types),	new	Level	3	issues	may	arise	with	its	discovery.	Thus,	it	would	
be	 inappropriate	 to	 assume	 that	 every	newly	 identified	 component	 is	 necessarily	 delivered	 as	
part	of	the	subsystem	where	the	need	for	it	arose.	Even	a	priori	delegations,	which	are	generally	
asserted	by	type	(e.g.,	that	all	externally	routed	cables	will	be	part	of	the	harness	subsystem)	can	
allow	exceptions	(e.g.,	allowing	connecting	cables	to	be	part	of	a	partitioned	instrument	might	be	
wise),	so	Level	3	always	plays	a	controlling	role.	

Whenever a need is asserted before any conceptual approach is defined to meeting it, this reversal
prompts no change in eventual composition descriptions, once the need is addressed. However, unan-
ticipated need may be sufficiently noteworthy to warrant explanation in a View.

Again,	this	pattern	repeats	across	levels,	so	a	Level	4	subsystem	View	should	play	a	comparable	
role	relative	to	subordinate	levels	(if	any).	

Interconnections	—	The	assignment	of	flight	system	interfaces	(and	Relationships	generally)	
among	subsystems	closely	follows	the	pattern	for	composition	described	above.	Most	Relation-
ships	 are	 defined	 conceptually	 among	 Elements,	 so	 the	 mapping	 of	 conceptual	 Elements	 to	
realizational	 components	 naturally	 translates	 these	 Relationships	 to	 subsystem	 components.	

	 	 (initial	release	for	review)	

	 68	

Authority	for	mapping	choices	therefore	extends	accordingly	to	Relationships.	However,	because	
each	 Relationship	 involves	 two	 or	more	 components	 that	may	 or	may	 not	 be	 assigned	 to	 the	
same	subsystem,	it	 is	not	the	Relationship	itself	that	is	assigned,	but	rather	participation	 in	the	
Relationship.	This	is	proper,	given	that	any	given	component	can	provide	only	their	own	contri-
bution,	which	must	be	separately	specified.	
The	authority	 for	handling	 the	details	of	design	 for	any	given	Relationships	 lies	at	 the	 level	 to	
which	 a	 Relationship	 has	 been	mapped.	 For	 a	 flight	 system,	 Relationships	 that	 span	multiple	
subsystems	would	 be	 addressed	 at	 Level	3.	However,	 it	 is	 also	 a	 Level	3	 prerogative	 to	 assign	
components	in	a	Relationship	to	the	same	subsystem,	in	which	case	this	Level	4	responsibility	is	
assigned	by	Level	3.	 In	 fact,	 the	nature	of	Relationships	 is	often	a	prominent	 factor	 in	deciding	
the	mapping	to	subsystems,	because	it	becomes	a	SubSystem	responsibility	then	to	establish	the	
details	of	design	that	realize	subsystem	Relationships.	

Such	matters	may	become	tangled	and	confusing	unless	careful	attention	is	given	to	the	concep-
tual	 origins	 of	 Relationships,	 because	 different	 Relationships	 typically	 need	 to	 be	 addressed	
differently,	even	where	the	same	components	are	involved.	For	instance:	

• Given	the	flight	system	harness	as	a	separate	subsystem,	a	cable	that	reifies	a	conceptual,	
intra-subsystem	data	interface	would	typically	be	specified	at	Level	3,	as	necessary	to	ad-
dress	applicable	flight	system	level	concerns	(e.g.,	routing,	bundling,	wire	treatment,	etc.).	
However,	details	of	data	content	and	protocol	are	normally	irrelevant	to	a	cable’s	design.	
These	can	still	be	specified	at	Level	4,	because	as	far	as	the	conceptual	data	interface	is	con-
cerned,	this	is	still	an	intra-subsystem	interface,	and	the	cable	is	not	germane.	Similar	con-
siderations	would	apply	for	network	or	bus	interconnections	among	subsystem	compo-
nents.	

• An	inertial	reference	unit	in	an	attitude	control	subsystem	is	typically	attached	to	the	flight	
system	basebody	in	order	that	sensor	rotations	can	be	related	to	those	of	the	basebody	ref-
erence	frame.	Many	smaller	inertial	bodies	are	rigidly	connected	to	form	the	combined	in-
ertia	of	the	basebody,	and	among	the	smaller	inertial	bodies	is	the	inertial	reference	unit.	
Therefore,	the	mechanical	interface	to	the	inertial	reference	unit	plays	different	roles	in	two	
distinct	Relationships,	one	relative	to	the	system	reference	frame,	the	other	relative	to	the	
center	mass.	Both	matter	intrinsically	to	the	attitude	control	sub/system	concept,	but	nei-
ther	is	a	Level	4	matter.	

Upon	a	completely	elaborated	mapping	of	conceptual	structure	into	realizable	components,	a	full	
set	of	interfaces	among	subsystem	components	and	with	other	subsystems	is	defined.	These	are	
the	Relationships	commonly	represented	 in	system	and	subsystem	block	diagrams	or	 in	 inter-
face	lists	and	related	artifacts.	In	a	realizational	setting,	 it	may	be	appropriate	to	organize	such	
information	 by	 component	 rather	 than	 by	 functional	 affinity.	 However,	 the	 particular	 realiza-
tional	form	taken	by	a	conceptual	sub/system	is	generally	important	as	well,	so	both	should	be	
described.	
Functionally,	 interfaces	draw	their	purpose	from	conceptual	origins,	and	each	participant	in	an	
interface	must	 support	 it	with	behavior	 in	 accordance	with	 the	 concept	 in	which	 it	 is	defined.	
This	would	normally	include	performance	criteria	or	other	constraints	on	the	interface	proper-
ties	of	each	participant	that	are	significant	to	the	chosen	conceptual	approach.	The	realizational	
implications	of	such	constraints	are	to	establish	what	ultimately	become	interface	requirements	
on	 each	 component	 (sometimes	 captured	 in	 separate	 interface	 requirements	 document,	 aka	
IRDs,	though	they	are	just	a	subset	of	component-specific	requirements).	Subsystem	Views	must	

	 	 (initial	release	for	review)	

	 69	

acknowledge	such	constraints,	but	 they	do	not	define	 them.	They	may,	however,	 further	refine	
these	constraints,	as	part	of	the	elaboration	of	interfaces	into	realizable	form.	Such	refinements	
contribute	the	interface	requirement	set	for	that	component.	
Further	descriptive	detail	 for	 shared	aspects	of	 an	 interface	design	 (e.g.,	 signal	 characteristics,	
data	 format	definitions,	 fastener	patterns,	etc.)	may	also	be	 included	within	a	subsystem	View,	
but	 it	 would	 generally	 not	 result	 in	 additional	 requirements	 beyond	 the	 component-directed	
constraints	to	adhere	to	such	definitions.	

Requirements	—	All	constraints	asserted	by	the	conceptual	architecture	and	mapped	through	
levels	 to	particular	 realizational	 products	must	 eventually	 be	 solidified	 as	Requirements.	 Each	
Requirement	expresses	an	agreement	between	the	parties	involved.	Within	a	work	breakdown,	
requirement	authority	usually	follows	the	work	breakdown	hierarchy,	so	at	the	subsystem	level,	
requirements	would	reflect	an	acceptance	by	the	SubSystem	of	the	constraints	levied	on	subsys-
tem	 components	 by	 virtue	 of	 the	mapping	 established	 at	 Level	3,	 for	 which	 the	 flight	 system	
work	Element	is	the	authority.	Therefore,	SubSystem	acceptance	of	the	requirements	constitutes	
formal	Level	4	acceptance	of	the	mapping	established	at	Level	3,	and	a	corresponding	Relation-
ship	applies	at	Level	5	with	respect	to	the	mapping	performed	at	Level	4.	
A	potentially	 confusing	 aspect	 of	 this	 alignment	between	 constraints	 and	 requirements	 is	 that	
the	“flow-down”	through	levels	via	a	work	breakdown	hierarchy	might	somehow	be	expected	to	
mimic	the	functional	elaboration	that	is	explored	in	conceptual	Views.	It	does	not.	Traceability	of	
requirements	 in	 the	conventional	sense,	as	one	requirement	established	to	help	 fulfill	another,	
derives	entirely	from	conceptual	considerations.	What	flows	from	level	to	level	are	choices	about	
how	to	successively	map	functional	roles	onto	realizable	components.	The	consequent	allocation	
of	constraints	is	then	embodied	in	a	set	of	Requirements	at	each	level.	But	traceability	is	about	
constraint	dependencies,	not	requirement	levels.4	
Consequently,	the	collection	of	Requirements	in	a	subsystem	View	should	reflect	authority	flow	
and	responsibility,	comprising	only	those	Requirements	that	can	be	met	by	the	subsystem	alone,	
and	 therefore	 that	 express	 commitments	 that	 the	 SubSystem	 can	 make	 unilaterally	 for	 the	
products	it	delivers.	An	expected	product	of	this	compilation	is	a	Requirement	document	suitable	
for	signature	approval	by	the	involved	authorities.	
Where	Requirements	can	be	narrowed	even	further	to	apply	to	a	particular	component	within	a	
subsystem,	there	is	 little	value	in	associating	the	Requirement	with	the	subsystem	as	well.	Any	
issues	with	whether,	or	how,	or	where	 the	Requirement	 is	 to	apply	belongs	with	 the	mapping	
process	 for	 aligning	 conceptual	 and	 realizational	 structure,	 which	 includes	 the	 mapping	 of	
constraints.	 An	 explanation	 of	 this	 mapping	 should	 be	 included	 in	 the	 subsystem	 View,	 but	
having	done	so,	Requirements	belong	with	the	commitment	to	meeting	them.	

Assumptions	—	During	the	evolution	of	an	architecture,	before	all	constraints	are	identified,	
or	while	the	specifics	of	constraints	remain	fluid,	it	is	common	for	working	assumptions	to	guide	

	
4	In	conventional	document-oriented	processes,	a	typical	manifestation	of	the	distinction	between	level	dependen-
cies	 and	 functional	 dependencies	 is	 the	 appearance	 of	 “applicable	 documents”	 within	 a	 leveled	 document	 tree.	
Conceptual	aspects	of	 the	product	 in	question	generally	determine	what	 is	applicable.	For	 instance,	 requirements	
applicable	 to	 a	 telecom	 subsystem	 component	 might	 address	 environmental	 design,	 electrical	 grounding,	 mass	
allocation,	 safety,	 fault	 tolerance,	 and	 several	 others	 that	 apply	 across	many	 subsystems	 and	 at	 different	 levels.	
Flowing	these	through	the	level	hierarchy	is	not	necessary	for	traceability.	

	 	 (initial	release	for	review)	

	 70	

development	with	the	understanding	that	these	assumptions	must	eventually	be	resolved.	Once	
an	architecture	is	stable,	there	should	be	no	open	assumptions	left.	Therefore,	if	an	architecture	
description	portrayed	merely	this	final	state,	it	would	have	no	place	for	assumptions.	This	is	not	
the	 only	 purpose	 of	 an	 architecture	 description	 though.	 It	 is	 also	 an	 explanation	 for	 why	 the	
architecture	 is	as	 it	 is.	Solid	rationale	of	 this	sort	 is	essential	 to	the	stability	of	an	architecture,	
because	 good	 decisions	 backed	 by	 solid	 reasoning	 are	 least	 likely	 to	 change,	 especially	 when	
everyone	 understand	 this	 rationale.	 Stability	 of	 the	 design	 space	 rendered	 in	 an	 architecture	
description	enables	 subsequent	design	and	development	work	 to	proceed	smoothly	and	confi-
dently.	
The	resolution	of	assumptions	into	actionable	constraints	is	an	important	part	of	the	process	for	
bringing	an	architecture	to	stable	closure.	Assumptions	are	in	effect	questions	that	an	architec-
ture	must	answer.	They	generally	arise	from	experience	that	suggests	likely—or	at	least	plausi-
ble—options	 that	 permit	 work	 to	 proceed	 at	 risk	 until	 these	 questions	 can	 be	 settled.	 Such	
assumptions	can	come	in	many	guises.	For	instance:	

• For	entry	into	an	atmosphere,	we	assume	profiles	for	density,	wind,	and	so	on.	
• For	operation	in	the	outer	solar	system,	we	assume	that	radioisotope	power	is	necessary.	
• For	navigation	to	an	asteroid,	we	assume	radiometric	services	from	the	DSN	are	sufficient.	
• Until	instruments	are	selected,	we	assume	a	reasonable	bound	on	data	rates	and	volume.	

etc.	
Assumptions	can	apply	to	allowances	as	well.	For	instance:	

• For	mass	estimates,	we	assume	that	cable	mass	can	be	extrapolated	via	a	simple	model.	
• For	pointing,	we	assume	that	star	tracker	performance	will	not	be	threatened	in	the	desti-
nation	environment.	

• For	actuator	lifetime,	we	assume	that	prior	qualification	is	applicable	to	the	intended	usage.	
• etc.	

Nothing	should	be	taken	for	granted	in	such	enumerations.	
Resolution	of	 an	assumption	generally	 takes	one	of	 two	 forms,	 though	 rarely	one	or	 the	other	
exclusively.	 The	 first	 form	 is	 a	 demonstration	 of	 some	 sort,	whether	 by	 observation,	 analysis,	
test,	 or	 expert	 evaluation	 that	 an	 assumption	 is	 correct.	 The	 other	 form	 is	 to	 accept	 that	 an	
assumption	may	not	be	correct,	but	 that	 the	 likelihood	of	 this	 is	acceptable.	Clearly,	a	project’s	
interests	lie	in	the	first	form,	as	much	as	possible.	Much	of	what	we	do	to	gain	confidence	in	the	
quality	and	reliability	of	a	system	before	deployment	 is	aimed	at	 this	outcome.	The	more	solid	
the	 demonstration,	 the	 better.	 However,	 absolute	 certainty	 is	 a	 rarity	 (and	 prone	 to	 negation	
where	it	exists),	and	situations	arise,	especially	where	exploration	is	involved,	that	defy	a	priori	
resolution	with	 negligible	 risk.	 Therefore,	 dealing	with	 assumptions	 is	 part	 of	 the	 overall	 risk	
management	process.	

Models	—	As	 realizational	 decisions	 are	made	 and	 the	 particulars	 of	 these	 choices	 are	 de-
fined,	it	is	generally	necessary	to	consult	such	information	in	the	conceptual	analyses	that	assess	
realization	relative	to	the	constraint	placed	upon	it.	
Such	information	might	be	as	simple	as	an	estimated	value	for	a	property	bounded	by	a	concept,	
in	which	case	margin	between	the	estimate	and	the	bound	provides	a	measure	of	reassurance	for	
the	 realizational	 approach.	 A	 rollup	 of	 realizational	 mass	 estimates,	 for	 instance,	 would	 be	

	 	 (initial	release	for	review)	

	 71	

compiled	to	assess	both	subsystem	allocations	and	system	mass	margin	overall,	with	comparison	
against	asserted	margin	policy.	
More	 generally	 though,	what	may	be	needed	 in	order	 to	 characterize	 realizational	 choices	 are	
more	elaborate	models	of	composition	or	behavior.	These	complications	often	arise	as	a	conse-
quence	 of	 the	 convergence	 of	 conceptual	 variety	 in	 a	 single	 item.	 For	 instance,	 a	 device	 that	
requires	power	in	order	to	perform	its	assigned	function	must	provide	a	model	that	establishes	
this	 connection	 in	 order	 that	 scenarios	 used	 in	 conceptual	 analyses	 can	 take	 this	 dependency	
into	account.	Associated	with	this	connection	can	be	thermal	constraints,	startup	modes,	inrush	
power,	 interference	with	 other	 items,	 competition	 for	 resources,	 and	 so	 on,	 each	 arising	 from	
different	conceptual	perspectives	that	all	unite	in	the	same	realizational	Element.	
Whatever	their	form,	complexity,	or	purpose,	models	of	the	consequences	of	realizational	choic-
es	 are	 part	 of	 every	 subsystem	View.	 The	models	 addressed	 a	 subsystem	View	 are	 those	 that	
arise	from	the	composition	of	subsystem	Elements,	while	the	models	of	mapped	units	within	this	
composition	are	addressed	at	the	next	level.	To	the	extent	that	a	subsystem	is	well	delineated	in	
its	functionality	relative	to	other	subsystems,	the	subsystem’s	model	(or	models)	can	be	substan-
tially	 different	 from	 a	mere	 aggregation	 of	 unit	 models,	 and	 it	 is	 generally	 desirable	 that	 the	
details	 of	 unit	models	 can	 be	 hidden	 or	 abstracted	 in	 a	way	 that	 simplifies	 its	 usage	 at	 flight	
system	or	higher	levels.	This	will	depend	on	the	topic	of	interest.	For	instance,	an	attitude	control	
subsystem	can	generally	be	characterized	by	its	combined	pointing	performance	(ignoring	added	
contributions	from	intermediate	structure),	but	a	model	of	power	for	the	same	subsystem	would	
typically	 conceal	 little	 about	 the	 power	 of	 its	 components,	 except	 to	 provide	 modal	 bounds,	
which	may	or	may	not	be	good	enough	for	system	power	management.	
The	 models	 created	 for	 realizational	 description	 should	 be	 documented	 in	 accordance	 with	
architecting	 framework	 guidance	 for	Models	 generally,	 declaring	 their	nature,	 purpose,	 prove-
nance,	usage	limitations,	fidelity,	and	so	on.	The	details	of	the	Model	itself	will	generally	be	in	the	
form	of	 constraints	 (on	Properties,	 composition,	or	otherwise),	 and	as	 such	can	be	 considered	
part	 of	 the	 allowances	 captured	 in	 every	 realizational	 View.	 That	 is,	 if	 a	 Model	 asserts	 some	
behavior	or	other	characteristic,	then	all	constraints	levied	on	the	modeled	item	must	accommo-
date	this	possibility—with	suitable	margins.	

