JPL

Jet Propulsion Laboratory
California Institute of Technology

Abridged Edition:

A Case for

Model-Based Architecting
in NASA

Bob Rasmussen

Brian Muirhead

August 2012

© 2012 California Institute of Technology. Government sponsorship acknowledged.

Preface

Model-based architecting is a structured approach to system architecting, intended to
address many of the difficulties projects have experienced in managing complex develop-
ments. The intent of this summary-level white paper is to provide basic background and
information on the role of architecting on NASA flight projects, the deficits in its present
practice, and the motivations and value for a model-based approach to architecting.

This is not a how-to manual, but rather a holistic treatment of what architecting should be
and why it is important. Included are unfolding ideas on how to advance the discipline, and
examples of key concepts. Since the concepts described here may be unfamiliar, and put-
ting them into practice is still in its formative stages, readers are encouraged to seek out
and collaborate with other practitioners of these ideas to understand and advance this
important element of systems engineering.

The emphasis here is strongly on flight projects, and largely on the systems engineering
and management aspects of these projects. This treatment of model-base architecting is
intended primarily for systems engineering and management leadership (both program-
matic and technical) at all levels of project development, who are interested in this ap-
proach and the value it might have in improving the way we conduct NASA business.

The Issue

A recurring theme in any assessment of NASA projects is the problem of poorly conceived
or executed system formulation, and the consequent harm on cost, schedule, reliability, and
performance during implementation and operations. A key component of this issue is
uncontrolled complexity in what we build and how we do business. Complexity is not
uniquely a NASA issue, but as a highly public enterprise with exceptional demands, a
unique look at the complexity issue from a NASA point of view is very much in order.

Complexity is also not a new problem for NASA. It is intrinsic to our mission, and we have
diligently worked through such issues before, learning from each experience. Nonetheless,
the general unease today is that we may have arrived at a significant point of departure,
where the weight of current practice may itself be a hindrance to progress in the face of
increasingly difficult missions. The problem now seems to be less about overcoming tech-
nical challenges than about defending our ability to affordably, reliably, and consistently
manage all of the necessary ingredients for success. That is, these problems are both
technical and programmatic.

Technical and Programmatic Concerns — The essential assertion behind the recom-
mendations here is that the essence of today’s complexity issue lies in a disconnection
between technical and programmatic concerns. Development and operations problems
across the agency highlight the interrelationship of technical and programmatic factors,
and suggest an inability to fully appreciate or reconcile all of the competing demands on a
project.

There has been a tendency to levy this criticism mainly at the technical aspects of a job,
with programmatic repercussions viewed merely as a symptom of technical challenges
from an overly complex system. In reality though, only the interplay between technical and

programmatic factors can tell the whole story. Besides, technical responses to increased
demands are inescapably additive anyway (harder objectives demanding more complex
responses), so increasing technical difficulty is consequently a given, not an excuse. This is
central to the nature of NASA’s task; a conundrum NASA is expected to solve.

The necessary insight then, to ensure further progress, is acknowledgement that complexi-
ty is not a system property existing in dispassionate isolation. Rather, since what is well
understood does not generally seem overly complex, we must see complexity as fundamen-
tally the comparative measure of a system (the technical part) against the grasp of those
who must understand and control it (the programmatic part).

A Question of Understanding — From this perspective, it becomes clear that affairs
dominant in programmatic management are all part of the complexity question: stakehold-
er objectives and constraints, feasible mission concepts, communication and review, work
breakdown and costing, principles and policies, validation efforts, and so on all directed at
ensuring a comprehensive understanding of the whole enterprise and the means to manage
it. Thus, the need to ensure sound understanding makes complexity (the measure of our
understanding) necessarily a property with inseparably coupled technical and program-
matic dimensions.

Problems of understanding have many roots — mostly sins of omission by bright, well-
intended people. Thus, what one should imagine about lapses in understanding is not a
perplexed team, scrambling in disarray, but rather a confident team, acting blithely upon
incomplete understanding, and unaware that something is missing. By the time problems
are discovered, a project can be well into development, or even beyond, making resolution
a very expensive proposition. Our concern here then is how to better ensure that a com-
prehensive, well-integrated, consistent understanding of a system will be assembled early
and then maintained intact throughout development.

