
Toward a Framework for Modeling Space Systems
Architectures

Peter Shames1 and Joseph Skipper, PhD2
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

This paper describes an approach for developing a framework to describing the kinds of
complex system architectures that are involved in designing space systems. This framework
leverages earlier work that has been done in CCSDS to develop a Reference Architecture for
Space Data Systems (RASDS), but extends it to define the additional views required by the
physical aspects of operating systems in space. These modeling concepts were applied in a
Model Based Engineering and Design (MBED) project at JPL which demonstrated that a
common information model could be used for different purposes and at different levels of
abstraction during a design process. The focus in this paper is on the concepts in this
modeling framework and how they relate to other current architectural modeling methods.

1. Overview

Since the early 1990’s there have been a number of efforts to define powerful and extensible
approaches for describing a general class of software intensive system architectures. The DoD has
funded many of these, but some have sprung from international or national efforts in ISO or the
IEEE. These approaches are typically focused upon architectures of terrestrial systems and they
range from broadly applicable, moderately formalized, approaches like the Unified Modeling
Language (UML) [1], to more focused approaches such as the Systems Engineering Modeling
Language (SysML) [2], and RM-ODP (Reference Model of Open Distributed Processing) [3]. There is
a recent UML for RM-ODP (UML4ODP) effort that is providing a UML formalism for ODP [4]. In
alignment with the recommendations made in the ANSI/IEEE 1471-2000 Recommended Practice for
Architectural Description of Software-Intensive Systems [5], all of these approaches support an
appropriate set of viewpoints for developing system architectural descriptions.

All of these standard architectural approaches are intended to describe large-scale terrestrial data
systems that are inherently complex, but are typically fixed in one place and often designed and built
by a single organization. In the world of space systems there is an even higher level of complexity in
that these are most often multi-organizational developments that are best characterized as systems
of systems. In further contrast to terrestrial systems the most challenging elements of these
systems, the spacecraft, are not fixed in place, but are flying through space at high velocity, must use
specialized ground and space communications assets and protocols, are often at great distance from
the Earth and are frequently out of contact with their control centers.

These attributes of space communications systems drive architectural complexity and require
consideration of issues that are not typical in terrestrial systems, and the set of viewpoints that the
existing standard approaches define are not completely adequate to the task of describing space
systems. Work has been done during the last couple of years to model space data systems using a
methodology called the Reference Architecture for Space Data Systems (RASDS) [6] that is derived

1 Manager, JPL Data System Standards Program, 4800 Oak Grove Drive, MS 301-265, Pasadena, CA, USA
2 Senior Member of the Technical Staff, 4800 Oak Grove Drive, MS 301-180, Pasadena, CA, USA

from RM-ODP. This modeling approach augments the RM-ODP viewpoints on a system by adding
ones that deal directly with space communications and protocols, physical element connectivity, and
their interactions with the environment. The efficacy of RASDS has been demonstrated by its use in
several NASA projects to describe the end-to-end architectures of their spacecraft data systems.

Recent work has been performed at JPL in an internal research and development project called
Model Based Engineering and Design (MBED) [7] to extend this RASDS approach to capture all of
the other physical aspects of space systems in an extended model. Modeling the design of space
systems necessitates inclusion of one or more viewpoints that deal with the rest of the physical
attributes of these systems and their interaction with the environment. These other attributes
include mass, power, propulsion, thermal, structure and dynamic control, in addition to the
component (node), connector (link), gravitational and environmental aspects already in the RASDS
connectivity viewpoint.

This conceptual approach is intended to be general enough to permit description of civilian, military,
and commercial space systems, the spacecraft physical and logical design, ground systems, processing
and communications resources, and organizational arrangements. The method focuses upon how to
represent the technical end to end system architectural elements and their logical and physical
interfaces and interactions. In this paper we will describe this extended RASDS methodology, the set
of viewpoints that we have derived, its use in the MBED task, and describe their relationship to RM-
ODP and other related methods.

2. Introduction to Architectural Modeling

The IEEE Recommended Practice for Architectural Description of Software-Intensive Systems,
IEEE 1471-2000, provides some very useful definitions and guidelines for what system architecture is
and for the use of viewpoint specifications to address the identified set of stakeholder concerns.

The scope of this recommended practice encompasses those products of system development that
capture architectural information. This includes architectural descriptions that are used for the
following:

a) Expression of the system and its evolution

b) Communication among the system stakeholders

c) Evaluation and comparison of architectures in a consistent manner

d) Planning, managing, and executing the activities of system development

e) Expression of the persistent characteristics and supporting principles of a system to guide
acceptable change

f) Verification of a system implementation’s compliance with an architectural description

g) Recording contributions to the body of knowledge of software-intensive systems architecture

The IEEE 1471-2000 specification describes the process for developing architecture descriptions
under a number of scenarios, including precedented and unprecedented design, evolutionary design,
and capture of design of existing systems. In all of these scenarios the overall process is the same:
identify stakeholders, elicit concerns, identify a set of viewpoints to be used, and then apply these
viewpoint specifications to develop a set of relevant views of the system.

IEEE 1471-2000 indicates the utility of defining system, functional, and technical views (among
others), however, in order to maintain generality it does not go so far as to define any specific set of
views nor what these might be used for. While all of the definitions in IEEE-1471 provide useful
guidance as to process and terminology, they provide little in the way of practical direction for

actually defining an architecture methodology for space systems, nor do they offer pragmatic
guidelines for describing system architectures, particularly space system architectures. Maier, et al, in
ANSI/IEEE 1471 and Systems Engineering [8] address the strengths of IEEE-1471 and how it relates
to other more prescriptive methods like RM-ODP, the DoD Architecture Framework (DoDAF) [9],
and others. Other methods, such as the Rational Unified Process for System Engineering (RUP-SE)
[10] have also adopted the principles in IEEE-1471 and extended them for use within their own
domain.