Analyses	—	As	realizational	choices	are	asserted	and	the	constraints	associated	with	concep-
tual	to	realizational	mapping	converge	in	particular	components,	it	becomes	necessary	to	justify	
these	choices	by	demonstrating	that	each	component	 is	realizable,	as	constrained,	and	that	the	
collective	choice	for	the	set	is	well	chosen	among	other	alternatives	that	may	have	been	possible.	
Demonstrating	these	attributes	is	an	essential	obligation	for	every	subsystem	View.	
The	rationale	for	these	decisions	will	generally	take	the	form	of	analyses	in	which	the	composi-
tion	and	properties	of	the	subsystem	are	compared	to	the	constraints	mapped	onto	them.	Models	
used	in	these	analyses	might	be	similar	to	those	provided	for	conceptual	analyses,	but	there	are	
often	added	realizational	considerations	that	can	be	confined	to	realizational	consideration.	For	
instance,	 a	 lifetime	model	might	 consider	materials,	 temperatures,	 radiation,	 operating	 cycles,	
and	so	on	that	can	be	bundled	into	simple	operational	abstractions	for	conceptual	interests.	For	
this	reason,	realizability	should	be	addressed	differently	in	subsystem	Views.	

As	with	other	models	though,	there	may	be	both	subsystem-level	and	component-level	analyses.	
Subsystem	Views	should	consider	the	realizability	of	their	components	in	assessing	the	realiza-

	 	 (initial	release	for	review)	

	 72	

bility	 of	 the	 aggregate	 subsystem,	 but	 the	 details	 for	 each	 component	 are	 better	 addressed	 at	
subordinate	levels.	

Description	—	Distinct	from	the	constraints	that	define	it	and	the	models	that	describe	it	is	a	
realizational	Element’s	actual	implementation.	This	is	not	an	architectural	matter	directly,	since	
a	good	architecture	would	deliberately	make	 room	 for	a	variety	of	 implementations.	Nonethe-
less,	 documentation	 of	 the	 implementation	 provides	 an	 important	 service	 in	 validating	 the	
architecture.	Wherever	implementation	struggles	to	meet	an	architecture	or	where	the	architec-
ture	must	bend	to	accommodate	reality,	there	are	lessons	to	be	learned,	because	the	architecture	
has	failed	to	establish	a	viable	design	space.	Where	a	stable	architecture	permits	smooth	imple-
mentation,	this	too	deserves	attention,	as	an	example	to	be	emulated.	A	key	purpose	for	rigorous	
architecting	methodology	 is	 the	continuity	 it	provides	 from	project	 to	project	and	the	 legacy	 it	
leaves	that	enables	steady	improvement.	
To	 meet	 these	 aims,	 the	 description	 of	 an	 implementation	 should	 include	 an	 overview	 of	 its	
design	in	a	way	that	permits	straightforward	identification	with	conceptual	representations	and	
with	the	Models	created	for	analyses	in	both	conceptual	and	realizational	contexts.	The	veracity	
of	these	Models,	as	part	of	the	architecture	description,	is	important.	Likewise,	a	subsystem	View	
should	also	report	on	or	refer	to	the	assessment	of	implementation	against	constraints	imposed	
on	 the	 subsystem.	 These	 constraints	 are	 the	 source	 of	 requirements	 against	 the	 implemented	
product,	 so	 this	 inclusion	 creates	 explicit	 ties	 to	 the	 verification	 and	 validation	 efforts	 of	 the	
project.	

Finally,	the	eventual	flight	history	of	a	subsystem	should	also	find	a	home	in	a	subsystem	View,	
as	 the	 ultimate	 validation	 of	 its	 integrity.	 This	may	 not	 be	 possible	 until	 be	many	 years	 after	
implementation,	but	when	architecting	is	taken	seriously,	it	is	carried	to	the	end.	

Authorship	—	The	scope	of	a	View	specified	by	this	“Level	4”	“Engineering”	Flight	Subsystem	
Viewpoint	is	a	particular	subsystem,	as	established	at	Level	3.	A	subsystem	is	typically	assigned	
to	a	particular	Element	of	the	project’s	work	breakdown	(in	this	case,	to	a	SubSystem),	initially	
by	discipline	(for	the	most	part)	and	eventually	by	the	resulting	composition,	once	this	is	deter-
mined.	Accordingly,	custody	 for	 the	associated	subsystem	View	would	normally	be	assigned	to	
the	same	SubSystem.	
Where	delegated	from	Level	3,	a	subsystem	View	asserts	further	choices	regarding	the	mapping	
of	conceptual	structure	to	the	components	comprising	the	Level	4	subsystem.	This	View	may	in	
turn	delegate	mappings	 to	Level	5,	 as	deemed	appropriate.	These	are	SubSystem	prerogatives,	
which	it	asserts	and	explains	via	the	subsystem	View.	
As	described	previously,	the	mappings	under	consideration	are	from	defined	conceptual	compo-
nents	to	their	realizational	counterparts,	so	a	realizational	View	is	not	responsible	for	expanding	
the	conceptual	component	set	to	be	realized	(aside	from	problematic	discoveries	of	unanticipat-
ed	 need,	 as	 already	 noted).	 However,	 an	 a	priori	 enumeration	 of	 all	 realizational	 instances	 is	
rarely	possible,	generally	awaiting	the	elaboration	of	functional	components	into	realizable	form.	
As	 this	 situation	unfolds	 at	 Level	4,	 the	 expanded	mapping	 is	negotiated	across	 levels,	 as	with	
other	components,	with	additions	being	asserted	and	explained	in	the	subsystem	View.	
Through	 the	mappings	 it	 declares,	 a	 Level	4	 View	 serves	 as	 clearinghouse	 for	 the	 conceptual	
constraints	 allocated	 to	 a	 subsystem	 and	 its	 components.	 In	 addition,	 though,	 each	 such	 View	
declares	any	allowances	deemed	necessary	to	make	the	asserted	mappings	realizable,	whether	

	 	 (initial	release	for	review)	

	 73	

from	a	 technical	or	programmatic	point	of	 view.	This	 is	 a	key	SubSystem	responsibility,	 and	a	
Level	4	 View	 is	 the	 medium	 through	 which	 such	 allowances	 are	 reconciled	 with	 constraints	
mapped	from	Level	3,	and	then	resolved	into	a	workable	Level	4	subsystem	architecture.	

Reporting Artifacts

To	be	provided	

◼

	 	 (initial	release	for	review)	

	 74	

Appendix B View Templates
Following	are	View	templates	developed	several	years	ago	for	the	Europa	Clipper	project.	They	
are	well	aligned	with	the	architecting	framework	described	here,	but	the	circumstances	of	their	
development	 was	 not	 ideal	 and	 they	 were	 not	 extensively	 used,	 nor	 was	 adequate	 tooling	 in	
place	 at	 the	 time	 to	 support	 such	 use.	 Furthermore,	 the	 limited	 experience	 that	was	 obtained	
with	 them	 demonstrated	 a	 tendency	 to	 treat	 templates	 as	 inflexible	 forms	 to	 be	 completed,	
rather	 than	guidelines	 to	 suggest	organization	and	 content.	Therefore,	 the	notion	of	 templates	
per	se	needs	to	be	reconsidered.	With	that	caveat,	these	templates	are	offered	as	raw	mate-
rial	from	which	future	training	material	or	other	guidance	might	be	derived.	

continued	next	page	

	 	 (initial	release	for	review)	

	 75	

B.1 Conceptual View Template

Outline

Introduction	
Issues
Assumptions
Context
Viewpoint

Summary
Approach

Composition
Behavior
Elements, etc.
Extracted Requirements

Outcome
	
For	 complex	 Views,	 it	may	 be	 useful	 to	 reiterate	 this	 template	 for	 each	 of	multiple	 subtopics.	
That’s	fine;	or	you	can	distribute	parts	among	sub-Views,	wherever	the	parts	stand-alone	easily.	
A	sub-View	may	have	multiple	parent	Views,	so	a	finer	grain	breakdown	can	help	better	organize	
related	ideas.	

Introduction

Issues

Indicate	clearly	the	issues	(from	Concerns	or	parent	Views)	addressed	by	the	View.	
Issues	should	be	either	success	criteria	from	Concerns,	or	constraints	imposed	in	a	parent	
View.	The	aim	is	to	clearly	show	traceability	from	Concerns	to	Views,	and	Views	to	sub-Views.	
Issues	are	a	subset	of	all	constraints	defined	within	the	scope	of	the	View	(i.e.,	within	parent	
and	higher	Views	and	Concerns).	In	particular,	they	are	the	subset	that	has	been	assigned	to	
this	 View	 for	 further	 elaboration.	 All	 other	 in-scope	 constraints	 are	 presumed	 to	 be	 true.	
However,	any	reliance	upon	these	constraints	should	be	noted	explicitly	in	the	View.	
Assumptions

If	additional	assumptions	need	to	be	made,	list	all	of	them,	clearly	identified	as	assumptions.	
Each	will	be	treated	as	an	open	item,	to	be	promoted	eventually	(if	accepted)	to	a	constraint	
in	a	parent	View	or	Concern,	at	which	point	the	assumption	can	be	dropped.	
Context

List	parent	Views	and/or	Concerns	from	which	the	issues	addressed	in	this	View	are	drawn.	
Similarly,	list	sub-Views	(if	any)	in	which	derived	issues	identified	in	this	View	are	to	be	elab-
orated.	This	can	be	shown	diagrammatically,	if	desired.	

[Note:	Lists	will	be	accomplished	automatically	in	later	versions	of	View	Editor	via	explicit	links	
associated	with	 issues.	Similarly,	context	diagrams	will	be	created	externally	for	transclusion	
into	the	View.	The	association	rules	described	below	will	be	prescribed.]	

	

	 	 (initial	release	for	review)	

	 76	

The	associations	identified	here	are	navigable	in	both	directions.	That	is,	a	parent	entry	in	a	
sub-View	is	necessarily	listed	as	a	child	entry	in	the	parent	View,	and	vice	versa.	A	sub-View	
can	have	more	than	one	parent	View,	and	conversely.	An	association	between	Views,	or	from	
Concern	to	View,	is	needed	only	where	specific	issues	have	been	identified	for	elaboration,	as	
described	below	under	Approach.	There	are	no	lateral	associations	between	Views.	Overlaps	
are	established	by	common	parents	and	reconciled	in	shared	sub-Views.	
[Note:	The	association	rules	described	above	will	be	enforced	automatically	in	the	model.]	

Viewpoint

Identify	the	Viewpoint	(if	any)	that	guides	this	View.	If	one	does	not	already	exist,	make	an	
entry	noting	this	absence.	
[Note:	This	will	be	accomplished	in	later	versions	of	View	Editor	via	explicit	links.	The	absence	of	
a	link	will	be	taken	automatically	as	an	open	item.]	
Standard	 nomenclature	 and	 representation	 formats,	 theoretical	 background,	 trusted	 data	
sources,	 institutional	 guidelines,	 helpful	 aids,	 and	 other	 information	 of	 this	 sort,	which	 are	
likely	 to	 be	 applicable	 to	 multiple	 projects,	 are	 the	 proper	 subject	 of	 Viewpoints.	 These	
should	 be	 included	 by	 reference,	 where	 possible,	 rather	 than	 duplicating	 authoritative	
sources.	

Summary

Explain	briefly	the	overall	approach	to	the	issues	at	hand	and	an	indication	of	how	well	they	
are	addressed.	This	should	be	comparable	in	length	and	composition	to	the	abstract	for	a	pa-
per.	The	purpose	is	to	help	the	reader	decide	whether	they’ve	found	information	relevant	to	
their	interests.	For	instance,	a	list	of	summaries	might	be	compiled	as	a	concise	directory	into	
the	architecture	description.	

Approach

The	approach	describes	how	the	issues	identified	in	the	Introduction	are	to	be	handled.	One	
should	expect	this	section	to	comprise	a	major	portion	of	the	View.	

It	is	not	enough	simply	to	claim	that	each	issue	is	addressed	satisfactorily.	Such	a	statement	
requires	 justification.	This	 is	accomplished	throughout	the	narrative	of	the	approach	by	de-
scribing	and	explaining	the	architectural	structure	for	addressing	the	issues	of	the	View,	and	
by	providing	supporting	analysis,	as	necessary,	to	make	a	compelling	case.	
Justification	should	also	 include	mention	of	 the	Trades	 (separately	documented)	 that	were	
performed	to	narrow	options	to	the	selected	choice.	They	should	also	appeal	to	any	analyses,	
tests,	 or	other	 actions	 that	demonstrate	 the	effectiveness,	 efficiency,	performance,	 or	other	
characteristics	of	the	approach	pertinent	to	the	issues	addressed	by	the	View.	

Composition

Architectural	structure	identified	in	the	approach	will	frequently	include	functional	elabora-
tion	or	augmentation	of	Elements	identified	in	a	parent	View	into	a	composition	of	intercon-
nected	 parts	 (sub-Elements),	 showing	 how	 the	 parts	 work	 together	 to	 address	 the	 con-
straints	imposed	upon	the	whole.	This	explanation	may	unfold	in	stages,	fostering	new	sub-
ordinate	issues,	which	is	why	issues	may	flow	to	sub-Views	for	further	elaboration.	

	 	 (initial	release	for	review)	

	 77	

Within	such	a	composition,	each	sub-Element	has	an	assigned	role	(i.e.,	its	Functions	and	Re-
lationships).	One	can	think	of	these	(and	illustrate	them	accordingly)	in	terms	of	block	dia-
grams	(where	boxes	and	lines	are	Elements	and	Relationships,	respectively).	
A	 typical	 system	supports	 several	 such	 conceptual	 elaborations,	 according	 to	what	 issue	 is	
being	addressed.	However,	within	any	given	View,	focus	should	be	strictly	on	the	one	compo-
sition	 that	 is	 relevant	 to	 the	 issues	 at	 hand,	 no	matter	 how	 abstract	 and	 non-specific	 this	
might	 be.	 Thus,	 Elements	 needn’t	 be	 particular	 system	 components,	 and	 Relationships	
needn’t	be	particular	system	interfaces.	This	is	why	they	are	called	conceptual	Elements	and	
Relationships.	Details	 about	 such	 things,	 as	 needed	 to	 support	meaningful	 analysis,	 are	 ac-
quired	through	mapping	to	realization,	as	addressed	in	the	Outcome	section	described	below.	
Sub-Elements	and	the	Relationships	between	them	will	generally	be	subject	to	a	set	of	con-
straints	on	their	Properties	that	must	be	true	in	order	to	successfully	address	applicable	is-
sues.	Constraints	can	express	what	we	know	or	expect	about	items	that	already	exist,	or	what	
we	assert	 is	necessary	regarding	the	design	or	operation	of	 items	we	make.	Properties	that	
require	no	constraints	needn’t	be	mentioned.	

Tolerance	 for	variation	 is	a	key	aspect	of	 risk	management.	Explain	clearly	what	variations	
must	be	addressed	in	the	architecture,	whether	driven	by	uncertainty	or	a	need	for	flexibility.	
Describe	how	allowance	is	made	in	constraints	for	these	variations.		

Behavior

The	approach	addressed	 in	a	View	will	also	generally	need	 to	describe	 intentions	 for	using	
the	items	defined.	This	usage	will	exercise	the	behavioral	characteristics	of	 items,	generally	
definable	 in	behavior	 constraints	 on	 the	 time-varying	Properties	 (i.e.,	 states)	of	Elements	
and	Relationships.	These	behavior	constraints	may	be	state	equations,	or	they	may	merely	be	
bounds	on	state	variations.	Since	behaviors	are	commonly	grouped	by	mode,	behavior	con-
straints	can	be	expressed,	at	least	in	part,	via	state	machine	diagrams.	Consult	modelers	for	
preferred	 conventions	 regarding	 the	 definition	 of	 Properties	 and	 associated	 behavior	 con-
straint	expressions.	
Some	behaviors	are	sufficiently	complex	 to	 require	exceptional	 treatment.	This	can	 include	
expression	in	specialized	tools,	or	modeling	techniques	needing	extraordinary	validation,	etc.	
Such	Models	should	be	identified	in	the	View	as	products	in	their	own	right	that	need	to	be	
separately	documented	and	managed.	
Often,	a	more	elaborate	description	may	be	needed	 to	 fully	describe	 intended	usage.	These	
cases	are	described	in	Scenarios,	each	of	which	lays	out	a	progression	of	events	or	activities	
that	unfold	over	time,	involving	the	Elements	cited	in	the	approach	as	Scenario	participants,	
and	exercising	the	various	behavioral	characteristics	that	have	been	established	in	their	be-
havior	constraints.	The	objective	of	a	Scenario	is	to	show	that	the	resulting	aggregate	behav-
ior	addresses	the	issues	identified	in	the	Introduction.	