The word generally applied to this process, which we

are trying to reinforce across NASA, is “architecting”. Concerns

The Meaning of Architecture — Architecting is a broad
term for the approach we take to get from system Stgkeholders
objectives and constraints to design. It must be recog-
nized as an exploration, both creative and systematic, of
essential concepts and organizing principles, addressing
a typically intricate, often evolving variety of concerns,
and leading to convergence upon a mediated, realization
that is harmonious (or at least acceptable) from all
points of view. Just as importantly, this “architecture”
provides unwavering assertion of these carefully crafted
ideas as durable, principled guidance for the remaining
development.

Concepts

Realizations

The cardinal rule of architecting, therefore (as .
Concepts are essential ab-

advocated here), is to keep in mind that the product stract ideas, formulated
of architecting is not a system! Rather, it is an under- to address Concerns,
standing of the sort of system that needs to be built but taking implementable

form in Realizations.

and our expectations for it, with all their compromise — as much a matter of why
and how as of what. Understanding exists apart from the system it addresses.

Viewing the architecture as separate from the system is fundamental and provides illumi-
nating insights. Poor architecture helps explain the complexities of delivering systems, not
because the architected system itself is necessarily complex, but rather because the archi-
tecture fails to provide a good understanding of what the system should be or do. Good
architecture, on the other hand, carefully establishes the context of a system through its
purpose, efficiently applying principled concepts and patterns that support effective design
and analysis, and openly dealing with all challenges to robustness.

This is the essence of architectural elegance, all with the aim of fostering understanding in
service of a successful design outcome. As a separate entity, elegant architecture becomes
the persistent, stable conceptual rails over which a system travels on its way to realization.
This notion applies from the broadest enterprise level (like all of human spaceflight), to
single missions, engineering subsystems, and beyond.

Commitment to Elegance — Appreciation of the steps to elegant architecture requires a
closer look at current architecting practice, to explore vulnerability to technical and pro-
grammatic disconnects, to consider principles of architecting that must be elevated in
order to confront these issues, and to build from this basis a strategy for architecting,
better suited to managing future missions, especially those of high complexity.

The recommendations suggested by this assessment involve the methodical, model-based
structuring of a unified architecting product, distinct from design and deserving the same
stature in management attention as any other major end product. The resulting architec-
ture is shaped to facilitate timely, balanced attention to concerns, relationships, and the
organizing principles that promote understanding. Primary components of this approach
are 1) the adoption of a principled architecture framework, and 2) the formal integration
and application of this framework in a model-based systems engineering methodology. The
result is model-based architecting.!

A Look at Present Practice

Model-based architecting should not be viewed as yet another addition to present practice;
nor is it intended to displace it entirely either. The changes envisioned can be accomplished
in a fairly straightforward manner. With this in mind, a few observations regarding present
practice are in order to indicate areas for enhancement, and to illuminate some of the
principles that should inform this recommendation.

Architecture in NASA SE Processes — As defined here, architecting is a key element of
systems engineering.? For all its importance though, formal guidance for architecting in

1 For an excellent introduction to formal frameworks and their model-based representation, refer to
ISO/IEC/IEEE 42010:2011, “Systems and software engineering — Architecture description”, an inclusive
international standard for architecture frameworks. Access links may be found on the ISO/ IEC/IEEE 42010
website.

2 While this could as easily have been described as a project management responsibility, supported by
systems engineering, addressing this collaboration from the systems engineering viewpoint is more straight-
forward.

NASA policy and procedure is nonetheless subsumed within a larger systems engineering
model, within which architecting is not given a clearly delineated role, and where the
products of architecting are somewhat fractured or indistinct. Architecting is not even
considered in NPR 7123.1A, NASA Systems Engineering Processes and Requirements, and
most other NASA procedures.

More promisingly, the NASA Systems Engineering Handbook (NASA/SP-2007-6105 Rev1)
describes more fully an approach that includes many aspects of system architecting. How-
ever, the words “architect”, “architecture”, or “architecting” casually appear many times
before “architecture” is defined on page 50. The ideas of structure and relationships are
introduced, and subsequent discussion mentions the importance of “principles and guide-
lines” that govern the design. Still, little overt attention is given thereafter to what “princi-
ples and guidelines” might mean in practice, and even the organizing structure of an archi-

tecture is generally treated in summary terms.

Generally, one gets the impression that most SE Handbook invocations of the word “archi-
tecture” intend only narrowly to define one product breakdown hierarchy of interconnect-
ed components and overlaid functions — with little distinction between “design” and
“architecture”. The broader aims of architecting, as outlined earlier, are addressed (for the
most part). However, this is almost always woven indistinctly into the broader banner of
“systems engineering”, not “architecting” per se.