2.1 Reference Model of Open Distributed Processing

In order to provide relevant domain specific guidance on how to select useful viewpoints we need to
look to other, more domain specific, approaches that adhere to these general principles. The ISO
Reference Model of Open Distributed Processing (RM-ODP) was published in 1996 to provide a
useful framework for describing the architecture and design of large scale distributed systems. The
RM-ODP, also known as ISO/IEC 10746, provides domain specific guidance that aligns with the
principles defined in IEEE 1471-2000. The RM-ODP was developed to provide a useful framework
for describing the architecture and design of large scale distributed systems. Among the contributions
that RM-ODP provides are the following:

- RM-ODP offers a conceptual framework and an architecture that integrates aspects related to
the distribution, interoperation and portability of software systems, in such way that hardware
heterogeneity, operating systems, networks, programming languages, databases and management
systems are transparent to the user. In this sense, RM-ODP manages complexity through a
“separation of concerns”, addressing specific problems from different points of view.

- RM-ODP offers a coordinating framework for the standardization of ODP, able to integrate
current and future standards, and maintain consistency among them.

- RM-ODP provides a short, clear and explicit specification of concepts and constructs that define
semantics, independent of the representation, methodologies, tools and processes used for the
development of open distributed applications. RM-ODP offers a vocabulary and a common
semantic framework to all the applications’ participants (from managers to users, from designers
to developers), and encourages the use of formal notations for the definition of those concepts and
the specification of the architecture.

A good architectural framework should allow different parts of the design to be worked upon
separately if they are independent, but should clearly identify those places where different aspects of
the design constrain one another.

RM-ODP has been used in the design of major terrestrial telecom systems (TINA) and other large,
multi-user, distributed systems. In the telecommunications industry, TINA (Telecommunications
Information Networking Architecture), defined by TINA-C (TINA Consortium) [11], describes an
architecture for the development of telecommunication applications based on the concepts defined
by RM-ODP. Currently TINA provides the most widespread and accepted architecture in this field.
With the support of those technologies, building systems using the RM-ODP concepts is no longer a
visionary undertaking. RM-ODP is real.

2.2 Reference Architecture for Space Data Systems

While the terrestrial distributed systems that RM-ODP was designed to describe may be very large and
complex space systems are even more so and they don’t stand still. RM-ODP provides an excellent
framework with which to tackle terrestrial systems, but additional views and viewpoints are essential
for describing space systems, largely because there is an entirely new set of concerns. The

Consultative Committee on Space Data Systems (CCSDS) [12] has been working on a space domain
adaptation of RM-ODP for the last few years. This is the Reference Architecture for Space Data
Systems (RASDS). The RASDS, CCSDS 311x0-R-1, is designed to address these added complexities
of space data systems and to focus upon the specification of their architecture.

Flight elements in space systems are always in motion, whether they are in transit to their
destination, in orbit around it, landed upon some remote part of the Solar System, roving some
distant terrain, or on their way out of it to even more distant domains. There is no avoiding things
like (1) solar and lunar eclipses, and (2) occultations that occur when a moving object, such as a
planet or the moon, blocks the light coming from a more distant object, such as a star. The physical
environment plays a large role because physics acts upon these systems in a way that must be
modeled in our design processes and during control system design, planning, commanding and
operations. Even such subtle energies as solar radiation pressure, outgassing, and gravity must be
analyzed during design and countered during operations.

Because of the long round trip light times (RTLT) command, control and monitoring paradigms must
be reconsidered, autonomous systems rise in importance, and any notions of distribution
transparency must be completely rethought. Assumptions about immediate, continuous, and
interactive communications break down when ground and space communications assets must be
scheduled months in advance and command and response round trip times rise from tens of
milliseconds to tens of minutes or even hours. Communication protocols designed to work with
normal terrestrial communication delays break down as interaction times exceed a few seconds.

The one new viewpoint, which RASDS introduces for space systems, is the Connectivity Viewpoint
that deals with system components (Nodes), connectors (Links), the environment within which these
systems operate, and the physical interactions among the system elements with the environment.
This is a partial sub-set of the RM-ODP Engineering Viewpoint, but it explicitly includes the physical
aspects of space data system architectures. RASDS also distinguishes a Communications Viewpoint
that is used to address the complexities of communications protocols and end-to-end information
system (EEIS) design in space data systems. The other viewpoints in RM-ODP only require minor
changes in order to be used for the purpose of describing space systems architectures.

The complexities of operating long lived system in space also requires planned and predictable
capabilities "gated" into the system along two axes. First, each element, such as a Crewed
Exploration Vehicle, communications network, and Operations Control Center must have a clear
evolutionary path that leads to future capabilities. Second, at the starting point, and at some specific
point(s) in time in the future, all of the capabilities must work together to produce the desired results.

RASDS provides adaptation to RM-ODP that allow it to describe space data systems, and to deal with
issues in the design of these more demanding command, control, and data transfer issues. RASDS is
also specifically focused upon a desire to describe architectures, and it intentionally leaves out much
of the engineering and technical viewpoint elements in RM-ODP, on the assumption that these
additional RM-ODP engineering concepts could be used directly within the RASDS framework where
they are required.

3. Adapting RM-ODP and RASDS to Describe Space Systems

The RASDS extensions to RM-ODP provide an excellent framework with which to tackle space data
systems, but architecting complete space systems, in general, requires accommodation of other
physical attributes and interactions, such as power, propulsion, thermal, and structural. In our effort
to extend the RASDS space data system model to encompass other attributes of space systems the
one new viewpoint that we introduced is the Physical Viewpoint, which subsumes the RASDS
Connectivity Viewpoint. We have also associated the RASDS Connectivity Viewpoint with the

Engineering Viewpoint. Other viewpoints in RASDS and RM-ODP only require minor changes in
order to be used for our purposes. In the rest of this paper we will refer to this extended model as the
Reference Architecture for Space Data Systems – Extended (RASDS-E).