Scenarios	can	be	expressed	in	a	variety	of	ways,	including	sequence	diagrams,	activity	dia-
grams,	 and	 others.	 Consult	modelers	 for	 preferred	 conventions	 regarding	 Scenario	 Repre-
sentation.	
Conceptual	Scenarios	address	only	 those	aspects	of	usage	that	are	directly	related	to	the	is-
sues	at	hand	in	the	conceptual	View.	Details	about	the	interrelationships	among	various	con-
ceptual	Views	are	addressed	separately	in	integrated,	realizational	Scenarios,	where	the	con-

	 	 (initial	release	for	review)	

	 78	

straints	 describing	 crosscutting	 behavioral	 dependencies	 are	 addressed.	 Conceptual	 Views	
can	refer	to	these	realizational	results	in	their	assessments	of	an	approach.	
[Note:	Scenarios	will	be	 separately	documented	and	mentioned	by	reference	at	 some	point,	 in	
order	to	permit	Views	to	exercise	shared	Scenarios.	This	will	generally	not	be	suitable	for	con-
ceptual	Scenarios	(given	separation	of	Concerns),	so	for	now,	documenting	conceptual	Scenarios	
as	part	of	the	View	is	appropriate.]	

Elements, etc.

With	the	approach	complete,	list	the	Elements	that	have	been	added	and	exercised	in	Scenar-
ios,	and	for	each	identified	Element,	list	the	Properties	and	Functions	assigned	to	it.	In	addi-
tion,	list	the	identified	Relationships	and	their	Properties.	The	preceding	narrative,	including	
all	constraints	articulated	within	it,	should	be	expressed	solely	in	terms	of	these	listed	items.	
[Note:	These	listings	will	be	accomplished	automatically	in	later	versions	of	View	Editor	by	tag-
ging	terms	within	the	text.	These	items	will	then	be	linked	to	one	another,	wherever	they	appear,	
including	in	block	diagrams,	tables,	and	so	on,	such	that	all	instances	remain	consistent.]	

Extracted Requirements

Upon	mapping	conceptual	Elements	to	realizational	Elements,	the	assertions	made	in	the	ap-
proach	become	requirements,	as	follows:	

Implementation	 is	 required	 for	 each	 realized	Element	 (and	by	 association,	 its	Relation-
ships,	Functions,	and	Properties).	
Satisfaction	 is	 required	 for	 each	 derived	 constraint	 (behavioral	 or	 otherwise)	 on	 the	
Properties	of	Elements	and	Relationships.	
Operation	 is	required	to	 follow	the	manner	described	 in	Scenarios	 for	participating	Ele-
ments.	

Each	such	requirement	should	be	listed.	It	will	be	a	common	pattern	to	work	backward	from	
requirements	to	architectural	assertions	in	Views,	but	the	objective	in	the	long	run	is	to	make	
requirements	to	result	of	View	assertions,	rather	than	their	source.	
[Note:	This	requirement	listing	will	be	accomplished	in	later	versions	of	View	Editor	by	tagging	
terms	within	 the	 text.	 Assertions	will	 then	be	 extracted	and	 re-expressed	automatically	 in	 re-
quirement	form,	subject	to	further	refinement	by	the	user.]	

Outcome

Revisit	 the	 issues,	stating	how	well	 they	are	addressed	by	the	approach,	given	their	 full	ex-
pression	 in	 realization.	That	 is,	 for	 each	 realization	of	 a	 conceptual	 element	defined	 in	 this	
View,	apply	the	patterns	of	composition	and	interaction	defined	in	this	View,	and	show	how	
the	issues	addressed	in	this	View	are	satisfied	in	each	case.	Sub-allocations,	as	additional	de-
rived	constraints,	may	be	warranted.	
Each	issue	identified	in	the	Introduction	should	be	handled	individually	and	explicitly	across	
all	realizations.	Where	the	issue	is	expressed	as	a	constraint,	the	results	of	analyses	should	be	
cited,	 indicating	 expectations	 relative	 to	 the	 constraint.	 This	would	 typically	 include	 an	 as-
sessment	of	uncertainties	and	the	margins	put	in	place	to	accommodate	these	potential	varia-
tions.	Where	outcomes	are	particularly	sensitive	to	certain	factors,	even	if	 those	factors	are	
well	constrained,	this	feature	should	be	highlighted.	

	 	 (initial	release	for	review)	

	 79	

The	analyses	used	to	support	conclusions	will	sometimes	be	sufficiently	complex	to	require	
exceptional	 treatment.	 This	 can	 include	 assessment	 in	 specialized	 tools,	 or	 analysis	 tech-
niques	needing	extraordinary	validation,	etc.	Such	Analyses	should	be	identified	in	the	View	
as	products	in	their	own	right	that	need	to	be	separately	documented	and	managed.	

Indicate	the	traceability	path	for	constraints	gathered	from	realization	that	are	subsequently	
sub-allocated	in	Outcome.	
□	

	

B.2 Realizational View Template

Outline

Definition
Realizational Element(s)
Conceptual Mapping
Categorization

Mapped Constraints
Generic Constraints
Specific Constraints
Assumptions
Requirements

Description
Allowance Constraints
Integrated Scenarios

	
For	complex	Views,	it	may	be	useful	to	reiterate	this	template	for	each	of	multiple	subtopics.	You	
can	also	distribute	parts	among	sub-Views,	wherever	the	parts	stand-alone	easily.	In	the	follow-
ing	discussion,	any	references	 to	“separate	realizational	Views”	can	be	 taken	to	mean	either	of	
these	 two	 organizations.	 However,	 unlike	 conceptual	 sub-Views,	 where	 the	 View	 hierarchy	
reflects	the	interwoven	flows	of	functional	decomposition,	a	realizational	sub-View	may	not	have	
multiple	parent	Views.	The	realizational	View	hierarchy	is	strictly	organizational,	in	the	manner	
of	a	document	tree.	It	should	be	comparatively	flat.	

▼ If	this	template	must	be	abridged	for	some	reason,	non-heading	paragraphs	preceded	
by	‘▼’	(as	in	this	instance)	may	be	omitted,	along	with	immediately	subsequent	non-
heading	paragraphs	at	the	same	or	increased	indentation	level.	Endnotes	are	also	option-
al.	However,	any	abridged	result	should	be	clearly	labeled	as	abridged	and	should	include	
a	reference	to	the	full	template.	

▼ Only	paragraphs	beginning	with	an	imperative	(Indicate…		List…		Describe…	and	so	on)	
are	intended	to	invoke	realizational	View	content.	Everything	else	is	provided	as	explana-
tion	and	guidance.	

▼ In	all	instances	within	this	template,	sections	specifying	a	list	should	be	constructible	
automatically	from	the	system	model,	once	the	appropriate	model	connections	are	made.	
Every	subsection	of	this	template	with	an	Italicized	Heading	consists	entirely	and	exclu-
sively	of	such	a	list.	Guidelines	here	for	these	lists	are	intended	mainly	to	facilitate	the	

	 	 (initial	release	for	review)	

	 80	

identification	of	appropriate	modeling	connections,	not	to	prompt	additional	documenta-
tion	for	the	identified	items	except	where	additions	are	explicitly	noted.	

Definition

The	essential	purpose	of	a	realizational	View	is	to	gather	all	relevant	information	about	a	par-
ticular	deliverable	product	within	the	architected	system,	or	about	a	related	item	in	an	exter-
nal	system	or	environment,	or	about	some	meaningful	composition	of	such	things.	These	are	
referred	to	as	realizational	Elements.	
The	essential	character	of	a	realizational	Element	is	established	via	its	identification	with	var-
ious	 conceptual	 Elements.	 A	 conceptual	 Element	 is	 merely	 a	 restrictive	 representation	 of	
some	realizational	Element;	so	conversely,	a	realizational	Element	is	each	conceptual	Element	
that	it	realizes.	The	distinction	between	them	is	entirely	in	the	information	exposed,	which	in	
conceptual	 Views	 is	 topic-specific,	 and	 in	 realizational	 Views	 is	 product-specific	 (or	 item-
specific	for	non-products).	

▼ Defining	realizational	Elements	is	a	fundamental	aspect	of	system	architecture,	because	
these	Elements	constitute	the	system	to	be	implemented	in	accordance	with	the	architec-
ture.	Substantial	deliberation	and	review	are	necessary	to	settle	on	an	appropriate	collec-
tion	of	realizational	Elements,	properly	categorized	and	mapped,	so	proper	Definition,	
as	follows,	is	an	essential	first	step	for	any	realizational	View.	

Realizational Element(s)

Indicate	clearly	what	realizational	Element(s)	is	addressed	by	the	View.	In	this	context,	to	
be	realized	means	to	be	given	actual	or	physical	form	through	an	explicit	mapping	of	one	or	
more	conceptual	Elements	to	a	designated	realizational	Element.	Thus,	realizational	(i.e.,	ac-
tual)	Elements	are	the	concrete	forms	taken	by	conceptual	Elements	asserted	in	the	architec-
ture.	

▼ To	put	it	another	way,	conceptual	Elements	are	the	abstracted	representations	of	real	
system	Elements,	as	considered	from	some	conceptual	point	of	view	(i.e.,	from	the	per-
spective	of	an	operator,	a	test	engineer,	a	product	manager,	a	designer	in	some	discipline,	
a	stakeholder	for	some	concern,	an	environmental	specialist,	and	so	on).	In	this	regard,	it	
is	as	possible	to	start	with	something	real	and	treat	it	from	different	conceptual	points	of	
view,	as	it	is	to	see	different	conceptual	points	of	view	converge	in	some	real	thing.	There-
fore,	the	mapping	between	concept	and	realization	is	not	to	be	considered	sequential,	as	
in	concepts	preceding	realizations.	For	some	things,	concepts	come	first,	and	reality	
evolves	(as	in	design);	for	others,	reality	comes	first,	and	is	then	abstracted	(as	in	sci-
ence);	and	a	little	of	each	can	happen	too	(as	with	legacy	technology).	From	an	architec-
tural	point	of	view,	conceptual	and	realizational	Views	are	peers,	each	needing	to	be	rec-
onciled	with	the	other.	
As	peers,	the	concept–realization	mapping	is	navigable	in	both	directions.	That	is,	a	reali-
zational	View	must	be	cognizant	of	all	conceptual	Elements	that	are	realized	by	its	realiza-
tional	Element;	and	conversely,	a	conceptual	View	must	be	cognizant	of	all	realizational	
Elements	 that	 realize	 its	 conceptual	 Elements.	 This	 mapping	 is	 consequently	 a	 central	
means	(the	other	being	by	top	down	elaboration)	by	which	lateral	architectural	connec-
tions	are	made	and	mutual	consistency	is	established.	

	 	 (initial	release	for	review)	

	 81	

An	essential	feature	of	a	good	architecture	is	tolerance	to	variation,	whether	such	varia-
tion	arises	from	acquisition	choice,	development	uncertainties,	manufacturing	tolerances,	
measures	taken	for	decoupling,	margin,	or	other	reasons.	Therefore,	when	a	realizational	
View	is	about	a	product,	 it	 is	generally	not	about	a	particular	design	or	implementa-
tion.1	Rather,	the	intent	is	to	reflect	and	embrace	the	range	of	possible	products	(different	
designs,	parameters,	configurations,	providers,	or	whatever)	that	are	declared	acceptable	
within	 the	 conceptual	 architecture.	 A	 realizational	 View	 narrows	 what	 the	 conceptual	
Views	allow	only	to	the	extent	reflected	in	conceptual	mapping	choices.	
The	same	principle	applies	when	a	realizational	View	is	about	a	specific,	preexisting,	ex-
ternal	 item,	which	may	nonetheless	be	subject	to	uncertainty	or	change.	Whether	this	is	
another	system	or	an	environmental	item,	it	is	still	necessary	to	characterize	the	range	of	
possibilities	that	must	be	accommodated	or	tolerated.	

Each	realizational	View	is	generally	dedicated	to	one	particular	kind	of	Element,	all	in-
stances	 of	which	 share	 a	 common	description.	Distinct	 kinds	 of	 Elements	would	be	de-
scribed	in	separate	realizational	Views.	The	emphasis	on	kind	here	is	important,	because	
the	realizational	Element	described	in	a	realizational	View	may	be	instantiated	in	multiple	
delivered	units	of	that	kind.2	

Conceptual Mapping

List	the	conceptual	Elements	that	are	realized	by	the	Element	described	in	this	View.	
▼ A	realizational	Element	will	typically	be	the	realization	of	several	conceptual	Elements	
from	different	conceptual	Views,	each	with	unique	properties	and	behaviors	to	assert.3	
That	is,	a	realizational	Element	can	be	considered	from	many	conceptual	points	of	view.	
All	must	be	considered.	A	major	role	for	realizational	Views	is	to	provide	a	centralized	ac-
counting	for	such	assignments	as	a	means	of	promoting	consideration	of	all	relevant	is-
sues	for	a	given	item.		

Where	 a	 conceptual	 View	 defines	 a	 number	 of	 conceptual	 Elements	 of	 one	 given	 kind,	
there	may	or	may	not	be	more	than	one	realizational	Element	filling	this	role	(with	corre-
sponding	realizational	View),	depending	on	the	nature	of	this	plurality,	as	follows.	

Interchangeable	Elements:		If	a	set	of	conceptual	Elements	is	defined	where	members	
are	asserted	to	be	transposable,	then	only	one	shared	kind	of	realizational	Element	
must	be	defined	 in	 the	 realizational	View.	 In	 cases	 like	 this,	 an	a	priori	 conceptual	
enumeration	of	distinct	roles	will	typically	have	been	asserted	for	these	parts,	 lead-
ing	 to	 their	differentiation	by	 role	within	 a	 composition	 rather	 than	 by	 individual	
specialization.	Differentiation	 of	 roles	 is	 thus	 accomplished	 through	 properties	 and	
behaviors	of	 the	 composition	 (or	 its	Relationships),	 not	properties	 and	behaviors	of	
the	Elements	comprising	them.4	
Different	but	similar	Elements:		If	a	set	of	conceptual	Elements,	all	of	the	same	kind,	is	
defined	in	a	conceptual	View,	but	that	View	does	not	assert	an	a	priori	enumeration	of	
them,	then	any	Element	that	is	declared	to	be	a	realization	of	that	kind	of	conceptual	
Element	 thereby	becomes	a	member	of	 the	set	of	conceptual	Elements	of	 that	kind.5	
Such	cases	rely	upon	enumeration	by	realization	in	order	to	identify	all	instances.6	A	
separate	realizational	Element	for	each	case	must	be	defined,	and	these	will	usual-
ly	need	to	be	defined	in	separate	realizational	Views.	While	all	share	the	characteris-
tics	 of	 their	 kind,	 these	 separate	 realizations	 (to	 the	 extent	 the	 conceptual	 View	 al-

	 	 (initial	release	for	review)	

	 82	

lows)	can	be	individually	tailored	to	their	application.	Differentiation	is	by	speciali-
zation,	so	these	realizations	—	described	separately	—	are	not	interchangeable.	

Categorization

Indicate	 broadly	 the	 sort	 of	 realizational	 Element(s)	 under	 consideration.	 This	 categoriza-
tion	is	mainly	an	organizational	tag,	helping	to	guide	the	sort	of	information	that	is	relevant	
to	 a	particular	 item,	 and	 to	differentiate	meta-level	 architectural	 considerations,	which	 can	
become	confused.	

▼ From	an	architectural	point	of	view,	a	realizational	Element	will	frequently	be	a	termi-
nal	Element,	where	no	assertions	have	been	necessary	regarding	the	internal	composi-
tion	of	the	item	and	where	all	features	of	interest	are	expressed	at	or	behind	its	interfac-
es.7	Each	such	Element	will	typically	appear	within	its	own	realizational	View,	dedicated	
to	the	consolidated	description	of	that	Element.	

Either	a	terminal	realizational	Element	is	an	item	to	be	delivered	as	part	of	the	archi-
tected	system,	or	it	is	a	part	of	some	other	system	comprising	the	context	of	the	archi-
tected	system.	The	former	are	deliverable	products8	that	are	subject	to	constraint	by	
the	architecture,	which	specifies	their	existence,	purpose,	relationships,	composition,	
usage,	and	so	on.	The	latter	may	be	either	external	capabilities9	with	which	the	ar-
chitected	system	has	negotiated	dependencies,	or	environmental	features10	that	the	
architected	system	must	deal	with	in	some	manner.	
These	 may	 be	 further	 categorized	 as	 technical	 Elements,	 comprising	 engineered	
components	(e.g.,	a	hardware	assembly),	operational	teams	(e.g.,	a	test	team),	and	the	
context	within	which	they	operate	(e.g.,	a	launch	vehicle,	a	planet,	or	a	radiation	field),	
or	 as	 programmatic	 Elements,	 comprising	 project	 components	 (e.g.,	 management	
and	work	breakdown	structures)	and	their	collaborators	(e.g.,	development	organiza-
tions,	facilities,	or	services).	