Architecture appears to be treated more as an occasional descriptive device than as an
essential product on its own. The system and its architecture are not distinguished. Sys-
tems engineering and architecting are not distinguished. Therefore, because The Architec-
ture is not a distinct product, easy for everyone to grasp completely, its integrity becomes
suspect and its influence can be weak or inconsistent — not a sure-fire formula for achiev-
ing elegance. This is the core issue we intend to address.

Seeing Beyond Requirements — The subsumption of architecture into requirements
generation is a prominent example of this lack of appreciation for the separate nature and
value of architecting. The NASA SE Handbook does a fine job of laying out the ingredients of
good architecting. However, in essentially every case, the result is expressed as either
requirements or design.

The familiar “flow down” of requirements in unfolding levels of design detail bottoms out
when system decomposition is complete, each requirement supposedly accompanied by its
own isolated statement of rationale. But no concatenation of requirements and rationales
ever sums to a full, coherent story of architecture. Further, the practice of tracing require-
ments directly to other requirements can miss other important considerations that aren’t
evident in requirements-oriented thinking. Ultimately, the resulting requirements — not
architecture — dominate subsequent discussion, as attention shifts to putting the system
back together again. Design, implementation, integration, verification, and so on all revolve
around requirements.

Assorted supplemental information (presentations, emails, memos, etc.) tends to present
only a fragmented, cursory, and not altogether dependable, accessible, consistent, or up-to-
date rendering of the architecting effort. Thus, the collection of requirements is one of the
few sources of architectural insight for which one official copy is maintained, fragmented as

it might be. Requirements alone, however, cannot be relied upon to address the full range
of obligations and constraints under which a project or system works, or the concepts
responding to them. Further, efforts to create a comprehensive picture through require-
ments would result in an overly complex set of requirements, an inappropriate degree of
over-specification (thereby inhibiting development creativity and flexibility), misdirection
of attention from the big picture, and increased difficulty in the verification process.

In such a diverse, disjoint, diluted collection of architectural artifacts lies vulnerability that
the form ultimately taken by a design falls substantially short in the eyes of some (perhaps
many) stakeholders. This is a recurring theme in criticisms of systems engineering, where
omissions, misinterpretations, inconsistencies, and poor foresight regularly lead to prob-
lems later in development or during operations.

Transcending Design — The absence of an overt appreciation for architecture as a dis-
tinct product also becomes evident wherever we see “high-level design” masquerading as
“architecture”. Architecting necessarily confronts disorder in the early stages of a project,
when many issues remain open. However, the unease associated with exploration of
competing demands in a broad trade space is often dealt with by pushing rapidly for a
point design that seems to work, well before a thorough understanding of alternatives and
threats. Having rationalized this approach in the name of “decisiveness”, the process
thereafter becomes a progression of today’s design (occasionally reviewed), not architect-
ing. One is left with significant uncertainty and risk that the system can and will ultimately
be coerced into convergence while meeting its objectives within constraints.

The extent to which this fate is avoided often depends on all-seeing veterans with the
architectural sensibilities to instill by insight what was absent in foresight. However, most
systems have simply gotten too complex to rely upon this as a strategy for success, and the
cost of late correction can be enormous. It is far better to take the time for architecting and
the care to do it well, by encouraging everyone to look at systems holistically.

Rediscovering the System (aka V&V) — When the big picture gets lost during develop-
ment, this does not mean that the system disappears. Rather, what goes missing is an
understanding of what this system will be once it is integrated (un-disintegrated?). This
rediscovery of the system (though usually explained otherwise) is called “validation”.

Validation is a rather incongruous idea, given the heavy emphasis on requirements in
systems engineering processes. The flow down of requirements and iterative climb back up
again through requirement verification essentially defines the ‘V’ model life cycle. Nonethe-
less, the NASA SE Handbook asserts that additional “expectations (e.g., needs, wants,
desires, capabilities, constraints, and external interfaces)”? beyond the requirements are
essential. Validation of end products, either concurrent with or after verification, addresses
these expectations. This notion is carried into most institutional practice across NASA.

Underlying such expectations for validation is unmistakably an acknowledged likelihood
that the system emerging after verification may not be the one intended at the outset,
despite satisfying all the requirements. Thus, the purpose of validation, at least in part, is to
discover what system actually got built! As defined, it is subjective and open-ended, and

3 See SE Handbook section 4.1.1.3 “Outputs” (of the Stakeholder Expectations Definition Process).

can call a design into question after it’s been built. Such devolution of understanding is not
uncommon, but its implications can be dramatic, dangerous to mission success, and expen-
sive.