The concepts in RASDS-E were developed in a Model Based Engineering and Design (MBED)
internal research and development task at JPL that was intended to produce a model driven design
and engineering process for space systems. Central to this concept is the development of an
information model which is rich enough to capture all of the critical elements of space mission
design, including requirements, mission goals, observational objectives, activity sequences, technical
spacecraft design, development, and operations, space to space and space to ground interactions and
communications, and science planning, operations, and processing. RASDS-E is initially focused on
the early design phases, but is intended to be of use throughout the mission lifecycle.

3.1 Fundamental Concepts - RASDS-E

As with RM-ODP, a good framework for space system design should allow different parts of the
design to be worked on separately if they are independent, but should clearly identify those places
where different aspects of the design constrain one another. In order to achieve this, RASDS-E uses
several structuring approaches:

-The specification of a complete system in terms of viewpoints.
-The use of a common object model for the specification of the system from every
viewpoint.
-The use of views to tailor user or domain specific analyses of the system.
-The definition of a modeling infrastructure that provides support services for system
applications, hiding the complexity and problems of defining mission specific models.
-The definition of a set of common functions that provide general services needed during the
design and development of space systems.
-A framework for the evaluation of conformance of models and designs based on
conformance points.

3.2 Viewpoints - RASDS-E

Most space system specifications are so complex and extensive that no single individual can fully
comprehend all aspects of the specifications. Furthermore, different stakeholders in the system
design have different needs for a given system and different reasons for examining the system’s
specifications. A mission planner will ask different questions of a system make-up than would a
system implementer. The concept of the RASDS-E viewpoints framework is to provide separate
viewpoints into the specification of a given space system. These viewpoints each satisfy an audience
with interest in a particular set of aspects of the system. Associated with each viewpoint is a
viewpoint language that optimizes the vocabulary and presentation for the audience of that
viewpoint.

“A viewpoint establishes the conventions by which a view is created, depicted and analyzed.
In this way, a view conforms to a viewpoint. The viewpoint determines the languages
(including notations, model, or product types) to be used to describe the view, and any
associated modeling methods or analysis techniques to be applied to these representations of
the view. These languages and techniques are used to yield results relevant to the concerns
addressed by the viewpoint. An architectural description (AD) selects one or more viewpoints
for use. The selection of viewpoints typically will be based on consideration of the
stakeholders to whom the AD is addressed and their concerns.” – IEEE 1471-2000

A viewpoint defines a selected set of architectural concepts and structuring rules, in order to focus on
particular concerns within a space data system. A viewpoint establishes the purpose and audience for
a view and the techniques or methods employed in constructing a view.

The RASDS-E framework extends the RM-ODP and RASDS frameworks to provide six generic and
complementary viewpoints on the system and its environment:

-The enterprise viewpoint, which focuses on the purpose, scope and policies for the system. It
describes the organizational entities, requirements, goals, objectives, scenarios, constraints,
and how to meet them.

-The information viewpoint, which focuses on the semantics of the information and the
information processing performed. It describes the information managed by the space system
and the structure, content, semantics, type, and relationships among the data used within the
system.

-The functional viewpoint, which defines the abstract functional decomposition of the space
system into objects, which interact at interfaces. It describes the functionality provided by
the space system, the behavior of the functional elements and their functional
decomposition.

-The physical viewpoint, which defines the physical decomposition of the space system into
components, which interact across connectors. It describes the physical aspects of the space
system and the external environment within which it operates, the physical behavior (and
motion) of the components and their physical decomposition. The connectors may be
manifestly physical (nuts and bolts, struts, network or power cables), or they may be more
ethereal (RF & optical signals, thermal radiation, gravitational force).

-The engineering viewpoint, which focuses on the mechanisms and functions required to
engineer and implement the space system and on the allocation of implemented functionality
to engineered components of the system, including implementation choices. It describes the
distribution of processing performed by the space system to manage the information and
provide the functionality.

-The technology viewpoint, which focuses on the choice of technology and standards to
develop the space system. It describes the standards and technologies chosen to provide the
communications, processing, functionality and presentation of information in the space
system. It also describes any technology risks that must be assessed during design and
development.

A viewpoint is a subdivision of the specification of a complete system, established to bring together
those particular pieces of information relevant to some particular area of concern during the design
of the system. Although separately specified, the viewpoints are not completely independent; key
items in each are identified as related to items in the other viewpoints. However, the viewpoints are
sufficiently independent to simplify reasoning about the complete specification.

The mutual consistency among the viewpoints is ensured by the viewpoints and relationships defined
by RASDS-E, and the use of a common object model provides the glue that binds them all together.
The RASDS-E architecture is based upon a common semantic object model such that each object
class and set of relationships is represented once and only once in the model. As a note to the
implementer, the intent is that any change to the object model from one view will result in a change
in the underlying semantic model, therefore automatically changing all related views. The issue to be
addressed is that searching for similar models or elements that may be affected by any change in
these complex models can no longer be tolerated. The modeling tools must manage this for us.
Figure 1 shows the relationships among the top-level objects in the RASDS-E model.

3.3 Common Object Model - RASDS-E

The RASDS-E viewpoint specifications are expressed in terms of objects. An object is an abstract
representation of an entity in the real world. It contains information and offers services. A system is
composed of interacting objects. Each viewpoint defines its own objects and their relationships and
interactions. In the enterprise viewpoint the objects are organizations and the interactions involve
requirements, contracts, and policies. In the functional viewpoint the objects are abstract functions
and they interface via abstract interfaces. In the physical viewpoint the objects are components with
mass and structural properties that are related to one another by some sort of physical connector.