A	realizational	Element	can	also	be	a	composite	Element	(i.e.,	composed	of	other	realiza-
tional	Elements).	The	constituents	of	a	composite	realizational	Element	are	frequently	of	
the	same	category,	but	mixtures	are	also	common.11	
It	is	likely	that	each	constituent	in	this	case	would	already	be	described	separately	in	its	
own	realizational	View,	while	architecturally	relevant	Relationships	among	the	constitu-
ents	 are	 acknowledged	 or	 established	 in	 conceptual	 Views.	 Therefore,	 the	 only	 novel	
statements	 that	 a	 realizational	 View	 can	make	 regarding	 a	 composite	 realizational	 Ele-
ment	are	either	 the	result	of	aggregating	 information	 from	the	constituents,12	and/or	of	
disambiguating	conceptual	compositions	or	Relationships	that	have	been	deliberately	left	
open	by	the	concepts.13	

Mapped Constraints

Constraints	that	apply	to	a	realizational	Element	come	in	different	flavors	according	to	their	
origin,	specificity,	and	other	characteristics.	

▼ Many	constraints	originate	in	conceptual	Views:	
A	conceptual	constraint	can	be	generic	or	specific,	according	to	whether	it	is	applied	
broadly	or	is	tailored	(i.e.,	specialized)	to	each	Element.	

	 	 (initial	release	for	review)	

	 83	

A	specific	conceptual	constraint	can	be	isolated	to	just	one	realizational	Element	or	
involve	others	in	the	broader	context	within	which	the	Element	resides.	
A	specific	conceptual	constraint	can	arise	from	a	priori	considerations	motivated	by	
the	Approach,	or	as	the	result	of	case-by-case	considerations	in	the	Outcome	for	each	
identified	instance.	

Other	constraints	originate	in	realizational	Views:	
Assumptions	are	constraints	that	are	expected	from	conceptual	Views,	but	that	have	
not	yet	been	levied.	Upon	adoption	by	a	conceptual	View,	they	are	no	longer	assump-
tions.	
Allowance	constraints	 reflect	 architectural	 assertions	 regarding	 the	practicalities	of	
realization,	around	which	conceptual	constraints	must	conform.	

Except	for	the	last,	which	is	addressed	below	under	Allowance	Constraints,	these	are	han-
dled,	as	follows.	

Generic Constraints

List	 all	 constraints	 acquired	 by	 the	 realizational	 Element	 solely	 by	 virtue	 of	 its	 concept–
realization	mappings	 to	prototypical	conceptual	Elements	(i.e.,	 constraints	 that	apply	 to	
all	Elements	of	a	given	kind).14	

▼ Generic	constraints	are	subject	to	the	same	acceptance	process	that	applies	between	
successive	conceptual	Views.	
There	should	be	nothing	to	add	here	that’s	not	already	addressed	in	the	originating	con-
ceptual	 Views.	 Associated	 case-by-case	 supplements15	 are	 possible,	 but	 where	 needed,	
these	are	handled	as	Specific	Constraints	(below).	

The	Description	(below)	should	reveal	how	generic	constraints	are	to	be	addressed.	
Specific Constraints

List	all	constraints	associated	with	the	realizational	Element	by	virtue	of	any	specific	refer-
ence	from	a	conceptual	View	to	that	particular	Element.	In	some	cases,	particular	Elements	
are	defined	in	conceptual	Views	and	are	therefore	immediately	subject	to	specific	constraints.	
Where	particular	 instances	 arise	 subsequently	 through	 conceptual	mapping,	 the	 effect	 of	 a	
specific	constraint	 is	 to	specialize	an	Element	with	respect	 to	general	characteristics	 identi-
fied	by	the	conceptual	View.16	

▼ Here	as	well,	specific	constraints	are	subject	to	the	same	acceptance	process	that	applies	
between	successive	conceptual	Views.	

Constraints	that	specifically	refer	to	the	properties	of	one	particular	Element	may	none-
theless	involve	other	Elements	as	well.	Three	cases	are	of	note.	

If	a	constraint	involves	two	or	more	particular	Elements,	then	the	constraint	is	real-
ly	about	some	composition.	Therefore,	it	should	be	dealt	with	in	some	other	View	that	
addresses	 the	 realizational	 Element	 embodying	 their	 composition.17	 Therefore,	 con-
straints	for	this	case	should	not	be	included,	because	they	will	be	listed	instead	with	
the	composite	Element.	

	 	 (initial	release	for	review)	

	 84	

If	a	constraint	involves	one	particular	Element	of	the	architected	system	plus	oth-
er	 unspecified	 Elements	 of	 some	 indicated	 kind	 (e.g.,	 in	 some	 conceptually	 estab-
lished	pattern)	and/or	other	Elements	(particular	or	not)	of	external	systems	or	
environments,	 then	 the	 constraint	 is	 of	motivating	 relevance	only	 to	 the	particular	
Element.	It	should	be	listed,	even	though	the	constraint	has	broader	implications.18,19	
These	are	effectively	a	 set	of	accommodation	constraints	 for	 the	 realizational	Ele-
ment,	so	must	necessarily	be	a	matter	for	attention	only	in	some	conceptual	View	oth-
er	than	the	one	that	originated	it	(refer	to	the	note	below	regarding	the	Accommoda-
tion	 Pattern).	 Because	 the	 accommodation	 is	 handled	 elsewhere,	 the	 Description	
(below)	need	not	address	it.	
Otherwise,	only	one	Element	 is	involved	(though	it	may	be	either	composite	or	at	a	
terminal	 level).	 Clearly,	 any	 specific	 constraint	 isolated	 to	 this	 Element	 should	 be	
listed.	Of	 these	 three	 cases,	 only	 this	 case	directly	 constitutes	a	 requirement	on	 this	
particular	realizational	Element.	The	Description	(below)	should	reveal	how	such	spe-
cific	constraints	are	to	be	addressed.	

There	are	two	situations	where	a	conceptual	View	would	specifically	indicate	an	Element	
that	 is	 uniquely	 realized	by	one	particular	 kind	of	 realizational	Element.	Their	mention	
depends	 on	whether	 or	 not	 they	 arise	 from	 an	a	 priori	 enumeration	 by	 the	 conceptual	
View,	as	follows.	

An	a	priori	enumeration	occurs	wherever	a	conceptual	View	defines	a	few	conceptu-
al	Elements	that	are	unique	to	the	functionality	addressed	by	the	View	and	that	are	de-
fined	 specifically	 to	 serve	 some	 purpose	within	 this	 context.	 Often	 just	 one	 of	 each	
such	Element	 is	needed	 in	 the	conceptual	 composition,	but	 sometimes	collections	of	
interchangeable	Elements	are	needed,	which	work	together	in	a	prescribed	way.20	In	
these	cases,	each	kind	of	conceptual	Element	is	mapped	to	one	realizational	Element.	
Therefore,	any	constraint	levied	in	the	conceptual	View	applies	specifically	to	a	unique	
counterpart	in	some	realizational	View.	
The	alternative	is	enumeration	by	realization,	where	in	many	conceptual	Views,	the	
existence	of	 (or	need	 for)	additional	 conceptual	Elements	 can	be	acknowledged,	but	
no	 a	 priori	 enumeration	 by	 the	 View	 is	 appropriate.21	 Instead,	 enumeration	 occurs	
through	the	concept–realization	mapping	that	indicates	each	specific	instance,	thereby	
identifying	them	as	Elements	relevant	for	consideration	(typically	within	the	Outcome	
section	of	a	conceptual	View).		

Because	enumeration	by	realization	makes	allowance	for	these	instances	to	be	differ-
ent	from	one	another,	despite	their	similarity	in	kind,	it	may	be	appropriate	for	a	con-
ceptual	View	to	consider	each	such	instance	on	a	case-by-case	basis.	 In	doing	so,	the	
need	would	be	determined	for	further	constraints	that	are	particular	to	each	case	and	
thus	directed	 to	specific	 realizational	Elements.	These	specific	 references	often	arise	
from	a	need	to	sub-allocate	a	shared	resource,22	or	to	sub-allocate	contributions	to	a	
shared	performance	budget.23	However,	other	features	that	are	particular	to	each	real-
izational	 case	 are	 also	 potentially	 subject	 to	 such	 added	 constraints.	 Likewise,	 alt-
hough	these	added	constraints	are	likely	to	be	of	the	same	sort	across	all	cases,	vary-
ing	only	by	a	particular	constraint	parameter,	variations	that	are	more	complex	are	al-
so	possible.	

	 	 (initial	release	for	review)	

	 85	

The	Accommodation	Pattern	
It	is	vital	to	note	that	specific	constraints	on	a	realizational	Element	do	not	necessarily	mark	
the	terminus	of	constraint	elaboration.	In	fact,	since	iterative	reconciliation	across	all	the	lateral	
interdependencies	within	an	architecture	is	a	defining	characteristic	of	most	architecting	efforts,	
these	specific	constraints	frequently	mark	just	one	step	in	the	multi-step	process	of	finding,	prop-
agating,	and	converging	a	broadly	interconnected	set	of	constraints.	It	is	preferable,	therefore,	to	
consider	realizational	Views,	not	as	end	states	in	a	flow-down	evolution,	but	rather	as	hubs	for	the	
interaction	of	concepts,	where	their	competing	interests	can	be	resolved.	
The	general	pattern	for	this	interaction	(not	part	of	the	realizational	View)	is	as	follows.	
	 To	start,	suppose	it	has	been	determined	that	some	Element	is	of	interest	to	a	conceptual	View	

and	that	it	is	subject	to	a	specific	constraint.	The	View	may	have	established	the	need	for	this	
Element	in	the	first	place,	placing	specific	constraints	upon	it,24	or	the	Element	may	be	one	of	a	
set	 of	 relevant	 Elements	 enumerated	 by	 realization	 and	 constrained	 elsewhere.25	 In	 either	
case	though,	we	suppose	this	Element	to	be	involved	in	a	constraint	that	governs	properties	
within	the	ambit	of	the	conceptual	View.	

	 If	the	specific	constraint	is	exclusively	on	or	among	properties	of	one	(possibly	composite)	El-
ement	alone,	then	there’s	likely	to	be	little	if	anything	to	add,	and	this	thread	of	interactions	
has	reached	its	end.	So,	suppose	instead	that	the	constraint	involves	some	Relationship	with	
additional	 unspecified	 and/or	 external	 Elements	 (as	 described	 above).	 To	 proceed	 in	 that	
case,	it	would	be	necessary	to	explicitly	enumerate	the	unspecified	Elements	concerned	with	
the	mutual	constraint,	according	to	which	realizational	Elements	match	the	criteria	of	the	con-
straint.26	[To	be	clear,	the	conceptual	View	need	not	assert	the	matching	Elements,	but	it	does	
depend	on	what	they	are,	as	expressed	in	Allowance	Constraints,	discussed	below.]	

	 From	the	mutual	constraint,	there	is	now	an	opportunity	to	separately	derive	additional	indi-
vidual	 constraints	 on	 the	matching	 Elements,	 from	which	 compliance	with	 the	mutual	 con-
straint	 would	 ensue.27	 Each	 of	 these	 derived	 constraints	 is	 a	 specific	 constraint	 associated	
with	a	particular	realizational	Element,	so	the	process	is	reiterated,	broadening	at	each	step	to	
more	realizational	Elements.	

	 In	some	situations,	rather	than	(or	perhaps,	in	addition	to)	deriving	constraints	on	each	of	
the	 separate	 Elements	 sharing	 a	 mutual	 constraint,	 it	 is	 possible	 instead	 to	 constrain	
properties	of	the	realizational	composition	within	which	these	Elements	reside,	such	that	
the	mutual	 constraint	 is	met.	 The	 effect	 of	 this	 is	 to	 declare	 a	 realizational	 composition	
that	is	intended	to	address	the	mutual	constraint	(in	the	same	way	that	one	might	declare	
particular	 properties	 for	 some	 Element	 at	 the	 terminal	 level).	 For	 a	 composition,	 this	
would	be	asserted	through	properties	of	 internal	Relationships	(rather	than	through	the	
properties	of	a	constituent	Element).28	

	 Similar	considerations	can	apply	to	dependencies	within	a	realizational	Element,	where	a	
mutual	 constraint	 among	 different	 conceptual	 Elements	 falls	 not	 upon	 a	 realizational	
composition,	 but	 upon	 a	 single	 realizational	 Element	 to	which	multiple	 conceptual	 Ele-
ments	have	been	mapped.29	

	 Iterations	stop	when	no	further	specific	constraints	need	be	derived.	
Of	course,	any	flow	down	of	issues	in	the	conceptual	View	hierarchy	that	declares	an	a	priori	divi-
sion	of	responsibilities	and	allocations	largely	preempts	this	accommodation	pattern.	Whether	to	
address	an	issue	in	this	top-down	manner	or	to	reconcile	through	lateral	accommodation	is	a	key	
architectural	choice.	

	 	 (initial	release	for	review)	

	 86	

Assumptions

List	all	additional	assumptions,	as	necessary	 to	suggest	potentially	missing	assertions	 from	
conceptual	Views,	clearly	identifying	them	as	assumptions	and	documenting	each	according	
to	the	presumed	need.	

▼ Assumptions	are	potential	constraints.	Each	assumption	will	be	treated	as	an	open	
item,	to	be	promoted	eventually	(if	accepted)	to	a	constraint	from	an	associated	concep-
tual	View,	at	which	point	the	assumption	can	be	dropped.	

Upon	consideration	and	acceptance,	an	assumption	identified	specifically	for	a	particular	
realizational	Element	may	ultimately	be	determined	to	apply	more	broadly.	
Note	that	“self-imposed”	constraints	are	also	a	possibility,	where	a	realizational	Element	
is	 constrained	 for	 reasons	 not	motivated	 or	 accepted	 by	 the	 conceptual	 architecture.	 If	
these	persist	and	do	not	otherwise	result	in	unreconciled	conflicts,	they	can	be	retained,	
but	should	be	treated	merely	as	preferences	or	expectations.	

Requirements

List	every	constraint	(or	conjunction	of	overlapping	constraints,	defined	below)	on	this	reali-
zational	Element	 that	must	be	 treated	as	a	 requirement	because	all	of	 the	 following	condi-
tions	apply:	

1) The	realizational	Element	is	a	product	within	the	architected	system.	
2) The	constraint	originates	in	a	conceptual	View	(e.g.,	not	an	assumption).	
3) It	is	either	a	specific	constraint	exclusively	on	this	realizational	Element,	or	it	is	a	ge-

neric	constraint	applied	to	this	realizational	Element	by	virtue	of	an	explicit	concept–
realization	mapping.	

4) The	constraint	asserts	no	dependencies	between	the	properties	of	this	realizational	
Element	and	the	properties	of	disjoint	Elements	(i.e.,	other	than	component	Elements,	
if	composite).	

▼ Clearly,	requirements	are	merely	a	subset	of	the	collection	of	constraints	associated	
with	a	realizational	Element	(as	listed	above	under	Generic	Constraints	and	Specific	Con-
straints).	
In	this	context,	overlapping	constraints	are	those	that	constrain	the	same	properties	of	
the	 same	 Element.30	 These	 constraints	 would	 generally	 arise	 in	 different	 conceptual	
Views	 for	different	 reasons,	 so	 they	would	normally	not	 constrain	 the	properties	 in	 the	
same	way	or	 to	 the	same	extent.	However,	since	all	must	be	satisfied,	 their	 intersection	
becomes	the	operative	constraint.	Only	one	requirement	statement	 is	needed	to	encom-
pass	this	intersection,	but	traceability	back	to	each	of	the	contributing	constraints	must	be	
retained.	

Add	a	“shall	statement”	rendering	of	each	listed	item.	
▼ Expression	of	such	constraints	(or	conjunctions	of	overlapping	constraints)	in	the	
standard	“shall	statement”	format	for	requirements	is	necessary	only	when	designation	as	
a	specified	product	is	assigned.	This	designation	is	indicated	in	the	Categorization	(de-
scribed	above),	but	it	does	not	become	formal	until	the	Element	is	associated	with	a	deliv-
ering	work	breakdown	Element,	at	which	point	the	requirement	becomes	a	binding	crite-
rion	for	the	product	upon	delivery	from	the	work	breakdown	Element.	Similar	considera-

	 	 (initial	release	for	review)	

	 87	

tions	apply	for	the	authorization	of	product	requirements,	as	part	of	a	globally	applied	ar-
chitectural	pattern	for	assigning	programmatic	responsibilities	for	products.	Thus,	the	no-
tion	of	a	“requirement”	is	not	formally	part	of	the	architecting	framework.	Its	mention	
here	reflects	an	expectation	for	this	standard,	prominent	application	pattern.	

Constraints	 on	 external	 systems	 or	 environmental	 Elements	 are	 not	 requirements,	 be-
cause	their	scope	is	outside	the	architected	system.	Instead,	they	are	merely	presumed	to	
be	true	by	virtue	of	agreement	(for	external	systems)	or	consensus	(for	environmental	El-
ements).	Where	 the	 range	of	possibilities	 is	uncertain,	 these	 constraints	 can	be	used	 to	
declare	the	bounds	that	will	be	accepted	across	the	architecting	effort	for	the	purpose	of	
uniform	risk	management.	

Description

Provide	a	general	description	of	the	item	at	a	level	appropriate	to	addressing	the	conceptual	
architecture,	and	explain	the	essential	characteristics	that	embody	or	enable	this	realization.	
An	elaborate	exposition	here	is	not	necessary.	For	heritage	or	off-the-shelf	implementations,	
it	might	be	as	simple	as	itemizing	the	options	that	are	capable	of	meeting	needs,	along	with	
appropriate	references	and	a	brief	 justification	of	plausibility.	For	significant	adaptations	or	
new	designs,	more	information	is	welcome.	In	either	case	though,	the	aim	is	to	explain	what	
the	realizational	Element	is	well	enough	to	defend	the	conceptual	mapping	and	to	explain	and	
justify	any	Allowance	Constraints,	as	listed	below.	
Differences	in	the	nature	of	various	realizational	Elements	will	motivate	adaptation	in	the	na-
ture	of	content	within	realizational	Views,	as	follows.	