Verification may have deficits as well, such as when testing becomes a means of design
iteration, or when test success is equated with system correctness. Careful verification
methods derive their merit, not from test results alone, but also from the association of test
results with architectural assertions about why these results were expected and how these
results can be extrapolated to all reasonable situations that could not be tested.

Architectural assertions then are effectively the theory of a design. These can be as com-
mon as good margins or sparing plans, or as particular as a graceful technology exit strate-
gy or an error-tolerant interaction protocol. They can be anything aimed at simpler model-
ing and analysis, such as layered designs or symmetric configurations or uniformly applied
standards. They can be the assertion of models themselves, as the spanning definition of
system behavior. Thus, they go beyond assumptions and point design, to overtly describe
the features and constraints imposed upon a system for efficient flexibility or robustness;
and on this basis, they explain one’s understanding of why the system should be or do the
right thing in all relevant cases. They justify inherently finite test programs!

It follows that verification tests should be more like experiments to support or invalidate
the theory, to explore its generality, to find it limits. Minus an invocation of this reasoning,
verification can devolve to a perfunctory, ineffective checklist exercise.

Reasserting Architecture — To accomplish such things convincingly, the underlying
architecture must follow straightforward patterns of structure and behavior that have been
carefully described and communicated, that are evident in the design, and that have been
implemented without exception or compromise! Absent such patterns for each area of
concern, understanding suffers. This is Occam’s razor for Architecture. It is the existence of
such architectural assertions that offers some assurance of sustained system understand-
ing during development, and eventually a confident extrapolation from test results to flight
behavior. These assertions are the big picture: the fundamental ingredients of architectural
elegance.

By aiming V&V at our understanding, it is clear that these ideas apply to the confluence of
technical and programmatic interests. Architectural assertions, after all, necessarily cover a
broad range of issues beyond the attributes of delivered end products, and should be
subject to V&V as any other claim about the system would be. This is the power of unifying
efforts around a few fundamental architectural notions. The sensibilities gained in one area
become extendable to other aspects of the endeavor; easier methods of relating competing
concerns arise when structure is shared; and diffuse terms (like validation) can begin to
gain some solidity. All of this improves and preserves understanding.

Architecting Principles

To improve the architecting process by structuring its practice, architecting must be dis-
tilled to its essence — complex explanations for complex processes being of little value.
This idea is the genesis of so-called architecture frameworks, mentioned earlier. The struc-
ture selected should be in accordance with basic principles. The following principles,

discussed above, apply to the general practice of architecting and to architectures as a
whole:

Architecting is a direct response to complexity: the measure of how well a system is un-
derstood by those concerned with its development and use.

Architecture is developed to promote an early and sustained consensus of system un-
derstanding from many technical and programmatic points of view.

Architecture is not merely high-level design, but rather provides the coherent rationale
from which requirements (and other directives on the development effort) are drawn.

Elegant architecture demands steadfast attention to purpose, understandability, and
robustness of the system as a whole, even as the details develop.

Architecting works best as an overtly distinct and sustained effort.

Good architecture provides stable guidance to development by getting the fundamen-
tals right and asserting them steadily and consistently.

The integrity of a system lies, not merely in passing tests, but in demonstrated adher-
ence to solid architectural assertions.

Additional principles addressing architectural content may be added, as follows. These are
not intended to be a complete set of principles, but they are important on their own, and
are offered to give insights into the nature of other good principles that might be added:

Usefulness and acceptability lie in the association of systems with stakeholder concerns,
so architecture must cover both, and do so thoroughly and uniformly.

Concerns, in this respect, take many forms, depending on the stakeholder (e.g. sci-
ence objectives from a Principal Investigator, budget constraints from Program
Management, and so on). No meaningful description of a system is possible without
this context, so architecture necessarily deals with how the system relates to the
stakeholders who drive it. Dissociated requirements aren’t enough.

Architecting defines a space of designs by allowing for variation (margins, contingen-
cies, etc.) and defining what variations are allowed (rules, patterns, etc.) across the full
spectrum of concerns.

Point designs fail to illuminate the sources or implications of inevitable change,
whether during development or afterward, such that the tolerance of an architec-
ture to this variation is understood. Margins are an example of addressing variation,
but by no means cover all variations of concern. In other cases, variation must be
explicitly constrained (as in configuration symmetry or uniform interface stand-
ards) in order to impose understandable order. Thus, architecting the space of de-
signs is effectively the art of choosing, out of all the designs that are possible, not the
design, but rather a subset of designs that is small enough to establish order, but
large enough to hold a set of options that makes response to problems possible.