Figure 1 – RASDS Top level Objects

The use of the object paradigm provides abstraction and encapsulation, two important properties for
the specification and design of complex systems. Abstraction allows highlighting those aspects of the
system relevant from a given perspective, while hiding those of no relevance at that moment.
Encapsulation is the property by which the internal implementation details or information contained
in an object is accessible only through interactions at the interfaces supported by the object. Because
objects are encapsulated, there are no hidden side effects of interactions. It also implies that the
internal details of an object are hidden from other objects, which is crucial for dealing with
heterogeneity, multiple implementations, interoperability and portability.

Fulfills

3.4 Views - RASDS-E

Viewpoints provide the conventions, rules, and languages for constructing views. A view is a
representation of a whole system from the perspective of a related set of concerns. Views are
themselves modular and well formed, and each view is intended to correspond to exactly one
viewpoint. In some cases objects defined in one viewpoint will have a correspondence with related
objects defined in another viewpoint. The user may also define a new view based on the basic
concepts defined by RASDS-E if it is impossible to capture all the important aspects of the system
with the six viewpoints defined here. Some aspects of a system design may benefit from being
examined from two or more views simultaneously.

“A view may consist of one or more architectural models. Each such architectural model is developed
using the methods established by its associated architectural viewpoint. An architectural model may
participate in more than one view. NOTE—In a complex system, Architecture Descriptions (AD) may be
developed for components of the system, as well as for the system as a whole. In this case, it may be that
one AD will have a view corresponding to a particular viewpoint and another AD will have a view
corresponding to the same viewpoint. Although the system being described by these two views has the
whole-part relationship, this is not an instance of multiple views corresponding to one viewpoint. The ADs
are considered separate even though they are related by the systems they describe.” IEEE-1471-2000.

What follows is a set of viewpoints that may be used to describe space systems, along with a nominal
and incomplete set of views associated with each viewpoint. Not all of these views may be useful for
any specific project and other views may be defined as necessary. For each viewpoint the primary
stakeholders, concerns, modeling language, and consistency methods are identified. Note that for
some analyses elements from multiple viewpoints may be combined into a new view, possibly using a
layered representation.

As part of the modeling language each viewpoint specification identifies a set of objects and the
relationships that may be expressed among them. And as noted earlier, objects defined in one
viewpoint will often have a correspondence to related objects in another viewpoint specification. In
fact, tracing these correspondences and relationships is one of the key means by which design
consistency and integrity is established. Requirements and scenarios trace to functions, functions
trace to the engineering objects that implement them (hardware or software), the physical attributes
of hardware engineering objects are considered as part of the structural and thermal analysis of the
designed system.

Enterprise viewpoint
Stakeholders: funding source, acquirers, users, and developers
Concerns: what the system is to do and how we organize to design, develop and operate it
Modeling Language: enterprise objects and relationships, roles, policies, constraints, scenarios, requirements
Consistency & Completeness Methods: documented set of completeness rules

Organization view – Includes organizational elements and their roles, structures and relationships. May
include agreements, contracts, policies and organizational interactions.
Requirements view – Describes the requirements, goals, and objectives that drive the system. Says what the
system must be able to do.
Scenario view – Describes how the system is intended to be used. Includes user views and descriptions of how
the system is expected to behave.

Information viewpoint
Stakeholders: users, developers, maintainers, and data system operators
Concerns: structure, semantics, rules, and policies on data
Modeling Language: information objects and relationships, constraints, rules on access and retention

Consistency & Completeness Methods: documented set of completeness rules, every major information object
identified in other views is documented here

Metamodel view – An abstract view that defines information elements and their structures and relationships.
Defines the classes of data that are created and managed by the system and the data architecture.
Information view – Describes the actual data and information as it is realized and manipulated within the
system. Data elements are defined by the metamodel view and functional objects in other views refer to
them. Includes policies on access and retention of data where appropriate.

Functional viewpoint
Stakeholders: system engineers, acquirers, developers, users, and maintainers
Concerns: the functions that are required for the system to meet its requirements and execute its scenarios
Modeling Language: functional objects and relationships, interfaces, behaviors, constraints
Consistency & Completeness Methods: every requirement maps to at least one function, no requirement is not
mapped to a function, no function is not mapped to a requirement, and there is structural data and control flow
consistency

Functional Dataflow view – An abstract view that describes the functional elements in the system, their
interactions, behavior, provided services, constraints and data flows among them. Defines which functions the
system is capable of performing, regardless of how these functions are actually implemented.
Functional Control view – Describes the control flows and interactions among functional elements within the
system. Includes overall system control interactions, interactions between control elements and sensor / effector
elements and management interactions.

Engineering viewpoint
Stakeholders: system engineers, sub-system engineers, developers, operators, users, maintainers, and acquirers
Concerns: how the functions that the system must possess are to be engineered, construction and assembly
approaches, performance envelopes, suitability, implementability, testability, riskiness, operability
Modeling Language: engineering objects (hardware and software) their connections and relationships, constraints
Consistency & Completeness Methods: every functional element maps to at least one engineering element, no
functional element is not mapped, no engineering element is not mapped to a function, system performance is
estimated and verified against requirements and scenarios, the assembled system is validated

Allocation view – Describes the allocation of functional objects to engineered physical and computational
components within the system, permits analysis of performance and used to verify satisfaction of requirements
Software view - Describes the software engineering aspects of the system, software design and implementation
of functionality within software components, select languages and libraries to be used, define APIs, do the
engineering of abstract functional objects into tangible software elements. Some functional elements, described
using a software language, may actually be implemented as hardware (FPGA, ASIC)
Hardware views – Describes the hardware engineering aspects of the system, hardware design, selection and
implementation of all of the physical components to be assembled into the system. There may be many of
these views, each specific to a different engineering discipline.
Communications Protocol view – Describes the end-to-end design of the communications protocols and
related data transport and data management services, shows the protocol stacks as they are implemented on each
of the physical components of the system.
Risk view – Describes the risks associated with the system design, processes, and technologies, assigns
additional risk assessment attributes to other elements described in the architecture
Control Engineering view - Analyzes system from the perspective of its controllability, allocation of elements
into system under control and control system
Integration and Test view – Looks at the system from the perspective of what must be done to assemble,
integrate and test system and sub-systems, and assemblies. Includes verification of proper functionality, driven
by scenarios, in satisfaction of requirements.
IV&V view – independent validation and verification of functionality and proper operation of the system in
satisfaction of requirements. Does system as designed and developed meet goals and objectives.