For	 a	 realizational	 Element	 at	 a	 terminal	 level,	 description	 is	 directed	 to	 the	 intrinsic	
characteristics	of	the	Element.	However,	these	vary	according	to	the	Categorization	of	the	El-
ement,	as	described	above.	

▼ If	the	subject	realizational	Element	of	this	View	is	a	terminal	product	(i.e.,	there	is	no	
need,	so	far,	to	assert	further	architectural	decomposition),31	then	summarize	relevant	
features	of	the	product.	Describe	(as	appropriate)	options	for	achieving	the	functionality	
it	is	assigned	by	the	associated	conceptual	Elements,	and	describe	the	resulting	imple-
mentation	considerations	that	are	relevant	to	its	ability	to	realize	these	capabilities.	These	
could	include	physical	or	practical	limitations	of	available	technology,	the	range	of	availa-
ble	vendor	offerings	or	heritage	designs,	resource	or	other	support	needs,	other	coupling	
characteristics	that	bind	otherwise	separate	behaviors	together,	or	any	other	aspects	that	
might	present	programmatic	difficulties	or	competing	technical	factors	in	meeting	con-
straints	acquired	from	realized	concepts.	

If,	from	an	architectural	point	of	view,	the	subject	realizational	Element	of	this	View	is	a	
terminal	part	of	some	external	system	(i.e.,	there’s	no	need	to	be	concerned	with	further	
internal	 structure),32	 then	 describe	 the	 presumed	 capabilities	 upon	which	we	will	 rely.	
These	would	 typically	 include	 performance	 capabilities	 or	 interface	 characteristics,	 but	
not	 internal	structure.	 If	 there	are	reciprocal	constraints	back	upon	the	architected	sys-
tem	as	necessitated	by	utilization	of	an	external	system,	these	are	not	part	of	the	external	
system’s	description,	but	rather	are	assigned	to	the	architected	system	by	whatever	con-
cept	invokes	the	external	capability	in	the	first	place.	

	 	 (initial	release	for	review)	

	 88	

If	 the	 subject	 realizational	 Element	 of	 this	View	 is	 a	 terminal	 part	 of	 the	environment	
around	the	architected	system	(i.e.,	no	 further	environmental	partitioning	 is	relevant),33	
then	describe	the	presumed	environmental	characteristics	with	which	the	system	must	be	
compatible.	These	will	typically	be	selected	design	ranges	for	the	phenomena,	chosen	for	
acceptable	 risk,	 rather	 than	 the	 far	 extremes	 of	 physical	 plausibility.	 Therefore,	 the	de-
scription	should	offer	some	justification	for	the	selected	ranges.	This	description	should	
not	address	the	manner	or	degree	of	interaction	between	the	architected	system	and	the	
environmental	Element.	These	are	addressed	instead	in	whatever	conceptual	View	deals	
with	the	architectural	implications	of	such	environmental	effects.	
Note	that	products	and	external	system	can	also	be	environmental	Elements.34	

If	 the	 subject	of	 the	View	 is	a	composite	realizational	Element,	description	 is	directed	at	
integrated	 characteristics	 of	 the	 composition,	 the	 constituents	 having	 been	 described	 indi-
vidually	in	their	own	Views.	What’s	relevant	will	depend,	as	before,	on	the	nature	of	the	com-
position,	but	also	on	the	sort	of	Relationships	that	connect	the	constituent	Elements.	

▼ If	the	composite	realizational	Element	addressed	by	this	View	is	composed	of	interact-
ing	realizational	Elements	(described	in	other	realizational	Views)	whose	behavior	is	
governed	by	or	contingent	upon	effects	among	the	parts,	then	describe	the	integrated	
“subsystem”	that	these	comprise.35	In	most	cases,	it	will	be	unnecessary	to	reiterate	func-
tional	aspects	of	this	integration	(i.e.,	which	parts	do	what	for	whom),	since	these	will	
have	been	defined	by	the	concept	from	which	the	composition	is	drawn	in	the	first	place.	
Therefore,	the	description	should	attend	instead	to	remaining	ambiguities	regarding	as-
sociations,36	layout,37	or	other	features	of	the	composition	that	are	architecturally	rele-
vant,	but	not	derivable	separately	from	the	parts	or	their	conceptual	origins.38	
If	the	composite	realizational	Element	of	this	View	is	simply	composed	of	associated	re-
alizational	 Elements	 that	 are	 of	 the	 same	kind	 or	 in	 a	 shared	Relationship,	 but	which	
have	no	other	interdependencies	that	are	relevant	to	the	collection	(they	may	be	interde-
pendent	 in	 other	 respects),	 then	 describe	 the	 relevant	 aggregate	 features	 of	 the	 collec-
tion.39	In	most	cases,	it	will	be	unnecessary	to	reiterate	the	reason	for	addressing	particu-
lar	 features,	 since	 these	will	 have	been	defined	by	 the	 concept	 that	 declares	 their	 rele-
vance.	
Both	cases	may	apply	for	some	composite	realizational	Elements,	where	the	parts	inter-
act,	but	only	by	virtue	of	some	mutual	association.	Dynamically	negotiated	resources	are	a	
common	example	of	this,	where	otherwise	unrelated	components	that	have	been	associ-
ated	with	the	same	resource	are	thereby	forced	by	competition	 into	 interdependent	be-
haviors.40	
Note	as	well	 that	different	compositions	can	be	of	 the	same	kind,	 in	 the	sense	 that	 they	
share	a	common	compositional	pattern.41	Each	instance	of	this	pattern	is	effectively	a	spe-
cialization	of	the	pattern,	in	a	manner	analogous	to	the	specialization	of	Element	kinds	at	
the	terminal	level.	Recurring	patterns	are	essential	to	architectural	integrity,	because	they	
are	the	basis	for	understanding	integrated	system	capabilities	and	behavior.	
These	compositions	will	sometimes	comprise	combinations	of	Elements	both	internal	and	
external	to	the	architecture.	For	instance,	an	interface	with	an	external	supporting	system	
is	a	Relationship	between	two	parts	of	a	composition	that	contains	both	internal	and	ex-

	 	 (initial	release	for	review)	

	 89	

ternal	 Elements.	 This	 applies	 to	 composition	with	 external	 environmental	 Elements	 as	
well.	

It	may	occasionally	be	necessary	to	break	a	terminal	realizational	Element	into	parts	in	order	
to	 find	an	appropriate	 concept–realization	mapping.42	 In	 that	 case,	 it	 becomes	a	 composite	
realizational	 Element	 instead,	 and	 each	 of	 its	 newly	 identified	 parts	 occupies	 the	 terminal	
level.	
In	 the	 course	 of	 describing	 a	 realizational	 Element,	 the	manner	 in	which	 conceptual	 con-
straints	are	to	be	met	should	be	addressed.	Therefore,	scattered	references	within	the	narra-
tive	 to	 these	constraints	 (as	 listed	above)	are	expected,	 such	 that	 the	 implications	 for	each	
constraint	are	clear.	(Note,	as	mentioned	above,	that	the	Description	need	address	only	those	
constraints	that	are	exclusive	to	this	realizational	Element.	
Similarly,	practical	limits	or	unavoidable	dependencies	that	are	identified	in	the	Description	
will	prompt	the	creation	of	allowance	constraints	 (described	below),	which	the	set	of	 im-
posed	 constraints	must	 accommodate.	 These	 too	 should	be	 referred	 to	 in	 the	narrative,	 as	
they	are	introduced.	

Allowance Constraints

List	and	explain	any	further	constraints	that	are	necessary	to	allow	for	the	reality	of	casting	
this	Element	in	a	realizable	form.	

▼ These	added	realizational	features	are	most	often	needed	for	products	(and	sometimes	
external	systems)	in	order	to	reconcile	the	practical	consequences	of	integrating	diverse	
conceptual	characteristics	within	one	actual	implementation.	

The	aim	here	is	to	go	beyond	the	general	Description	(as	above)	with	verifiable	character-
istics	that	complement	the	constraints	acquired	through	the	concept–realization	mapping	
(as	addressed	under	Mapped	Constraints	above).	

Realizational	features	are	expressed	through	added	constraints	on	or	among	concep-
tually	 defined	 properties	 (or	 for	 composite	 realizational	 Elements,	 on	 their	 internal	
Relationships).	These	properties	can	include	state	variables;	so	added	constraints	can	
address	both	static	and	dynamic	(i.e.,	behavioral)	dependencies.43	
Such	features	should	not	normally	involve	new	properties.	Adding	properties	should	
be	avoided	where	possible,	because	exceptions	can	be	problematic,	given	no	concep-
tual	basis	for	dealing	with	them.44	However,	extended	value	domains	for	these	prop-
erties	are	often	necessary.45	Added	properties	or	extended	value	domains	will	prompt	
specialization	of	the	realizational	Element	definition.	
Allowance	 constraints	will	 sometimes	 express	additional	accommodation	needs	
—	in	this	case	by	virtue	of	a	realizational	assertion	that	certain	choices	must	remain	
unconstrained.	This	stipulation	might	reflect	immaturity	in	design,	uncertainty	associ-
ated	with	unresolved	questions,	options	held	open	for	delayed	choice	(e.g.,	in	competi-
tive	procurements),	implementation	Trades	that	have	not	yet	closed,	and	the	like;	but	
they	can	also	reflect	the	realities	of	limited	choices,	as	for	instance	when	available	her-
itage	options	are	meager.	Whether	to	tolerate	variation	or	simply	to	acknowledge	lim-
ited	options,	conceptual	views	must	not	impose	limit	constraints	that	encroach	upon	
such	actualities,	so	allowance	constraints	are	established	to	avoid	this.	

	 	 (initial	release	for	review)	

	 90	

An	allowance	constraint	can	also	express	a	narrowing	of	options	that	is	not	forced	by	
practical	limits	or	unavoidable	dependencies,	but	rather	that	reflects	the	firm	resolu-
tion	of	some	choice.	These	design	commitments	have	a	similar	character	to	the	actu-
alities	described	above,	in	the	sense	that	some	possibility	needs	to	be	protected.	The	
reasons	in	this	case,	however,	tend	to	deal	more	with	the	practicalities	of	maturing	a	
design	than	with	intrinsic	limitations.46	The	typical	problem	here	is	a	frequent	necessi-
ty	 to	narrow	 the	 scope	of	 analyses	 to	more	particular	 cases.	Having	done	 so,	 it	 isn’t	
necessarily	desirable	to	limit	design	only	to	these	choices	(effectively	point	designs);	if	
different	designs	can	still	meet	requirements,	they	should	also	be	permitted.	Nonethe-
less,	having	devoted	time	and	effort	to	the	analysis	of	some	variant	within	this	design	
space,	it	is	prudent,	past	a	certain	point	of	maturity,	to	protect	this	investment,	just	as	
one	might	protect	practicable	 implementation	choices.	By	reserving	some	choice	(or	
perhaps	a	range	of	choices)	and	capturing	it	in	an	allowance	constraint,	a	guard	is	put	
in	place	as	protection	against	subsequent	changes	to	imposed	constraints.	
Note	 that	 allowance	 constraints	do	not	meet	 the	 criteria	 above	 for	Requirements.	 In	
principle,	these	constraints	can	change,	as	long	as	requirements	are	still	met.	Nonethe-
less,	 because	 they	 establish	 assertions	 upon	 which	 conceptual	 analyses	 are	 based,	
their	change	should	be	managed	cautiously	and	their	veracity	should	be	subject	to	ver-
ification.	In	these	respects	then,	they	carry	similar	weight	to	requirements.	

The	 logical	 nature	 of	 a	 constraint	 that	makes	 allowances	 is	 distinct	 from	 that	 of	 a	 con-
straint	that	imposes	limits	(as	described	under	Mapped	Constraints).	

Limit	constraints	narrow	choices,	making	the	set	of	acceptable	systems	smaller,	while	
allowance	constraints	preserve	choices,	ensuring	that	the	set	of	acceptable	systems	is	
not	too	small.	Each	additional	limit	constraint	can	reduce	the	possibilities	that	will	be	
accepted.	Each	additional	allowance	constraint	can	increase	the	possibilities	that	must	
be	accepted.	

This	is	a	vital	distinction,	even	though	the	expression	of	actualities	and	commitments	
in	allowance	constraints	can	seem	quite	similar	to	imposed	limit	constraints.	The	rea-
son	becomes	clear	 if	allowances	are	 inappropriately	 treated	as	 fact	 in	analyses	or	 in	
Trades.	Architectural	choices	can	then	be	made	on	the	presumption	of	a	particular	de-
sign	(e.g.,	a	point	design),	even	though	limit	constraints	describe	a	larger	set	of	possi-
bilities.	As	a	result,	tolerance	to	variation	is	sacrificed	—	often	with	unpleasant	conse-
quences.	
The	 proper	 approach	 is	 to	 base	 all	 analyses,	 Trades,	 etc.,	 as	 practicable,	 on	 the	 full	
range	of	possibilities	that	are	consistent	with	limit	constraints.	Allowance	constraints	
help	to	preserve	this	option	space,	but	they	are	not	there	to	further	narrow	it.	
With	this	representation	of	design	choices,	the	notion	of	a	design	“closing”	can	be	ex-
pressed	more	 formally	 than	merely	 saying	 that	 there	 is	 some	 design	 for	 which	 re-
quirements	can	be	met.	More	careful	would	be	to	establish	allowance	constraints	that	
can	be	checked	for	consistency	with	requirements.	

	 	 (initial	release	for	review)	

	 91	

A	deliberate	decision	to	narrow	constraints	around	a	selected	design	commitment	is	a	dif-
ferent	matter.	

In	 this	 case,	 narrowing	 the	 option	 space	 is	 an	 overt	 choice	 expressed	 in	 limit	 con-
straints	 imposed	 by	 conceptual	 Views,	 not	 allowance	 constraints	 from	 realizational	
Views.	It’s	important	to	keep	these	two	cases	separate	in	one’s	mind.	
A	 common	 example	 of	 deliberate	 limitation	 is	 in	 the	 sub-allocation	 of	 resources	 or	
performance	contributions.	Reports	of	 realizable	capability	are	routinely	maintained	
during	 early	 development	 as	 an	 architecture	 is	 brought	 to	 closure,	with	 allowances	
made	 for	 asserted	 capability.	 Eventually	 though,	 allocations	must	 be	 imposed	—	 as	
limit	constraints	—	to	lock	in	these	accommodations.	Only	at	that	point	can	analyses	
be	narrowed.	

Note	 finally	 the	 different	 nature	 of	 allowances	 against	 realizational	 compositions,	 com-
pared	to	Elements	at	 the	 terminal	 level.	Among	the	possibilities	one	might	want	 to	pre-
serve	in	a	composition	are	different	Relationships,	where	an	Element	might	be	composed	
in	various	ways.47	

In	similar	fashion,	as	functional	or	other	Relationships	converge,	as	Trades	are	settled,	
and	so	on,	and	the	need	or	merit	of	 leaving	choices	open	declines,	 it	 is	preferable	at	
some	point	to	foreclose	other	possibilities.	Allowances	can	preserve	such	choices,	but	
limits	lock	them	in.	

Integrated Scenarios

Describe	any	fully	elaborated	Scenarios	that	can	be	as	properly	associated	with	this	realiza-
tional	Element,	given	the	integration	of	its	constituent	Elements.	

▼ Integrated	Scenarios	aggregate	information	relevant	to	the	activities	or	operation	of	an	
integrated	system.	

An	integrated	Scenario	is	associated	with	some	realizational	Element,	because	the	full	
implications	of	 coupling	within	 realizational	Elements	 can	only	be	addressed	 in	 this	
context.	 In	this	way,	 integrated	Scenarios	clearly	 illustrate	the	 interconnectedness	of	
an	architecture,	despite	the	separation	of	concerns	highlighted	in	conceptual	Views.	
The	associated	realizational	Element	is	generally	some	composite	Element,	firstly	be-
cause	 the	 conceptual	 Scenarios	 from	which	 they	 flow	are	 themselves	 about	 interac-
tions	 among	 Elements,	 and	 secondly	 because	 realizational	 coupling	 extends	 the	
breadth	of	these	interactions.	

This	does	not	mean	that	every	composite	realizational	Element	will	be	associated	with	
some	integrated	Scenario.	To	the	contrary,	most	integrated	Scenarios	will	be	associat-
ed	with	only	a	few	composite	realizational	Elements	—	typically	those	that	dominate	
the	overall	 architectural	 composition.	Nonetheless,	one	 should	be	prepared	 to	apply	
this	notion	wherever	it	is	of	use	in	understanding	a	system	as	a	system.	

Integrated	Scenarios	may	be	technical,	describing	operational	plans,	procedures,	and	
contingencies	for	the	intended	use	of	an	architected	system,	as	necessary	to	carry	out	
its	 Function;	 or	 they	may	 be	programmatic,	 describing	 the	 integrated	 schedule	 for	
system	 development,	 planned	 integration	 flow	 for	 system	 assembly,	 and	 other	 pro-
cesses.	