Good separation of concerns requires overt attention to concepts, as a way to ensure
that all issues get proper attention, and to map concerns to realization in an under-
standable and modelable way.

Modeling generally involves abstraction into conceptual forms suitable for analysis
(dynamic, thermal, operational, etc.), where details incidental to the issue at hand
are disregarded. Each issue can then be considered separately with confidence, as
long as the underlying realized system maps cleanly to these abstractions. Architec-
ture can promote such understanding by recognizing these conceptual views as
driving the realized system, rather than being derived from it, and as the direct re-
sponse to stakeholder concerns, rather than as merely a post facto affirmation of
them. For example, the conceptual approach to redundancy and fault containment
should be in harmony with concerns over safety and reliability before concrete de-
sign choices are made, and then preserved explicitly throughout development.

True logical decomposition avoids a dominant hierarchy in favor of strong, distinct
structure for each concept, within which functions and other conceptual features are
defined.

The compositional elements of an electrical grounding and isolation concept are
clearly distinct from those of thermal management, data flow, or other concepts. Yet
requirements hierarchies tend to be defined mainly by work breakdown and modu-
lar integration concepts. Such conceptual misalignments tend to clutter require-
ments and obfuscate their rationale.

Conceptual and realizational efforts should work in partnership to achieve conceptual
integrity and support realization requirements with robust rationales.

Individual concepts alone may be attractive, but impractical or incompatible with
other concepts. As a result, engineers are drawn pragmatically to consider hard real-
izations. However, realizations alone convolve all issues at once, not always sup-
porting good separation of concerns. This makes good understanding difficult, if not
impossible. A balanced interplay and co-convergence between these two realms of
architecture permits the principled evolution of a compromise that can stand the
test of time. This occurs, for instance, when the realizational specifics of data inter-
faces are guided by system-wide concepts for data flow, fault containment, electrical
isolation, and so on, which in turn respond to the practical matter of implementation
through appropriate adjustments.

Understanding the intersection of concepts in realizations is a powerful way to trace
and understand architectural dependencies.

Great pains are taken to specify and characterize interfaces between realized com-
ponents (as captured, for instance, in interface control documents), but dependen-
cies among concepts, which are the consequence of their mutual realization in one
system, seldom get the same formal treatment. One could ask, for example, how a
concept for electrical power influences a concept for precision pointing through the
shared realization in solar panels of both power generation and pointing dynamics.
The realized solar panel is effectively an interface between power and pointing con-
cepts rather than merely the target of requirements from each concept.

When all concerns are addressed in collaboration, and mapped through well-separated
concepts to realization, architectural layering is much cleaner and easier to understand.

Requirements are frequently “decomposed” along presumptive subsystem lines, so
architectural layers may not be well aligned with all the concepts that inform a par-
ticular architecture. The result can be over-specification and awkward, strained
tracing of requirements. Architectures are most elegant that achieve their aims in
the simplest, most efficient terms. The realizations resulting from reconciliation and
integration of minimal concepts will themselves be minimal, while nonetheless go-
ing to the depth and granularity appropriate to each concern; so, requirements de-
rived from this convergence define a natural layer in the architecture from which
the next round of elaboration can proceed. Requirements trace not directly, layer to
layer, but rather through a reasoned mediating architecture between them.

Adding Structure

If we are to shift current practice toward a more structured approach that helps us manage
complexity by keeping important issues clearly in view, it will be necessary to devise a
structure that inherently reflects these principles.

Formal architectural structure alone is not enough to define good architecting practice.
Rather, the motive behind formal architecting structure is that architecting practice bene-
fits from structure’s contributions to clarity and coherence. The regular structure we
choose must be straightforward and concise, while nonetheless aptly covering the many
dimensions of architecting that we care about. Besides being simple, the structure adopted
must also be clearly articulated and rigorously applied, so it can guide architecting with
some measure of assurance. The idea of an architecting structure, after all, is to build a
network of related information, where items are clearly delineated, found in logical places,
and connected in helpful ways, all aligning well with the principles we understand to be
important.

Words like stakeholder, concern, concept, realization, function, property, and so on are
good candidates for the atoms of this structure — a lexicon drawn from familiar systems
engineering terms, but not yet molded by particular rules for how they are to be applied.
What we intend, in order to formally structure the architecting process, is to complete this
list and more carefully articulate what it means to describe such things and relate them to
one another.