Physical viewpoint
Stakeholders: system engineers, sub-system engineers, acquirers, developers, operators, users, and maintainers

Concerns: the physical structures of the system, their connections, and how they interact with the environment
Modeling Language: physical objects (components) and their connections, physical behavior and interactions, the
environment, constraints
Consistency & Completeness Methods: every functional element maps to at least one physical element, no
functional element is not mapped, no physical element is not mapped to a function, and there is structural integrity
and consistency

Data System view – Describes instruments, computers, and data storage components, their data system
attributes and the communications connectors (busses, networks, point to point links) that are used in the
system.
Telecomm view – Describes the telecomm components (antenna, transceiver), their attributes and their
connectors (RF or optical links).
Navigation view – Describes the motion of the major elements of the system (trajectory, path, orbit), including
their interaction with external elements and forces that are outside of the control of the system, but that must be
modeled with it to understand system behavior (planets, asteroids, solar pressure, gravity)
Structural view – Describes the structural components in the system (s/c bus, struts, panels, articulation), their
physical attributes and connectors, along with the relevant structural aspects of other components (mass,
stiffness, attachment)
Thermal view – Describes the active and passive thermal components in the system (radiators, coolers, vents)
and their connectors (physical and free space radiation) and attributes, along with the thermal properties of other
components (i.e. instruments as thermal sources (or sinks), antennas or solar panels as sun shade)
Power view – Describes the active and passive power components in the system (solar panels, batteries, RTGs)
within the system and their connectors, along with the power properties of other components (data system and
propulsion elements as power sinks and structural panels as grounding plane)
Propulsion view – Describes the active and passive propulsion components in the system (thrusters, gyros,
motors, wheels) within the system and their connectors, along with the propulsive properties of other
components

Technology viewpoint
Stakeholders: system engineers, sub-system engineers, developers, acquirers, and maintainers
Concerns: the technologies chosen to implement the system and their suitability for the intended purpose, their
level of development and risk
Modeling Language: tables of technology items, maturity levels, risk assessments, trade assessments
Consistency & Completeness Methods: documented set of completeness and consistency rules

Standards view – Defines the standards to be adopted during design of the system (e.g. communication
protocols, radiation tolerance, soldering). These are essentially constraints on the design and implementation
processes.
Infrastructure view – Defines the infrastructure elements that are to support the engineering, design, and
fabrication process. May include data system elements (design repositories, frameworks, tools, networks) and
hardware elements (chip fabrication, thermal vacuum facility, machine shop, RF testing lab)
Technology Development & Assessment view – Includes description of technology development programs
designed to produce algorithms or components that may be included in a system development project. Includes
evaluation of properties of selected hardware and software components to determine if they are at a sufficient state
of maturity to be adopted for the mission being designed.

One distinction in RASDS, as compared to RM-ODP, is that objects are considered to have a
“primary” or “home” viewpoint where they are fully specified and their fundamental characteristics
are defined. Representations of these objects may appear in other views. As an example, the full
definition of information objects will appear in an information view, but representations may appear
in enterprise, functional, or other views.

4.0 MBED Mission Modeling Experiment

This conceptual approach to space system modeling has been partially evaluated in our FY05 MBED
IR&D task. This task was intended to demonstrate:

(1) Concurrent engineering of the spacecraft and the science instruments, and
(2) Concurrent engineering of the spacecraft and science instruments at one level of
abstraction, and the Subsystem performance models at a lower level of abstraction.

In this task we used an existing system engineering modeling tool, CORE [13], and two different sets
of existing performance simulation models. CORE provides partial support for the full set of
required viewpoints, but does not directly define any of the viewpoints or specifications that we have
discussed. However, it does provide support for system engineering modeling and some amount of
behavioral analysis, and has direct support for a set of views, available via frameworks in their
modeling environment, that map to several of the key viewpoints that we have identified:

• Element, Relationship, Attribute View (ERA)
o Information Viewpoint
o Object and relationship definitions for other viewpoints

• Hierarchy View
o Enterprise Viewpoint, requirements and organizational
o Functional and Engineering Viewpoint, element hierarchy

• Functional Flow Block Diagram (FFBD) & Enhanced FFBD (EFFBD)
o Enterprise Viewpoint, scenarios
o Functional Viewpoint, data and control flows

• IDEF0 Diagram
o Functional Viewpoint, functional interactions
o Enterprise Viewpoint, organizational interactions

• Functional Interface (N2) Diagram
o Functional Viewpoint, object interactions

• Physical Block Diagram
o Physical Viewpoint, high level component and link interconnections

• Text View
o No mapping to RASDS-E

This is not the complete set of viewpoints and views that we wish to have available, nor are the
available views exactly what is required in the long run, but the tool provided a very useful and
adaptable platform for our experiment. This tool allowed us to capture example spacecraft
requirements, the physical and functional architecture, and the high level behavior of the described
elements in a machinable way. This has allowed us to simulate at least the coarse grained overall
behavior of this system based upon its description, to provide means to assess some elements of end
to end performance, and to explore design trades.

While the underlying CORE information model is proprietary, it can be exported in an XML schema
[14]. This XML model has a regular and easily understood structure, which makes it amenable to
analysis, dissection, and transformation. A part of our MBED task was to use this system
requirements and architecture model to drive other existing analysis tools that performed science
feasibility analysis and telecom link and power performance analyses. These existing tools were
modified to accept newly defined XML schema that incorporated the structuring concepts in our
RASDS-E model, and their inputs were derived directly from the exported CORE XML model. The
flow of information among these models and tools is shown in Figure 2.