	 	 (initial	release	for	review)	

	 92	

Every	integrated	Scenario	should	have	a	clear	purpose	and	objectives.	
The	aim	is	not	merely	to	suggest	something	that	might	happen,	or	to	describe	the	way	
some	activity	must	happen.	Instead,	the	set	of	integrated	Scenarios	collectively	estab-
lish	the	cases	by	which	the	system	architecture	 is	analyzed	and	validated.	Each	 inte-
grated	Scenario	should	have	a	defined	role	within	this	suite.	
Scenarios	should	also	be	described	by	the	range	of	variations	they	cover,	with	the	ob-
jective	being	 to	help	characterize	margins	and	demonstrate	 flexibility	 in	 the	system.	
Variations	can	be	with	respect	 to	parameters,	event	ordering,	optional	parts,	branch	
conditions,	fault	cases,	and	so	on.	

An	 integrated	Scenario	begins	with	one	or	more	conceptual	Scenarios,	which	are	neces-
sarily	narrow	in	purview	(and	usually	simple	in	comparison).	The	Scenario	is	then	elabo-
rated	by	following	to	their	logical	conclusion	all	the	implications	of	coupling	across	con-
ceptual	issues	(with	caveats	noted	below	regarding	closure	criteria),	as	effected	through	
the	integration	of	realizational	design.	

Given	suitable	methods	of	behavior	representation	in	constraints	and	conceptual	Sce-
narios,	integrated	Scenarios	should	largely	be	constructible	in	an	automatic	manner.	
The	starting	conceptual	Scenarios	usually	encompass	some	shared	circumstance	of	in-
terest,	where	one	or	a	few	motivating	activities	are	accompanied	by	ancillary	Scenar-
ios	regarding	health,	safety,	resources,	or	other	governing	concerns.	
Proper	 association	 with	 a	 particular	 realizational	 Element	 is	 typically	 a	 matter	 of	
broadening	the	scope	of	elaboration,	as	coupling	pathways	are	explored,	until	closure	
of	some	sort	is	reached.	For	example,	a	spacecraft	delta-V	Scenario,	which	at	the	con-
ceptual	level	involves	a	rocket	and	a	mass,	multiplies	dramatically	in	scope	at	the	real-
izational	 level,	as	propellant	management,	pointing,	and	other	coupled	behaviors	are	
invoked.	Many	additional	system	Elements	now	participate,	which	 in	 turn	bring	 into	
consideration	power,	thermal,	computing,	and	so	on	until	much	of	the	spacecraft	is	di-
rectly	 engaged	 in	 some	manner.	 The	 resulting	 competition	 for	 resources	 then	 una-
voidably	affects	much	of	the	remainder	of	the	spacecraft.	Moreover,	because	the	pur-
pose	of	the	Scenario	in	the	first	place	is	a	specified	change	in	velocity,	this	activity	real-
ly	 isn’t	complete	until	confirmed,	which	broadens	the	scope	now	to	the	entire	flight-
ground	navigation	loop	and	all	other	ancillary	functions	with	coupled	interests.	In	this	
case	 then,	without	 further	scoping	provisions,	 the	realizational	Element	properly	as-
sociated	with	a	fully	elaborated	delta-V	Scenario	is	nearly	the	entire	system!	

Given	the	potential	for	every	Scenario	to	burgeon	in	like	manner,	judgment	is	required	
to	 declare	 appropriate	 closure	 criteria	 for	 each	 Scenario.	 This	 could	 be	 a	matter	 of	
depth,	where	certain	conceptual	matters	are	set	aside	(perhaps	because	added	provi-
sions	in	the	Scenario	forestall	problems	in	these	areas48);	or	it	could	be	a	matter	of	fo-
cus,	where	 for	 narrower	 interests,	 a	 particular	 realizational	 Element	 is	 targeted	 for	
consideration.49	

	 	 (initial	release	for	review)	

	 93	

It	 is	 typically	necessary,	when	addressing	any	 issue	of	 integration,	 to	 acknowledge	 that	
“integrated”	is	not	a	uniquely	defined	term.	Not	all	Scenarios	will	apply	in	all	cases,	so	this	
is	a	good	reason	to	be	particular	about	the	realizational	Element	associated	with	an	inte-
grated	Scenario.	

For	example,	in	the	course	of	its	integration	and	operation,	a	system	usually	progress-
es	through	a	series	of	deployed	configurations.	These	deployments	differ	by	composi-
tion,	where	parts	of	the	system	are	yet	to	be	integrated,	or	are	present	only	in	tempo-
rary	emulated	form,	or	have	already	served	their	purpose	and	are	jettisoned,	disabled,	
or	expended.	
Broader	 deployment	 differences	 can	 encompass	 external	 system	and	 environmental	
Elements,	which	might	 be	 the	 real	 thing	 or	 only	 simulated	 (sometimes	 at	more	 ex-
treme	levels	than	the	real	thing).	

□

	
1	A	realizational	View	that	mentions	a	model	number,	a	vendor,	a	heritage	design,	or	any	other	established	product	
must	always	justify	this	as	an	architectural	choice,	traceable	to	architecturally	motivated	criteria	such	as	cost	or	risk.	
Otherwise,	its	mention	is	inappropriate,	thereby	unnecessarily	limiting	options	or	reducing	tolerance	to	variation.	
2	 Examples	 would	 include	 multiple	 serial-numbered	 units	 built	 to	 a	 common	 model	 number	 specification.	 The	
realizational	Element	would	describe	the	latter,	not	the	former.	
3	 For	 example,	 hardware	 that	 realizes	 a	 reaction	 wheel	 for	 attitude	 control	 will	 typically	 also	 realize	 a	 mass,	 a	
volume,	 a	 power	 load,	 a	 temperature	 zone,	 a	 life-limited	 item,	 a	 command	 sink,	 a	mounted	 item,	 a	microphonics	
source,	and	so	on.	Depending	on	circumstances,	it	may	also	realize	a	radiation	shield,	a	safety	hazard,	or	some	other	
conceptual	thing.	
4	An	example	would	be	separately	enumerated	RCS	thrusters	or	reaction	wheels.	These	are	typically	differentiated	
from	one	another	by	location,	orientation,	and	name	within	the	composition,	but	otherwise	must	be	of	the	same	kind	
and	with	uniform	properties	across	the	set,	such	that	they	are	interchangeable.	Another	example	would	be	in	a	block	
redundant	set	of	components,	where	roles	are	differentiated	only	by	name	and	interconnections.	
5	A	power	concept	will	define	power	 loads,	but	will	not	enumerate	 them.	Any	Element	 that	realizes	a	power	 load	
becomes	a	member	of	the	set	of	power	loads.	However,	each	realization	of	power	load	is	typically	a	different	kind	of	
realizational	Element	(heater,	gyro,	receiver,	instrument)	with	varying	properties	across	the	set.		
6	Other	examples	 include	 the	 set	of	 items	 that	need	 to	be	pointed,	 the	 set	of	nodes	on	a	data	bus,	 the	 set	of	RCS	
thrusters,	 the	 set	of	 items	 in	 a	 radiation	vault,	 the	 set	of	 items	 in	 a	module,	 and	 so	on,	where	 in	 each	 case	some	
conceptual	View	declares	what	they	must	have	in	common.	
7	 Examples	 would	 include	mechanical	 assemblies,	 software	modules,	 celestial	 bodies,	 and	work	 breakdown	 Ele-
ments.	
8	Examples	include	hardware	assemblies,	software	modules,	data	collections,	procedures,	and	operating	plans.	
9	Examples	include	support	systems,	services,	and	facilities.	
10	Examples	include	ambient	fields	and	celestial	bodies.	
11	 Programmatic	 and	 technical	 Elements	 participate	 in	 “Subsystem”	 definitions,	 products	 and	 external	 system	
Elements	participate	in	system	interface	definitions,	and	so	on.	
12	Examples	include	total	mass	of	a	module,	and	combined	performance	of	some	ensemble	(as	in	an	error	budget).	
13	Examples	 include	placement	within	a	system	configuration,	enumeration	among	a	set	of	bus	nodes,	and	assign-
ment	of	a	product	to	a	work	breakdown	Element.	
14	 Examples	would	 include	 constraints	 that	 apply	 to	 all	 power	 loads,	 all	 software	modules,	 all	 work	 breakdown	
Elements,	and	so	on,	given	that	an	Element	is	designated	as	a	realization	of	such	a	prototypical	item.	
15	For	example,	a	generic	constraint	for	power	loads	to	control	their	in-rush	current	to	be	within	trip	limits	must	be	
supplemented	with	constraints	that	establish	particular	trip	limits	for	each	load.	
16	For	example,	a	conceptual	View	for	pointing	might	identify	the	need	for	a	star	tracker	as	a	particular	conceptual	
Element	with	specific	constraints	 that	can	be	applied	 immediately,	but	would	only	generically	acknowledge	 items	
Continued	next	page	

	 	 (initial	release	for	review)	

	 94	

	
that	contribute	to	pointing	alignments.	Once	the	latter	are	identified	through	conceptual	mapping,	separate	specific	
constraints	on	each	particular	alignment	Element	may	then	be	necessary.	
17	 For	 example,	 a	 specific	 constraint	 on	 the	 downlink	 performance	 of	 a	 particular	 transmitter	 and	 a	 particular	
antenna	 belongs	 to	 neither	 Element	 alone.	 It	 should	 be	 addressed	 in	 the	 View	 that	 addresses	 the	 realizational	
composition	of	transmitter	and	antenna.	
18	 For	 example,	 a	 particular	 camera	with	 a	 defined	 field	 of	 view	 (a	 volumetric	 Element)	 participates	 in	 a	mutual	
constraint	with	all	other	volumetric	Elements	of	the	system	that	are	not	fully	transparent	(the	constraint	being	a	null	
intersection	 with	 the	 field	 of	 view).	 While	 the	 constraint	 involves	 properties	 of	 multiple	 Elements,	 it	 is	 clearly	
motivated	only	by	the	camera.	
19	Similarly,	a	particular	camera	in	the	architected	system	could	be	involved	in	a	pointing	constraint	that	also	refers	
to	some	external	pointing	target.	
20	For	example,	a	conceptual	View	that	declares	the	need	for	a	star	tracker,	and	which	then	asserts	a	constraint	on	its	
star	magnitude	sensitivity,	is	also	referring	to	the	specific	realizational	Element	that	uniquely	realizes	that	concep-
tual	Element.	The	same	conceptual	View	may	also	indicate	the	need	for	a	set	of	three	reaction	wheels;	but	again,	the	
meaning	is	three	specific	reaction	wheels,	for	which	there	is	a	unique	realization.	
21	Examples	would	include	power	loads	in	a	conceptual	View	about	power,	or	alignment	Elements	in	a	conceptual	
View	about	pointing.	In	neither	case	is	it	likely	the	prerogative	of	the	View	to	define	what	the	loads	should	be	or	how	
pointed	Elements	should	be	bound	to	one	another	for	stable	alignment.	
22	This	occurs	when	a	total	mass	limit	is	sub-allocated	among	the	parts	of	a	system.	
23	This	occurs	when	a	pointing	budget	is	sub-allocated	among	contributing	pointing	error	sources.	
24	For	example,	the	same	conceptual	View	about	electrical	power	that	identifies	the	need	for	a	solar	array	is	also	the	
View	that	assigns	specific	power	constraints	to	it.	
25	For	example,	a	solar	array	might	be	identified	as	a	pointed	Element	in	a	conceptual	View	about	electrical	power,	
where	a	constraint	 is	 imposed	on	 its	orientation,	 relative	 to	 the	Sun.	The	product	 that	 realizes	 this	array	 thereby	
becomes	one	of	an	enumerated	set	of	pointed	Elements	 in	a	conceptual	View	about	pointing,	but	with	a	pointing	
constraint	specific	to	the	array.	
26	For	example,	in	a	conceptual	View	about	system	configuration,	one	might	identify	all	realizational	Elements	that	
are	non-transparent	volumes	and	are	therefore	involved	in	satisfying	the	field	of	view	constraint	for	some	camera.	
Similarly,	 in	 a	 conceptual	View	about	pointing,	 one	might	 identify	 all	 realizational	Elements	 that	 lie	 along	 a	path	
through	a	coordinate	frame	tree,	thereby	contributing	to	end-to-end	pointing	errors.	
27	For	example,	these	derived	constraints	might	be	the	individual	sub-allocations	within	a	pointing	budget.	
28	For	example,	a	mechanical	configuration	is,	in	effect,	the	resolution	of	many	simultaneous	constraints	on	geomet-
ric	Relationships	among	the	volumetric	Elements	of	the	system.	A	particular	configuration	establishes	the	properties	
of	each	Relationship	(i.e.,	where	each	component	 is	relative	 to	 the	others)	such	that	all	mutual	constraints	on	the	
constituents	are	met	(e.g.,	free	fields	of	view,	proper	load	paths,	limited	plume	impingement,	acceptable	end-to-end	
alignments,	 etc.),	 but	 often	 without	 individually	 constraining	 the	 volumetric	 Elements	 themselves.	 Reification	 of	
these	relationships	(typically	 in	 the	system’s	mechanical	structure)	 is	 the	means	 in	 this	case	of	directing	 the	con-
straints	to	a	particular	component.	
29	For	example,	the	sub-allocation	of	a	mutual	constraint	between	operating	mode	and	power	usage	divides	into	an	
individual	mutual	constraint	on	each	realizational	Element	that	uses	power.	
30	For	example,	the	location	of	the	spacecraft	center	of	mass	may	be	constrained	to	enable	guidance	for	delta-V,	to	
reduce	structural	loads,	and	to	limit	dynamic	coupling.	
31	 For	 example,	 terminal	 products	 in	 hardware	 would	 typically	 be	 assemblies	 considered	 as	 deliverable	 units,	
though	there	could	be	situations	where	sub-assemblies	are	architecturally	relevant.	
32	 These	 would	 typically	 be	 functionally	 distinct	 units.	 Each	 should	 be	 addressed	 separately	 for	 their	 particular	
utilization	factors	(e.g.,	different	DSN	complexes).	
33	A	celestial	body	might	be	an	example,	if	only	its	global	properties	are	relevant	(e.g.,	radius	or	gravitational	field).	
34	 An	 internal	 contamination	 source	 is	 both	 product	 and	 environmental	 item.	 A	 launch	 vehicle	 is	 both	 external	
system	and	environmental	item.	
35	For	example,	consider	the	separate	parts	of	a	control	loop	(sensors,	controllers,	actuators,	etc.).	Each	part	can	be	
separately	realized,	but	so	must	the	loop,	which	exists	and	exhibits	required	performance	only	when	the	parts	are	
integrated.	
36	Examples	would	include	which	product	is	assigned	to	which	work	breakdown	Element,	or	which	power	switch	is	
assigned	to	which	load.	
Continued	next	page	

	 	 (initial	release	for	review)	

	 95	

	
37	Examples	would	include	a	particular	chosen	arrangement	of	system	mechanical	configuration	items.	
38	 Electronic	 cards	 sharing	 a	 chassis	 comprise	 a	 composition	 with	 interdependencies	 that	 depend	 on	 relative	
placement	(e.g.,	thermal,	shielding,	interference…).	Particular	placement	would	not	be	specified	in	any	concept,	but	
must	be	defined	in	realization	of	the	composition	in	order	to	address	issues	that	are	specified	in	concepts.	
39	 For	 example,	 one	might	 be	 interested	 in	 the	 inertial	 properties	 of	 a	 platform,	 or	 the	 latest	 delivery	 date	 of	 all	
products	needed	for	some	test	deployment.	
40	For	example,	multiple	data	sources	may	need	to	compete	for	bandwidth	on	the	same	bus,	and	if	so,	they	will	need	
to	cooperate	in	its	utilization.	
41	 For	 example,	 one	would	 expect	 to	 see	 a	 repeated	 pattern	 for	 composing	 hardware	 components	 pairwise	with	
assigned	management	 functions	 in	software.	Each	would	be	a	specialization	of	 this	pattern,	but	all	would	be	 inte-
grated	in	effectively	the	same	manner.	
42	For	example,	a	conceptual	View	for	data	interactions	might	reasonably	define	the	need	for	a	common	bus	adapter	
design	across	all	units	attached	to	a	data	bus.	 It	would	not	be	reasonable	 to	map	a	conceptual	bus	adapter	 to	 the	
entire	 realizational	 unit	within	which	 a	 real	 bus	 adapter	 appears,	 especially	 if	 other	 Relationships	 (e.g.,	 delivery	
responsibility)	apply	uniquely	to	the	part	and	not	the	whole.	
43	Examples	would	include	a	dependence	of	minimum	mass	on	the	 level	of	needed	functional	performance,	or	the	
coupling	of	power	usage	to	operating	mode.	
44	 For	example,	 an	 implementation	 that	 relies	on	 radioactive	material	 (e.g.,	 as	a	 calibration	 source)	would	not	be	
fully	described	without	properties	quantifying	this	feature.	However,	in	an	architecture	with	no	concept	for	how	to	
handle	self-produced	nuclear	radiation,	these	properties	could	be	disruptive.	
45	Examples	include	the	addition	of	idle/off	states,	transitional	states,	and/or	failure	modes	to	the	set	of	states	that	
were	conceptually	defined	as	essential	behavior.	
46	Examples	would	include	convergence	on	a	system	configuration	or	a	mission	design,	selection	among	a	vendor’s	
standard	offerings,	making	a	technology	choice,	or	assignment	of	delivery	responsibility.	
47	For	example,	there	may	be	technical	reasons	to	leave	options	open	for	the	location	of	a	hardware	Element	(e.g.,	
different	 modules,	 chassis,	 busses,	 etc.).	 Programmatic	 Relationships	 may	 also	 need	 to	 remain	 open,	 including	
Relationships	between	programmatic	and	technical	Element	(such	as	which	work	breakdown	Element	is	responsi-
ble	for	a	particular	product).	
48	For	example,	with	asserted	initial	conditions	that	mitigate	energy	concerns,	a	Scenario	might	be	safely	truncated	
with	regard	to	its	power	implications.	
49	For	example,	if	one’s	interest	in	specifically	in	flight	system	capabilities,	a	delta-V	Scenario	might	be	limited	to	the	
flight	system	Element.	