Objectives and Organization — To establish effective objectives regarding the capabili-
ties and scope required of a model-based architecting framework, it is necessary to
acknowledge and embrace the fundamentally different natures of information-as-
communication versus information-as-knowledge.

As knowledge, one can think of architecting structure as the beginning step in constructing
an “encyclopedia” of architectural information, providing the form within which a curated
description of architecture can be assembled, organized, and maintained. The result of
populating this structure is a compilation of essential information, categorized and cross-
referenced in an orderly fashion for quick access with minimal duplication — a Single
Source of “Truth”4 from which all architecting information flows.

4 This is common IT parlance, referring not to some privileged origin of Truth, but rather to reliance on one
authoritative source for every item of information.

9

As communication, the structure must also be amenable to direct extraction of content
suitable for narrative description. Thus, it must support intersecting hierarchies and easy
cross-referencing, permit partitioning that avoids duplication, make room for both narrow
specialized content and general summary content, be formally specified (hence, amenable
to automation, distributed collaboration, and controlled access), have a granularity appro-
priate for archiving changes, and include a way to distinguish what is particular about an
architecture from what are generic, reusable organizing patterns. Features like these,
beyond simply aligning with good architecting principles, are necessary in order to build a
usable architecting structure.

Transitioning to Model-Based Methods — In NASA’s document-centric world, the
dominant state of current systems engineering practice is the collection of information in
stacks of viewgraphs accumulated (with supporting spreadsheets, graphics, and a few
other things) in weakly organized file systems (now network-accessible so all can contrib-
ute to its disarray), metadata frequently consisting of little more than cryptic file and folder
names (defining data by where they are, not what they are). The full reports that are writ-
ten further the replication of information in a variety of forms; and the few tools that
support collaboration fail to address information integrity due to their individual limita-
tions in telling the whole story and their lack of functional and transparent connections
among one another. As a consequence, systems engineers often devote a great deal of their
time merely serving as the human ties among all of this data, too often at the expense of
timely, creative, thoughtful, analytical efforts. Given this bureaucratic state of affairs, there
is general consensus that more integrated collaborative capabilities are needed. However,
all-purpose information repositories generally lack an a priori structure suitable for sys-
tems engineering, and superimposed ad hoc structures are hard to establish and maintain
(nor can they, by their very nature, provide a versatile, long term solution).

Tools created explicitly with systems engineering in mind have made significant headway,
many employing the Systems Modeling Language (SysML), an open standard defined
originally in 2003 by the International Council on Systems Engineering (INCOSE). Still, all
but the most elementary structure is normally left up to users, who are expected to bring
methodology and commensurate additional structure to the tools. Importantly, only with
such additions does model-based systems engineering start to acquire real effectiveness.
Beyond this level are tools that reflect a vendor’s particular methodology. While not neces-
sarily supporting the principles of architecting advocated here, they do reflect methodolo-
gies in wide use, and can help put engineers further down the path toward true model-
based systems engineering. Nonetheless, it is also clear, especially in regard to architecting,
as outlined here, that no firmly established pattern yet exists — let alone one fully suitable
to NASA. Indeed, it isn’t apparent yet whether it is appropriate to even settle on a single
pattern that would cover our wide range of project types.

The goal here is not to weigh all of these alternatives and try to answer this question now,
but rather to describe the sorts of basic structure one might consider in experiments to see
what works best. With support from NASA engineering leadership, this experience can
grow into an organic yet effective process, leading eventually to agency-wide capability.

10

The following is from one such trial, presently under way on Europa mission studies. This
structure is not intended to be definitive; only the simplest and most obvious structural
ideas are covered. But this has turned out to be enough so far.

Basic Architecting Terminology — Some of the more common terms from architecting
literature are as follows:

Stakeholders determine whether a system is useful and acceptable. It is typically neces-

sary to tailor interactions (information and communications) uniquely for each stake-
holder.

Concerns express the interests of stakeholders: objectives, constraints, quality and per-
formance attributes, and other criteria, both technical and programmatic. Architectures
reflect the reconciliation of concerns in negotiated, mutually consistent success criteria.

Views and Viewpoints are the means by which an architecture is communicated to
stakeholders, developers, and operators. A view is a tailored description that narrowly
addresses in a defined way the interests of a particular viewpoint.