This experiment was useful in that it allowed us to integrate several existing modeling and simulation
packages at the data level, thus providing an improved flow of information and assisting in the
system engineering evaluations of a modeled spacecraft. However, it also exposed some of the
limitations in existing tools and their inability to support extensions to include the required
conceptual viewpoints. The approach that was chosen to do these model transformations was

somewhat fragile because it was tied to the specific structures identified in the various XML schema
and required a lot of analysis to construct semantically meaningful transformations. Future work will
explore how far we can go to improve capture transformation, and analysis of these formalized
design descriptions and evaluation of completeness and correctness based upon these system models.

Figure 2 MBED Model and Information Flows

5. Discussion of Methodology and Tool Limitations

What has complicated these system modeling efforts are the limitations in existing methodologies
and tools in terms of their suitability for description of the architecture and design of space missions.
Of the existing methods the one that appeared most suitable for the initial space data system
architecture descriptions was RM-ODP. It’s adaptation into the RASDS reference architecture has
proven very useful and it is being used for some of the newest CCSDS documents. Even though
RASDS is still a draft specification it has been used successfully for several NASA mission system
architecture studies. In one case the mission design team had intended to use DoDAF, but found that
it had limitations when attempting to describe space mission technical architecture. The RASDS
Connectivity and Communications views were used to great effect to augment the DoDAF OV and SV
views.

As is typical, most of these mission design efforts have been document driven approaches, using
common word processing and presentation software packages. While these are typical of the
practice, they have significant limitations in that any models or views that are depicted are
essentially just drawings with implied, but not explicit semantic content. The practice, at least for
DoDAF based architectural designs and for UML based software architecture efforts, has been
changing and a number of tools are available that support UML and DoDAF diagrams. In fact,
several UML tool vendors now offer extensions to their development environments that support
DoDAF views within the UML environment, leveraging UML methods where they are applicable.

Space
Missions
Ontology

Mission &
Scenario
Ontology

Engineering
Subsystems

Ontology

System
Engineering

Ontology

Science
Scenario

Generator
Subsystem

Performance
Simulators

CORE
SE Model

Spa
cecr
aft

I
n
s
t

Pl
an
et D

S
N

C
&
D
H

A
C
S

T
e
l
e

C
o
m

P
o
w
e
r

Requirements
Science Objectives
Trajectory
Ops validation criteria
Pseudo-Commands

Mission timeline & scenario
Requirements
Science Objectives
Validation criteria
Level 1-2 SE design
Pseudo-Commands

External
DSN params
Ephemeredes
Component

Specs

Observatio
n
Scenarios

Operation
al
Feasibility

Analysis results
Design updates
Mission Feasibility

Subsys
tem
SEs

Requirements
Detailed Design
Trajectory
Mission validation
 criteria

These design environments are capable of capturing and preserving a lot of semantic meaning and of
exporting these models via an XML export using the XMI schema [15]. However, full tool
interoperability remains elusive, as there is as yet no effective means of exchanging model syntax,
semantics, and drawings among these tools.

5.1 SysML, UML, and Related Approaches

The SysML methodology extends UML 2.0 by adding requirements, verification, and parametrics to
the UML suite of diagram types. The SysML Specification also supports modeling semantics for
continuous behavior as well as discrete. This provides good support in a general way for many front-
end system engineering and architecting processes. SysML also has incorporated support for the
sorts of viewpoint and view constructs that are required to support the kind of domain specific
reference models that we propose in this paper. These definitions are, by design, fully compliant
with IEEE 1471-2000. The authors worked with the SysML Submission Team to ensure that these
concepts were adequately supported.

The SysML 1.0 specification is still being finalized between the OMG and INCOSE, and we can
expect to shortly have commercial tools that support it (already demonstrated by 4 vendors for the
0.9 version of the specification). However, what is needed next is a space system, domain specific,
profile that will extend any tools supporting SysML to include explicit support for the sorts of
viewpoint specifications and views that have been identified here. As it stands, most of the diagram
types that have been defined in SysML are useful, but they are far too general, allow too many
degrees of freedom, and provide too little guidance.

We believe that what is needed is a SE and architecture design environment that presents a suitable
set of conceptual viewpoints, frameworks, and templates to guide the practitioners. In a sense that is
what CORE does and we believe that it one of the aspects of this tool that users have found most
valuable. But CORE lacks many of the viewpoints and view languages that are required to model
space systems, and a more general approach, leveraging industry standards like SysML, seems like the
most fruitful path to explore.

5.2 Relationship to Other Domain Methods

The approach that we have described defines a set of viewpoints, objects, and relationships that will
be familiar to most practitioners in the space systems system engineering and architecture
community. It is a very rich set of concepts that attempts to support description of all of the core
objects, linkages, and relationships that are needed during the early design and development process.
At the same time, it is clear that for some of these viewpoints there is already a diverse set of
languages and modeling approaches in use. This is particularly the case for the engineering and
physical viewpoints.

For example, in the software architecture domain a frequently used analysis approach is the Krutchen
4+1 view model [16]. These views are logical, process, physical, development and use case.

• The logical view shows how the system is decomposed into a set of behavioral abstractions
and it may use class, collaboration, or sequence diagrams. This is essentially identical with
what we have called the functional viewpoint.

• The process view lets you describe the systems processes, as implemented, and how they
communicate. Activity diagrams are often used in this view. This view aligns with part of
the engineering viewpoint, in the software view.

• The development view describes the modules in the system and how that are organized and
associated into packages and classes. This is also a part of the software view in the
engineering viewpoint.