◼

	 	 (initial	release	for	review)	

	 96	

Appendix C View Contributions to Gate Products
Table	1:	Products	and	Views	required	at	MCR	

Gate Product WBS
Element

Required
Maturity

Contributing Views and
Framework Elements

Project Formulation Authorization Document or equivalent 01.01 Ready to
sign

N/A - not intended to be part of the AD

L1 requirements 01.01 Prelim Stakeholders
Concerns (Success criteria)

Partnerships and interagency and international agree-
ments

01.01 Prelim N/A - not intended to be part of the AD

Terms of Reference (for Life Cycle Reviews) 01.01 Draft N/A - not intended to be part of the AD
Project Task Plan 01.01 Phase A Work Breakdown
Formulation Agreement 01.01 Phase A -

Baseline
Phase B -
Prelim

Project Lifecycle
Project Planning

Business Plan 01.02 Approach Project Planning
Launch Approval Engineering Plan 01.06 ECLASS N/A - not intended to be part of the AD
Project Review Plan 01.01 Prelim Project Lifecycle
Project Acquisition Plan 01.01 Prelim N/A - not intended to be part of the AD
Export Compliance Management Plan 01.01 Initial N/A - not intended to be part of the AD
SEMP 02.01 Prelim Systems Engineering
Risk Management Plan 02.11 Approach Risk Management
Tech Development Plan 02.01 Baseline Systems Engineering
Project V&V Plan 02.10 Approach Verification and Validation
Project WBS & Dictionary 01.02 Prelim Work Breakdown
Project integrated life-cycle network schedules 01.02 Prelim N/A - not intended to be part of the AD
Cost Estimates 01.02 Model N/A - not intended to be part of the AD
Life-cycle budget 01.02 Proposed N/A - not intended to be part of the AD
Life-cycle workforce plan 01.02 Proposed N/A - not intended to be part of the AD
Work Agreements/Summary Work Agreements 01.02 Phase A N/A - not intended to be part of the AD
Infrastructure requirements and plans, business case
analysis for infrastructure (if applicable)

01.02 Initial N/A - not intended to be part of the AD

Project L2 Requirements 02.01 Prelim Project System realizational View (list of RQ)
Mission Architecture 02.01 Prelim Project System realizational View

various Conceptual Views
Mission Concept & Operating Scenarios 02.01 Prelim Integrated Scenarios from Project System

realizational View
Initial technology/engineering dev/heritage assessments 02.01 Initial Technology Development Analysis
Significant Risk List 02.11 Initial N/A - not intended to be part of the AD
Science L2 Requirements 04.01 Prelim Science Dataset realizational View

Science System realizational View
Payload L3 Requirements 05.02 Prelim Payload realizational View (list of RQ)
Payload Architecture 05.02 Prelim Payload realizational View (Elements,

interfaces and Functions)
Spacecraft L3 Requirements 06.02 Prelim Spacecraft realizational View (list of RQ)
Spacecraft Architecture 06.02 Prelim Spacecraft realizational View (Elements,

interfaces and Functions)
Mission Ops Concept document 07.02 Initial Operations Concept conceptual View
MOS L3 Requirements 07.02 Key MOS realizational View
Ground Architecture 07.02 Concept MOS realizational View

Science System realizational View
FS I&T Plan 10.02 Approach FS I&T realizational View (Elements,

Scenarios)

	 	 (initial	release	for	review)	

	 97	

	
Table	2:	Gate	Products	and	Views	required	at	SRR	

Gate Product WBS
Element

Required
Maturity

Contributing Views and
Framework Elements

L1 requirements 1.01 Baseline Stakeholders
Concerns (Success criteria)

Acquisition Strategy Meeting (ASM) minutes 01.01 Final N/A - not intended to be part of the AD
Terms of Reference (for Life Cycle Reviews) 01.01 Baseline N/A - not intended to be part of the AD
Business Plan 01.02 Prelim Project Planning
Project Review Plan 01.01 Baseline Project Lifecycle
Project Acquisition Plan 01.01 Baseline N/A - not intended to be part of the AD
SEMP 02.01 Baseline Systems Engineering
Project SW Management Plan 02.02 Prelim Software Development
Information & Configuration Mgmt. (ICM) Plan 02.04 Baseline Configuration Management
Risk Management Plan 02.11 Baseline Risk Management
Tech Development Plan 02.01 Update Systems Engineering
Mission Assurance Plan 03.01 Initial Mission Assurance
Project L2 Requirements 02.01 Baseline Project System realizational View (list of RQ)
Mission Architecture 02.01 Baseline Project System realizational View

various Conceptual Views
Initial technology/engineering dev/heritage assessments 02.01 Update Technology Development Analysis
IT Security Plan 02.02 Prelim N/A - not intended to be part of the AD
Environmental Requirements Document 03.03 Prelim Environmental Compatibility
Significant Risk List 02.11 Update N/A - not intended to be part of the AD
Science L2 Requirements 04.01 Baseline Science Dataset realizational View

Science System realizational View
Payload L3 Requirements 05.02 Baseline Payload realizational View (list of RQ)
L4 Instrument Requirements 05.xx Key/

Driving
Instrument realizational Views (list of RQ)

Spacecraft L3 Requirements 06.02 Baseline Spacecraft realizational View (list of RQ)
Spacecraft Architecture 06.02 Baseline Spacecraft realizational View (Elements,

interfaces and Functions)
L4 Spacecraft Subsystem Requirements 06.xx Key/

Driving
Subsystem realizational Views

Mission Ops Concept document 07.02 Update Operations Concept conceptual View
MOS L3 Requirements 07.02 Baseline MOS realizational View
Ground Architecture 07.02 Prelim MOS realizational View

Science System realizational View
Launch Services Requirements Document 02.09 Prelim Launch System realizational View

	

Table	3:	Gate	Products	and	Views	required	at	MDR	

Gate Product WBS
Element

Required
Maturity

Contributing Views and
Framework Elements

L1 requirements 1.01 Update Stakeholders
Concerns (Success criteria)

Partnerships and interagency and international agree-
ments

01.01 Baseline N/A - not intended to be part of the AD

Software Independent Verification and Validation Plan (for
projects with IV&V)

03.08 Prelim N/A - not intended to be part of the AD

Acquisition Strategy Meeting (ASM) minutes 01.01 Final N/A - not intended to be part of the AD
Planetary Protection Certification 02.06 Final N/A - not intended to be part of the AD
Terms of Reference (for Life Cycle Reviews) 01.01 Baseline N/A - not intended to be part of the AD

	 	 (initial	release	for	review)	

	 98	

Gate Product WBS
Element

Required
Maturity

Contributing Views and
Framework Elements

Project Task Plan 01.01 Phase B Work Breakdown
Formulation Agreement 01.01 Phase B -

Baseline
Project Lifecycle
Project Planning

Project Plan 01.01 Prelim Project Planning
PIP 1.2 - Project Manager's Decisions, Guidance and
Policies

01.01 Baseline N/A - not intended to be part of the AD

Business Plan 01.02 Baseline Project Planning
Launch Approval Engineering Plan 01.06 Baseline N/A - not intended to be part of the AD
PIP 1.5 - Risk Communication Plan 01.06 Baseline N/A - not intended to be part of the AD
Project Review Plan 01.01 Update Project Lifecycle
Project Acquisition Plan 01.01 Update N/A - not intended to be part of the AD
Export Compliance Management Plan 01.01 Baseline N/A - not intended to be part of the AD
SEMP 02.01 Baseline Systems Engineering
Project SW Management Plan 02.02 Baseline Software Development
Information & Configuration Mgmt. (ICM) Plan 02.04 Baseline Configuration Management
Risk Management Plan 02.11 Baseline Risk Management
Tech Development Plan 02.01 Baseline Systems Engineering
Project V&V Plan 02.10 Prelim Verification and Validation
System Safety Plan 03.02 Prelim Safety
Mission Assurance Plan 03.01 Prelim Mission Assurance
Education Plan 11.01 Prelim N/A - not intended to be part of the AD
Communications Plan 11.01 Prelim N/A - not intended to be part of the AD
Mission Projects Design, Verification/Validation and
Operations Principles Compliance Matrix

02.01 Prelim Design Principles Compliance Analysis

Mission Projects Flight Project Practices Compliance Matrix 01.01 Prelim Flight Project Practice Compliance Analysis
Project WBS & Dictionary 01.02 Prelim Work Breakdown
Project integrated life-cycle network schedules 01.02 Prelim N/A - not intended to be part of the AD
Cost Estimates 01.02 Prelim N/A - not intended to be part of the AD
Life-cycle budget 01.02 Prelim N/A - not intended to be part of the AD
Life-cycle workforce plan 01.02 Prelim N/A - not intended to be part of the AD
Work Agreements/Summary Work Agreements 01.02 Phase B N/A - not intended to be part of the AD
Project Space Asset Protection Plan 01.01 Prelim Space Asset Protection
Project L2 Requirements 02.01 Baseline Project System realizational View (list of RQ)
Mission Architecture 02.01 Baseline Project System realizational View

various Conceptual Views
Mission Concept & Operating Scenarios 02.01 Baseline Integrated Scenarios from Project System

realizational View
Initial technology/engineering dev/heritage assessments 02.01 Update Technology Development Analysis
IT Security Plan 02.02 Baseline N/A - not intended to be part of the AD
Environmental Requirements Document 03.03 Prelim Environmental Compatibility
Significant Risk List 02.11 Prelim N/A - not intended to be part of the AD
Design Report 02.01 Prelim Design Compliance Analysis
Science L2 Requirements 04.01 Baseline Science Dataset realizational View

Science System realizational View
Payload L3 Requirements 05.02 Baseline Payload realizational View (list of RQ)
Payload Architecture 05.02 Baseline Payload realizational View (Elements,

interfaces and Functions)
Payload/Instrument Design 05.02 Initial N/A - not intended to be part of the AD
L4 Instrument Requirements 05.xx Key/

Driving
Instrument realizational Views (list of RQ)

Spacecraft Operating Scenarios 06.02 Key/
Driving

Integrated Scenarios from Spacecraft
realizational View

Spacecraft L3 Requirements 06.02 Baseline Spacecraft realizational View (list of RQ)
Spacecraft Architecture 06.02 Baseline Spacecraft realizational View (Elements,

interfaces and Functions)

	 	 (initial	release	for	review)	

	 99	

Gate Product WBS
Element

Required
Maturity

Contributing Views and
Framework Elements

Spacecraft System Design 06.02 Initial N/A - not intended to be part of the AD
Spacecraft Subsystem (S/S) Design 06.xx Initial N/A - not intended to be part of the AD
L4 Spacecraft Subsystem Requirements 06.xx Key/

Driving
Subsystem realizational Views

Mission Ops Concept document 07.02 Prelim Operations Concept conceptual View
MOS L3 Requirements 07.02 Baseline MOS realizational View
Ground Data System (GDS) Requirements Document 07.02 Prelim GDS realizational View (list of RQ)
Ground Architecture 07.02 Baseline MOS realizational View

Science System realizational View
MOS Functional Design Document 07.02 Approach MOS realizational View
Ground Station/Multi-Mission Service Provider Agree-
ments

07.02 Draft N/A - not intended to be part of the AD

MOS Verification & Validation Plan 07.14 Approach Verification and Validation
Launch Services Requirements Document 02.09 Baseline Launch System realizational View
FS I&T Plan 10.02 Prelim FS I&T realizational View (Elements,

Scenarios)

	

Table	4:	Gate	Products	and	Views	required	at	PDR	

Gate Product WBS
Element

Required
Maturity

Contributing Views and
Framework Elements

NASA NEPA compliance documentation 01.01 Assessed N/A - not intended to be part of the AD
Partnerships and interagency and international agree-
ments

01.01 Baseline N/A - not intended to be part of the AD

Software Independent Verification and Validation Plan (for
projects with IV&V)

03.08 Baseline N/A - not intended to be part of the AD

Launch System ICD 02.01 Prelim N/A - not intended to be part of the AD
Range Safety Risk Management Plan 03.02 Prelim N/A - not intended to be part of the AD
Project Task Plan 01.01 Phase CD Work Breakdown
Project Plan 01.01 Baseline Project Planning
Business Plan 01.02 Update Project Planning
Mishap Preparedness and Contingency Plan 01.01 Baseline N/A - not intended to be part of the AD
Project SW Management Plan 02.02 Update Software Development
Information & Configuration Mgmt. (ICM) Plan 02.04 Update Configuration Management
Planetary Protection Plan 02.06 Baseline Planetary Protection
Contamination Control Plan 02.07 Baseline Contamination Control
Risk Management Plan 02.11 Update Risk Management
Tech Development Plan 02.01 Update Systems Engineering
Project V&V Plan 02.10 Baseline Verification and Validation
System Safety Plan 03.02 Baseline Safety
Mission Assurance Plan 03.01 Baseline Mission Assurance
PIP 3.3 - Reliability Assurance Plan 03.04 Baseline Mission Assurance
PIP 3.4 - Electronic Parts Program Plan 03.05 Baseline Mission Assurance
PIP 3.5 - Quality Assurance Plan 03.06

03.07
Baseline Mission Assurance

PIP 3.6 - Problem Reporting Plan 03.04 Baseline Mission Assurance
PIP 4.1 - Science Management Plan 04.01 Baseline N/A - not intended to be part of the AD
PIP4.2 - Science Data Management and Archive Plan 04.01 Prelim Science Data Management conceptual View
PIP 5.1 - Payload System Implementation Plan (Note 15) 05.01 Baseline Payload Engineering
PIP 6.1 - Spacecraft System Implementation Plan (Note 15) 06.01 Baseline Spacecraft Engineering
PIP 6.2 - Materials and Processes Plan 06.13 Baseline N/A - not intended to be part of the AD
PIP 7.1 - Mission Operations System Implementation Plan
(including GDS) (Note 15)

07.01 Baseline Mission System Engineering

	 	 (initial	release	for	review)	

	 100	

Gate Product WBS
Element

Required
Maturity

Contributing Views and
Framework Elements

PIP 8.1 - Launch Services Implementation Plan (Note 15) 02.09 Baseline N/A - not intended to be part of the AD
Education Plan 11.01 Baseline N/A - not intended to be part of the AD
Communications Plan 11.01 Baseline N/A - not intended to be part of the AD
Mission Projects Design, Verification/Validation and
Operations Principles Compliance Matrix

02.01 Baseline Design Principles Compliance Analysis

Mission Projects Flight Project Practices Compliance Matrix 01.01 Baseline Flight Project Practice Compliance Analysis
Project WBS & Dictionary 01.02 Final Work Breakdown
Project integrated life-cycle network schedules 01.02 Baseline N/A - not intended to be part of the AD
Cost Estimates 01.02 Baseline N/A - not intended to be part of the AD
Life-cycle budget 01.02 Baseline N/A - not intended to be part of the AD
Life-cycle workforce plan 01.02 Baseline N/A - not intended to be part of the AD
Work Agreements/Summary Work Agreements 01.02 Phase CD N/A - not intended to be part of the AD
Project Space Asset Protection Plan 01.01 Baseline Space Asset Protection
Project L2 Requirements 02.01 Update Project System realizational View (list of RQ)
Mission Architecture 02.01 Update Project System realizational View

various Conceptual Views
Mission Concept & Operating Scenarios 02.01 Update Integrated Scenarios from Project System

realizational View
IT Security Plan 02.02 Update N/A - not intended to be part of the AD
Environmental Requirements Document 03.03 Baseline Environmental Compatibility
Significant Risk List 02.11 Baseline N/A - not intended to be part of the AD
Design Report 02.01 Prelim Design Compliance Analysis
Inter-system (flight-ground) interfaces (DRAFT ICDs) 02.01 Draft N/A - not intended to be part of the AD
Probabilistic Risk Assessment (when applicable) 03.04 Initial N/A - not intended to be part of the AD
Functional FMECA (Risk Class A projects only) 03.04 Prelim N/A - not intended to be part of the AD
Telecommunications Design Control Document 06.06 Prelim N/A - not intended to be part of the AD
Mission/System Fault Tree 02.01 Prelim N/A - not intended to be part of the AD
Test-As-You-Fly Exceptions 02.10 Prelim N/A - not intended to be part of the AD
Lessons Learned - Formulation 02.01 Final N/A - not intended to be part of the AD
MOU with Science Data Archive 04.01 Baseline N/A - not intended to be part of the AD
Payload L3 Requirements 05.02 Update Payload realizational View (list of RQ)
Payload Architecture 05.02 Update Payload realizational View (Elements,

interfaces and Functions)
Payload/Instrument Design 05.02 Prelim N/A - not intended to be part of the AD
L4 Instrument Requirements 05.xx Baseline Instrument realizational Views (list of RQ)
Instrument Calibration Requirements and Plan 05.xx Prelim Instrument realizational Views (list of RQ,