Model-based architecting provides the ability to more formally connect these notions in
order to better see what views share, and thus how concerns compete. This leads to addi-
tional structural terms, as follows:

Models, which comprise a substantial part of most views, are depictions or descriptions
that address some aspect of the architected system or its behavior. Good models closely
follow architectural concepts; good concepts are more easily modeled.

Analyses and Scenarios are also necessary in many views. An analysis, frequently in-
voked in the context of a scenario (relevant circumstances or events), is any considera-
tion of the models that draws some conclusion about them.

Trades (or Decisions or Rationales) are the essential link between stakeholder concerns
and other architectural features, explaining why an architecture is the way it is — not
so much to justify concerns as to justify the choices made in response to them.

Principles (or Patterns or Guidelines) play a prominent role in architecture. Therefore,
they should be explicitly collected and justified so that the decisions they guide can be
explained in a form communicable to subsequent efforts.

Elements and Relationships are constituents of logical decomposition, conceptual and
realization hierarchies, and so on that describe a system as an interacting collection of
objects (abstract or not).

Properties and Functions are inseparable from and definitive of elements, relationships,
and the compositions that comprise them.

11

Model-Based Architecting Meta-models — While this list of common architecture
framework notions is likely not complete, the absence of “requirements” may seem particu-
larly surprising. Once an architectural description is complete though, requirements are
merely the rendering of this description into criteria for the next layer of architectural
elaboration. This is apparent in the figure below, showing framework associations among
the architecting terms listed above.

Architecture
Description
| identifies 1...* is important to 0...*
Stakeholder
has 1...*
addresses 1...*
considers 1..*| Concern
is important to 1...* can relate
is considered by 1...* to0...*
t Each View addresses either concepts or realizations. . idered by 1...*
Elements are either conceptual or realizational, and are Is considered by 1..- Trade
with Views /. perties, results in 1...*
and F ions gain or i 1.*
status according to the Elements with which they associate. appeals to 1...* Success
Principle Criterion
is comprised of 1...*
can participate in 0...* is addressed by 1...*
can be composed of 0...* . is reflected in 1..*
View supports 1..*
appears in 1.+ | (conceptual or mon s m T
realizational)’
appears in 1...* prescribes 1...*
invokes 0...* R) (R
appears in 1. appears in1..* establishes methods for 1...*
Model
conforms to 0,1 utilizes 1...*
) constrains Viewpoint
Requirement- = = = = = = ® .
specifies 0...*

Applies .

to each supports 1...

Instance Function

establishes methods for 1...* Analysis is supported by 0...*

R fulfills 0...*
R is considered in 1...* is assessed by 1...*
specifies 0...* specifies o...*<|> is assigned to 1...*

participates in 0...* R connects 2...*

El

Relationship

belongs to 1 \‘\‘,,— belongs to 1 involves 1...
invokes 0...* considers 0...*

participates in 1...* . is driven by 1...*
R Scenario

realizes 1...* (concept < realization)

can be composed of or a prototype for 0...*

specifies 0...* Property determines the value of 1...*

is expressed via 1...* |

Example of a structure for an architecting framework (used in Europa mission studies)

Boxes and lines represent meta-model concepts and relationships, respectively. One reads these
relationships as a sentence, deriving the predicate from the line label closest to the second element,
as in “A Stakeholder has one or more Concerns”. Multiplicity, like “one or more”, is expressed in the
notation “m...n", which means at least m but no more than n. A single number “m” is equivalent
to “m..m”. “*” means any number. A missing multiplicity indicator is taken to be “1” by default.

The appropriate level of requirement detail should be no more than is necessary to de-
scribe the architecture; while associated concepts, analyses, and so on serve as an integrat-
ed, cohesive rationale. In this manner, requirements acquire important structure from
framework ideas. They are seen in context, as the culmination of architectural synthesis
from stakeholder concerns through concepts into validated realization that remains readily
visible to stakeholders through their respective views. Instead of over-specification and
slavish flow-down, an appropriately sized and connected set of requirements, driven by the

12

architectural imperatives for elegance and communication should be the target. Moreover,
other traditional systems engineering activities, such as interface definition, V&V, and so on,
can also be mapped into this structure.

Besides the associations shown in the figure, which are used to relate items in orderly,
disciplined patterns, each of the terms adopted in the framework used on Europa mission
studies also possesses a template, outlining the kind of information that would typically be
necessary for an instance of such an item. Additional consistency rules, a predefined set of
viewpoints (e.g., to capture common concerns such as mass margins, cost estimates, etc.),
and associated process and methodology round out the framework.