• The physical view describes how the implemented software application is installed and
operates in one or more computers. It may use a UML deployment diagram showing nodes
that may contain one or more components. This is directly analogous to the allocation view
in the engineering viewpoint.

• The use case view includes scenarios and it is used to describe the required functionality of the
system. It may employ use cases, activity diagrams, or descriptions of required actions of the
system. This is aligned with the enterprise viewpoint scenario view.

While our method provides a quite clean mapping for the basic concepts described in the Krutchen
4+1 view approach it does not provide much guidance for the software development process itself.
The field of software development is a rich one and it brings a wealth of new methods such as agile
programming, design patterns, and other methods for risk reduction. What we have provided here is
a framework for describing the overall architecture of these systems that accommodates these other
design processes and artifacts and relates them to the other elements in the system in a much more
complete way than these other, more domains focused methods, are able to.

The Rational Unified Process (RUP-SE) and the related Model Driven System Design (MDSD) [17]
process also uses the Krutchen 4+1 model, but adds two additional viewpoints, one for workers and
operational interactions, and one for geometric assemblages. To place this into a lifecycle context
RUP-SE also introduces the concepts of model levels, which they describe as context, analysis,
design, and implementation. These “levels” largely relate to lifecycle phases. Note that RUP-SE has
also adopted the IEEE-1471 language for describing viewpoints and acknowledges leveraging RM-
ODP. The RASDS-E does not explicitly model the operational interactions captured in RUP-SE nor
many of the related Operational Viewpoint views modeled in the DoDAF. Where these are required
the available UML mappings can be used in a way that would integrate with the rest of the future
modeling framework.

5.3 Physical Viewpoint Modeling

In the physical viewpoint it could easily be argued that there need to be separate viewpoints for each
of structural, thermal, propulsion, power, telecomm because each of these items belong to different
subsystems, have different properties, and are frequently analyzed by different means. All of this is
true, but it is also true that a spacecraft is a set of physical components that are assembled using
various kinds of connectors and that these components have a variety of different properties or
attributes. Some components are purely structural, some are computational, some produce data,
some are thermal, some propulsive, and many consume or provide power. But the critical point is
that almost every one of these components has a variety of properties and appears in more than one
view.

For example, a panel that is part of the spacecraft bus and appears in a structural view may also be a
part of the ground plane from the power view and will also appear in the thermal view because it
connects heat producing components that are inside the spacecraft and shields them from solar
radiation. Similarly all of the instruments and computational elements have physical mass, but they
also draw power, produce heat, and create, manage, or transport data. While it is really useful for be
able to look at the system from just one viewpoint for analytical purposes, these viewpoints are not
truly independent since it may be one element with multiple attributes and changes of state in the
power domain will directly affect what happens in the thermal domain. The approach that we have
taken in modeling these systems is to explicitly acknowledge these relationships and to attempt to
capture them in the core information model.

Recent developments in physical system modeling appear to bear out the value of this approach.
Moore et al, in their paper on multi-disciplinary computer aided analysis of thermal, structural and
optical performance [18] have identified a need for an integrated approach to modeling physical
systems that need very high accuracy results. This is driven by the strongly coupled nature of these

classes of problems combined with unprecedented levels of required optical precision for certain
advanced space missions like SIM. Their development efforts have defined a new finite element-
based analytical capability, which utilizes NASTRAN syntax to describe common-model
multidisciplinary analysis tasks. Capabilities currently under development will capture behavioral
aspects of coupled nonlinear radiative heat transfer, structures, and optics problems to a level of
accuracy and performance not yet achieved elsewhere. Discussions are underway to understand how
their detailed models of structural attributes of system elements can be related to the components,
connectors, and behavioral specifications associated with appropriate views in the physical
viewpoint.

6. Summary

We have described a conceptual framework for modeling space system architectures that is suitable
for capturing all of the elements of a spacecraft, both hardware and software, and of relating them to
each other, to the driving requirements and scenarios, and to the environment within which they are
to operate. This adaptation of RM-ODP and RASDS viewpoints and concepts to describe space
systems appears to offer us some significant advantages:

-First, RASDS-E may help us in thinking about these systems from different perspectives (or
viewpoints), greatly improving the requirement collection and analysis phases of the
development of applications, and providing a set of well proven concepts for analyzing space
systems design and behavior.

-Second, RASDS-E offers a conceptual infrastructure and a common reference model within
which different views, expressed in separate languages (those from the viewpoints), can be
consistently integrated.

-Third, RASDS-E provides a set of already established reasoning patterns to help specify and
design space systems. Those patterns assist us to identify the fundamental entities of the
system and the relationships among them. In this sense, RASDS-E encourages us to ask the
right questions of the right people, and with the appropriate degrees of abstraction and
precision for building useful system specifications.

-Finally RASDS-E provides space system architects, designers and developers with a set of
mechanisms and common services to facilitate their jobs, and permits models of these
complex systems to be developed.

The intent of this architecture work is not to define one all encompassing model that can describe
the Universe, although it may appear that way. Rather the intent is to provide a conceptual
framework within which the basic architectural building blocks and elements that must be considered
in building space systems can be discussed. This core model is intended to provide the links and
relationships among these other views and to help manage the process of information exchange.
The proposed modeling framework, based upon an extended SysML / UML model, has the native
capability to describe much of the system and software architecture, but it does not have the language
for describing physical structures and many of the other physical attributes of the system
components that must be analyzed.

However, as was indicated in the discussion on the physical viewpoint, integrated languages for
describing physical structures, their thermal properties and optical behavior are emerging now. What
is intended in this work is to provide a common architectural framework that can capture these
relationships and manage the linkages to these other views with their specialized languages. Given
this approach we expect that the system engineers, during various trade study phases, will have the
degrees of freedom to explore alternative configurations and assemblages of components. But when

various types of performance analysis must be done the underlying model views, which carry their
own domain specific semantics, will enable rapid assessment of structural or thermal, performance.