Scenarios)
Spacecraft Operating Scenarios 06.02 Baseline Integrated Scenarios from Spacecraft

realizational View
Spacecraft L3 Requirements 06.02 Update Spacecraft realizational View (list of RQ)
Spacecraft Architecture 06.02 Update Spacecraft realizational View (Elements,

interfaces and Functions)
Spacecraft System Design 06.02 Prelim N/A - not intended to be part of the AD
Spacecraft -Instrument interfaces (ICDs) 06.02 Draft N/A - not intended to be part of the AD
Spacecraft subsystem interfaces (ICDs) 06.02 Draft N/A - not intended to be part of the AD
Spacecraft System Software Mgmt Plans 06.02 Baseline N/A - not intended to be part of the AD
S/C System Software Requirements Document 06.02 Baseline Flight Software Realizational View
Spacecraft System Software Architectural Design 06.02 Baseline Flight Software Realizational View
Spacecraft Subsystem (S/S) Design 06.xx Prelim N/A - not intended to be part of the AD
L4 Spacecraft Subsystem Requirements 06.xx Baseline Subsystem realizational Views
Mission Ops Concept document 07.02 Baseline Operations Concept conceptual View
MOS L3 Requirements 07.02 Update MOS realizational View
Ground Data System (GDS) Requirements Document 07.02 Baseline GDS realizational View (list of RQ)
Ground Architecture 07.02 Update MOS realizational View

Science System realizational View

	 	 (initial	release	for	review)	

	 101	

Gate Product WBS
Element

Required
Maturity

Contributing Views and
Framework Elements

GDS Software Management Plan 09.02 Baseline N/A - not intended to be part of the AD
MOS Functional Design Document 07.02 Prelim MOS realizational View
Ground Station/Multi-Mission Service Provider Agree-
ments

07.02 Prelim N/A - not intended to be part of the AD

MOS Verification & Validation Plan 07.14 Prelim Verification and Validation
MOS Training Plan 07.02 Approach N/A - not intended to be part of the AD
GDS Integration & Test (I&T) Plan 09.17 Prelim N/A - not intended to be part of the AD
Software Interface Specifications (SISs) 09.02 List N/A - not intended to be part of the AD
Launch Services Requirements Document 02.09 Baseline Launch System realizational View
FS I&T Plan 10.02 Baseline FS I&T realizational View (Elements,

Scenarios)
Mission Plan, Including Mission Scenarios 12.03 Prelim Project System realizational View (list of

Scenarios)
Navigation Plan 12.04 Prelim Navigation conceptual View

MOS realizational View
Target Specification Document 12.02 Prelim N/A - not intended to be part of the AD

	

Table	5:	Gate	Products	and	Views	required	at	CDR	

Gate Product WBS
Element

Required
Maturity

Contributing Views and
Framework Elements

Launch System ICD 02.01 Baseline N/A - not intended to be part of the AD
Project Task Plan 01.01 Phase CD Work Breakdown
Project V&V Plan 02.10 Update Verification and Validation
Mission Assurance Plan 03.01 Update Mission Assurance
PIP4.2 - Science Data Management and Archive Plan 04.01 Baseline Science Data Management conceptual View
Education Plan 11.01 Update N/A - not intended to be part of the AD
Communications Plan 11.01 Update N/A - not intended to be part of the AD
Project integrated life-cycle network schedules 01.02 Update N/A - not intended to be part of the AD
Cost Estimates 01.02 Update N/A - not intended to be part of the AD
Life-cycle workforce plan 01.02 Update N/A - not intended to be part of the AD
Project Space Asset Protection Plan 01.01 Update Space Asset Protection
Environmental Requirements Document 03.03 Update Environmental Compatibility
Significant Risk List 02.11 Update N/A - not intended to be part of the AD
Design Report 02.01 Baseline Design Compliance Analysis
Inter-system (flight-ground) interfaces (DRAFT ICDs) 02.01 Baseline N/A - not intended to be part of the AD
Probabilistic Risk Assessment (when applicable) 03.04 Update N/A - not intended to be part of the AD
Functional FMECA (Risk Class A projects only) 03.04 Baseline N/A - not intended to be part of the AD
Telecommunications Design Control Document 06.06 Baseline N/A - not intended to be part of the AD
Incompressible Test List 02.10 Prelim N/A - not intended to be part of the AD
Mission/System Fault Tree 02.01 Baseline N/A - not intended to be part of the AD
Test-As-You-Fly Exceptions 02.10 Baseline N/A - not intended to be part of the AD
Payload/Instrument Design 05.02 Baseline N/A - not intended to be part of the AD
Instrument Calibration Requirements and Plan 05.xx Baseline Instrument realizational Views (list of RQ,

Scenarios)
Spacecraft Operating Scenarios 06.02 Update Integrated Scenarios from Spacecraft

realizational View
Spacecraft System Design 06.02 Baseline N/A - not intended to be part of the AD
Spacecraft -Instrument interfaces (ICDs) 06.02 Baseline N/A - not intended to be part of the AD
Spacecraft subsystem interfaces (ICDs) 06.02 Baseline N/A - not intended to be part of the AD
Spacecraft design verification requirements matrix 06.02 Prelim N/A - not intended to be part of the AD
Flight Sequences (launch, and mission critical) 06.02 Prelim N/A - not intended to be part of the AD
System Testbed Integration & Test Plan 06.13 Baseline N/A - not intended to be part of the AD

	 	 (initial	release	for	review)	

	 102	

Gate Product WBS
Element

Required
Maturity

Contributing Views and
Framework Elements

Command and telemetry dictionaries 06.02 Prelim N/A - not intended to be part of the AD
Spacecraft System Software Detailed Design 06.02 Baseline N/A - not intended to be part of the AD
Flight Rules and Constraints Document 06.02 Prelim N/A - not intended to be part of the AD
Spacecraft Subsystem (S/S) Design 06.xx Baseline N/A - not intended to be part of the AD
Ground Data System (GDS) Requirements Document 07.02 Update GDS realizational View (list of RQ)
MOS Functional Design Document 07.02 Baseline MOS realizational View
Ground Station/Multi-Mission Service Provider Agree-
ments

07.02 Baseline N/A - not intended to be part of the AD

MOS Verification & Validation Plan 07.14 Baseline Verification and Validation
MOS Training Plan 07.02 Prelim N/A - not intended to be part of the AD
GDS Integration & Test (I&T) Plan 09.17 Baseline N/A - not intended to be part of the AD
Operations Interface Agreements (OIAs) 07.02 List MOS realizational View (list of team-to-team

interfaces)
Software Interface Specifications (SISs) 09.02 Baseline N/A - not intended to be part of the AD
Flight Operations Plan 07.02 Prelim N/A - not intended to be part of the AD
Operations Procedures 07.02 List N/A - not intended to be part of the AD
MOS Contingency Plans and Procedures 07.02 List N/A - not intended to be part of the AD
Flight Rules and Constraints Check Matrix 07.02 Prelim N/A - not intended to be part of the AD
Sequence Component Dictionary 07.02 Prelim N/A - not intended to be part of the AD
FS I&T Plan 10.02 Update FS I&T realizational View (Elements,

Scenarios)
Mission Plan, Including Mission Scenarios 12.03 Baseline Project System realizational View (list of

Scenarios)
Navigation Plan 12.04 Baseline Navigation conceptual View

MOS realizational View

	
Table	6:	Gate	Products	and	Views	required	at	SIR	

Gate Product WBS
Element

Required
Maturity

Contributing Views and
Framework Elements

Range Safety Risk Management Plan 03.02 Baseline N/A - not intended to be part of the AD
PIP4.2 - Science Data Management and Archive Plan 04.01 Update Science Data Management conceptual View
Work Agreements/Summary Work Agreements 01.02 Update N/A - not intended to be part of the AD
Design Report 02.01 Update Design Compliance Analysis
Incompressible Test List 02.10 Baseline N/A - not intended to be part of the AD
Test-As-You-Fly Exceptions 02.10 Update N/A - not intended to be part of the AD
Mission Operations Assurance Plan 03.09 Prelim N/A - not intended to be part of the AD
Payload/Instrument Design 05.02 Update N/A - not intended to be part of the AD
Spacecraft System Design 06.02 Update N/A - not intended to be part of the AD
Spacecraft design verification requirements matrix 06.02 Baseline N/A - not intended to be part of the AD
Command and telemetry dictionaries 06.02 Baseline N/A - not intended to be part of the AD
Spacecraft System Software Detailed Design 06.02 Baseline N/A - not intended to be part of the AD
Flight Rules and Constraints Document 06.02 Baseline N/A - not intended to be part of the AD
Spacecraft Subsystem (S/S) Design 06.xx Update N/A - not intended to be part of the AD
MOS Functional Design Document 07.02 Update MOS realizational View
MOS Training Plan 07.02 Baseline N/A - not intended to be part of the AD
GDS Integration & Test (I&T) Plan 09.17 Update N/A - not intended to be part of the AD
Operations Interface Agreements (OIAs) 07.02 Baseline N/A - not intended to be part of the AD
Sequences for ATLO testing and Launch/Early Flight
Operations

07.02 Baseline N/A - not intended to be part of the AD

Flight Operations Plan 07.02 Baseline N/A - not intended to be part of the AD
Operations Procedures 07.02 Baseline N/A - not intended to be part of the AD
MOS Contingency Plans and Procedures 07.02 Baseline N/A - not intended to be part of the AD

	 	 (initial	release	for	review)	

	 103	

Gate Product WBS
Element

Required
Maturity

Contributing Views and
Framework Elements

Flight Rules and Constraints Check Matrix 07.02 Baseline N/A - not intended to be part of the AD
Sequence Component Dictionary 07.02 Baseline N/A - not intended to be part of the AD
Launch Site Responsibility Matrix 02.09 Prelim N/A - not intended to be part of the AD
FS I&T Plan 10.02 Update FS I&T realizational View (Elements,

Scenarios)
Target Specification Document 12.04 Baseline N/A - not intended to be part of the AD

	
Table	7:	Gate	Products	and	Views	required	at	PSR	

Gate Product WBS
Element

Required
Maturity

Contributing Views and
Framework Elements

Launch System ICD 02.01 Update N/A - not intended to be part of the AD
Certificate of Flight Readiness 02.01 Final various Realizational Views

various Analyses
As-Built Documents 05.xx Baseline N/A - not intended to be part of the AD
Flight Sequences (launch, and mission critical) 06.02 Baseline N/A - not intended to be part of the AD
Testbed Validation Report 06.14 Baseline N/A - not intended to be part of the AD
Launch Site Responsibility Matrix 02.09 Baseline N/A - not intended to be part of the AD
Spacecraft design verification results 06.13 Baseline N/A - not intended to be part of the AD
Spacecraft Idiosyncrasies Document 06.13 Prelim N/A - not intended to be part of the AD
Transportation Plan 06.12 Final N/A - not intended to be part of the AD

	

Table	8:	Gate	Products	and	Views	required	at	ORR	

Gate Product WBS
Element

Required
Maturity

Contributing Views and
Framework Elements

Project Task Plan 01.01 Phase E Work Breakdown
Work Agreements/Summary Work Agreements 01.02 Phase E N/A - not intended to be part of the AD
Decommissioning/Disposal Plan 01.01 Baseline Project System realizational View (Decom-

missioning Scenario)
Launch - Hold Criteria 02.01 Prelim N/A - not intended to be part of the AD
Project Verification & Validation Results 02.10 Prelim N/A - not intended to be part of the AD
Mission Operations Assurance Plan 03.09 Baseline N/A - not intended to be part of the AD
Instrument Calibration Data 05.xx Baseline N/A - not intended to be part of the AD
Command and telemetry dictionaries 06.02 Update N/A - not intended to be part of the AD
Flight Rules and Constraints Document 06.02 Update N/A - not intended to be part of the AD
Sequences for ATLO testing and Launch/Early Flight
Operations

07.02 Final N/A - not intended to be part of the AD

Flight Operations Plan 07.02 Update N/A - not intended to be part of the AD
Sequence Component Dictionary 07.02 Baseline N/A - not intended to be part of the AD
Mission Sequence Plan 07.02 Baseline N/A - not intended to be part of the AD
Mission Plan, Including Mission Scenarios 12.03 Update Project System realizational View (list of

Scenarios)
Navigation Plan 12.04 Update Navigation conceptual View

MOS realizational View
Target Specification Document 12.02 Update N/A - not intended to be part of the AD

	

	 	 (initial	release	for	review)	

	 104	

Table	9:	Gate	Products	and	Views	required	at	MRR	

Gate Product WBS
Element

Required
Maturity

Contributing Views and
Framework Elements

Probabilistic Risk Assessment (when applicable) 03.04 Update N/A - not intended to be part of the AD
Launch - Hold Criteria 02.01 Baseline N/A - not intended to be part of the AD
Project Verification & Validation Results 02.10 Baseline N/A - not intended to be part of the AD
End of Mission Plan 02.01 Baseline N/A - not intended to be part of the AD
Testbed Validation Report 06.14 Update N/A - not intended to be part of the AD

	

◼

	 	 (initial	release	for	review)	

	 105	

Appendix D Bibliography
	

[1]		 R.	Rasmussen,	J.	Day	and	S.	Jenkins,	"System	Architecting	Methodology	Task	Report,"	April	
2020.	[Online].	Available:	https://wiki.jpl.nasa.gov/download/attachments/
264051817/System%20Architecting%20Methodology%20Task%20Report.pdf?api=v2.	

[2]		 J.	J.	Odell,	"Six	Different	Kinds	of	Composition,"	in	Advanced	Object-Oriented	Analysis	and	
Design	Using	UML,	Cambridge	University	Press,	1998.		

[3]		 DoD,	"Systems	Engineering	Fundamentals,"	January	2001.	[Online].	Available:	https://apps.
dtic.mil/docs/citations/ADA606327.	

[4]		 IEEE	Std	1471-2000,	"Recommended	Practice	for	Architectural	Description	of	Software-
Intensive	Systems,"	[Online].	Available:	https://bravo-
lib.jpl.nasa.gov/docushare/dsweb/Get/Document-119114/IEEE-STD-1471-2000.pdf.	

[5]		 Kruchten,	"4+1	View	Model,"	[Online].	Available:	
http://www.softwarearchitectures.com/library/resources/Kruchten4+1.pdf.	

[6]		 OMG,	"Model	Driven	Architecture,"	[Online].	Available:	http://www.omg.org/mda/.	

[7]		 ISO/IEC	10746,	"The	Reference	Model	for	Open	Distributed	Processing	(RM-ODP),"	[Online].	
Available:	http://www.rm-odp.net/.	

[8]		 CCSDS,	"Reference	Architecture	for	Space	Data	Systems	(RASDS),"	[Online].	Available:	
https://public.ccsds.org/Pubs/311x0m1.pdf.	

[9]		 The	Open	Group,	"Architecture	Framework	(TOGAF),"	[Online].	Available:	
http://www.opengroup.org/togaf/.	

[10]		ISO/IEC	15288,	"Systems	and	software	engineering	—	System	life	cycle	processes,"	15	May	
2015.	[Online].	Available:	https://www.iso.org/standard/63711.html.	

[11]		NASA	SP-2016-6105,	"Systems	Engineering	Handbook,"	[Online].	Available:	
https://www.nasa.gov/sites/default/files/atoms/files/nasa_systems_engineering_
handbook_0.pdf.	

[12]		JPL,	"Flight	Project	Practices,"	[Online].	Available:	http://rules.jpl.nasa.gov/pdf/
FPP__12.pdf.	

[13]		NASA/SP-2014-3705,	NASA	Space	Flight	Program	and	Project	Management	Handbook,	
September	2014.		

[14]		NASA,	FY2021	Budget	Request	Executive	Summary,	2020.		

[15]		Jet	Propulsion	Laboratory,	Institutional	Project	Review	Plan,	DocID	75512	(Rev.	9),	2019.		

[16]		B.	S.	Blanchard	and	W.	J.	Fabrycky,	Systems	Engineering	and	Analysis,	Prentice-Hall	Inc.,	
1981.		

[17]		Jet	Propulsion	Laboratory,	JPL	Standard	Flight	Project	Work	Breakdown	Structure	Template,	
DocID	59533	(Rev.	7),	2018.		

	 	 (initial	release	for	review)	

	 106	

[18]		Jet	Propulsion	Laboratory,	Work	Breakdown	Structure	Tailoring,	DocID	59535	(Rev.	3),	2017.		

[19]		JPL,	"Flight	Hardware	Hierarchy	and	Nomenclature,"	[Online].	Available:	
https://rules.jpl.nasa.gov/cgi/doc-gw.pl?docid=78364.	

[20]		E.	W.	Dijkstra,	"On	the	role	of	scientific	thought"	in	Selected	writings	on	Computing:	A	
Personal	Perspective,	New	York,	NY:	Springer-Verlag,	1982,	p.	60–66.	

[21]		R.	D.	Rasmussen,	Architecture	Framework	Definition,	JPL	D-55628	(Version	15),	Jet	
Propulsion	Laboratory,	2019.		

	
	

◼	 	

	 	 (initial	release	for	review)	

	 107	

	

Jet Propulsion Laboratory

California Institute of Technology