While this methodology may be directly used in a variety of document driven ways to describe space
system architecture, the real power of it will come when there are tools available that will support
full description of system architectures that can be captured electronically in a way that permits their
analysis, verification, and transformation. The best hope for this appears to be to develop a suitable
profile for SysML or UML tools that will stand as a domain specific meta-model. This approach,
coupled with extensible libraries of components, has promise of providing a useful framework within
which system designs practitioners can operate conveniently.

Acknowledgements

The research described in this paper was carried out at Jet Propulsion Laboratory, California Institute
of Technology, under a contract with the National Aeronautics and Space Administration. Reference
herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not constitute nor imply its endorsement by the United States
Government or the Jet Propulsion Laboratory, California Institute of Technology.

The RM-ODP introductory section of this paper is an adaptation (with permission) of an
introductory paper on RM-ODP written by Antonio Vallecillo of the Universidad de Málaga
av@lcc.uma.es [19]. The terminology used in this paper is drawn from the ISO/IEC 10746
documents defining RM-ODP and also from IEEE-1471-2000, Recommended Practice for
Architectural Description of Software-Intensive Systems. Most of the concepts for extending RM-
ODP to describe space data systems were developed within a System Architecture Working Group in
CCSDS, the Consultative Committee on Space Data Systems, chaired by Dr Takahiro Yamada, during
the creation of the Reference Architecture for Space Data Systems (RASDS), CCSDS 311X0-R-1.
The work to extend these concepts in order to describe the full architectural framework for space
systems was developed in a JPL funded internal Research and Technology project called Model Based
Engineering and Design (MBED), whose PI was Steven Wall.

Biography

Peter Shames has been engaged in the process of turning computers into useful tools for scientists for
the bulk of his professional career. He manages JPL's Data Systems Standards Program in the
Interplanetary Network Directorate (IND). He is the Director of the Consultative Committee for
Space Data System's System Engineering Area and he is working within CCSDS to define RASDS, an
end-to-end reference architecture and formal methodology for describing space data systems. He has
developed architectures for a variety of NASA programs, including JPL's mission operations system,
the Hubble Space Telescope science processing and archiving systems, and real time data acquisition.
He has served on working groups in the National Academy of Sciences and the Internet Activities
Board. Once upon a time he used to know how to program.

Dr. Joseph Skipper is engaged in two roles at JPL. First, he is a practicing systems architecture / C3I
(Command, Control, Communications and Information) on the Constellation program and producing
program deliverables such as the Systems Engineering Management Plan. Second, he is engaged in
the MBED initiative actively constructing various research models and using them to integrate
information between science instruments and spacecraft design, and between spacecraft design and
subsystem models at lower levels of abstraction. He has a background in object technologies, dynamic
simulation, and systems engineering tools. He has been participating in the Systems Modeling
Language (SysML) standards initiative.

References

[1] Unified Modeling Language (UML) V2.0 Superstructure, Final Adopted Specification, OMG formal/05-07-
04, http://www.omg.org

[2] Systems Modeling Language (SysML) Specification (draft) v 0.9, SysML Partners SysML-v0.9-PDF-
050103.pdf, http://www.omg.org.

[3] Reference Model of Open Distributed Processing (RM-ODP), ISO/IEC 10746-1 to 10746-4, ITU-T
Specifications X.901 to x.904, 1998, http://www.rm-odp.net

[4] International Standards Organization, Information Technology - Open Distributed Processing – Use of
UML for ODP System Specification, Committee Draft, ISO/IEC 19793 – 2005-01-07, ISO/IEC
JTC1/SC7/WG19, http://www.rm-odp.net

[5] Recommended Practice for Architectural Description of Software Intensive Systems, ANSI/IEEE P1471-
2000.

[6] Reference Architecture for Space Data Systems, CCSDS 311.0x-R-1, WG Draft, Jan 2006

[7] S. D. Wall, Model-Based Engineering Design for Space Missions. 2004 IEEE Aerospace Conference, Big

Sky, WY, March, 2004.

[8] M. Maier, D. Emery, R. Hillard, ANSI/IEEE 1471 and Systems Engineering, Wiley, Systems

Engineering, Vol. 7, No. 3, 2004

[9] DoD Architecture Framework (DoDAF), Version 1.0, Deskbook, Vol I, Vol II, US Department of Defense,

http://www.aitcnet.org/dodfw/

[10] Rational Unified Process for System Engineering, RUP-SE 1.1, Rational, TP164A, May 2002

[11] Overall Concepts and Principles of TINA, Telecommunications Information Networking Consortium

(TINA-C) 1994

[12] Consultative Committee on Space Data Systems (CCSDS), http://www.ccsds.org

[13] CORE Architecture Definition Guide, Rel 5.1, Vitech Corp, http://www.vitechcorp.com, April 2005

[14] XML Schema, parts 0, 1, 2, W3C Recommendation, Oct 2004, http://www.w3.org/TR/xmlschema-0/

[15] XML Metadata Interchange (XMI), v 2.1, OMG, Sept 2005, http://www.omg.org/cgi-

bin/doc?formal/2005-09-01

[16] Philippe B. Kruchten, The 4+1 View Model of Architecture, IEEE Software, vol. 12, no. 6, November

1995, pp. 42-50.

[17] M. Cantor, G. Roose, Hardware/software Codevelopment Using a Model-Driven Systems Development

(MDSD) Approach, IBM, Dec 2005, http:/www.ibm.com

[18] G. Moore, M. Chainyk, J. Schiermeier, Multidisciplinary Analysis for Large-scale Optical Design,

 Proceedings of SPIE Proceedings of SPIE -- Volume 5528, September 2004, pp. 108-117

[19] A. Vallecillo, RM-ODP: The ISO Reference Model for Open Distributed Processing, 2000,

www.lcc.uma.es/~av/Publicaciones/00/odpeng.pdf