An architecting framework can be viewed properly as a peer within a larger systems
engineering framework. As long as the distinction between architecture and design is
conspicuously preserved, and the principles of good architecting are maintained, architect-
ing serves its desired outcome, where design options flow from a sound, stable architecture
and are tested against this architecture, resulting in a final design that is consistent with
the architecture and maintains that consistency through the challenges of implementation
and operations.

A Path Forward

The development and adoption of an architecting framework (or frameworks), well inte-
grated with current and evolving methodologies in the MBSE community, are what we aim
to achieve. It is quite reasonable though to wonder whether a structured framework of
simple ideas is capable of addressing the problem of architecting complex systems. There
are, in fact, many ways to defeat the purpose and value of a framework, whether by con-
structing a poor framework, supporting a good framework with poor tools, or approaching
a well-supported framework in an unappreciative or perfunctory manner. Likewise, a good
framework cannot help if systems engineering outside the architecting effort takes place in
the usual manner. When this is allowed to happen, “architecting” can either dissociate from
reality, becoming an ivory tower exercise that serves only itself, or it can regress into a
reconstruction effort, trying to assemble into some reasonable shape a plausible explana-
tion for a point design that runs headlong before it.

What ultimately matters, therefore, is not architecting frameworks per se, but rather the
elevation of architecting art and stature to a point where the purpose of a more structured
approach is genuinely appreciated. A framework is merely a reflection of the architect’s
conviction to approach architecting in a more structured manner, informed by firmly held
architecting principles. It is the architecting and architecture that deserves ultimate scruti-
ny, the framework being one means to that end.

Adopting a framework and embarking on a model-based architecting track is therefore not
an isolated decision. Instead, this must be regarded as only part of a larger decision to
address all of the issues of architecting outlined here. Gaining broad appreciation, prepara-
tion, and commitment for model-based architecting are essential to its success, as are team
organization, management practices, training, and so on to ensure relevance and buy-in
everywhere it counts. The same is true for model-based systems engineering generally.
This will necessarily be a multistep process over several years, requiring the support of
management willing to take this chance.

13

Planning a NASA Framework — On the presumption that model-based architecting is
where we want to go, and therefore that a commitment has been made to the steps briefly
outlined above, the natural question is how such an effort might be accommodated within
the current NASA culture.

Any meaningful effort must begin with a large enough start to be relevant. Therefore,
bootstrapping with a basic framework and working with it in the context of strategically
selected projects is important. Targeting specific needs and actively coordinating and
communicating the results would ultimately produce better frameworks with broader and
more effective applicability. This must also be part of a larger, long-term strategy with a
well-defined destination against which plans and progress can be judged. Included in this
approach should be considerations regarding incremental development of viewpoints, a
NASA-wide context for pilots, simplification of NASA procedures, automation and tool
support, and allowance for transitional periods. Such concerns lead to a possible plan for
NASA framework adoption, as follows:

* Establish a broadly representative NASA focal group to establish and refine stand-
ards, guide and invest in shared infrastructure, provide expert training and advice,
and host forums for information exchange and community advancement. There are
already efforts in place (e.g., NIMA described below) that could sponsor this.

* Adopt a standard framework meta-model from which NASA viewpoint models
could be defined, each specialized to a NASA domain of interest (e.g. science, re-
source margins, safety, cost, launch approval, etc.).

* Consistent with the meta-model, prototype viewpoint models on substantial, strate-
gically selected pilot projects (i.e., big enough and diverse enough to matter), by ac-
commodating and refactoring information presently captured in gate products and
other standard deliverables. Procedurally dictated products would nonetheless be
constrained to standard format and content, but with the goal of being produced
from viewpoint models with the aid of document generation tools (already availa-
ble).

* Draw from pilot efforts to gradually define official NASA viewpoint models for one
or more domains of interest, working in concert with related model-based engineer-
ing efforts. Associated templates for standard products would accompany these
models, each defined in terms of viewpoint model content, but allowing simultane-
ous iteration of standard product definitions, where advantageous.

* Update the NASA SE Handbook and other appropriate guiding documents to di-
rectly cover model-based architecting. Drafts would presumably have been in itera-
tive development as part of the pilot efforts.

* Give new projects a product option to produce each standard product either con-
ventionally or through template derivation from a populated viewpoint model.

* Complete the realignment of standard products to best fit viewpoints models.

* Make the final transition to model-based architecting, where models, views, etc.
are the final products.

It would be essential, of course, to wrap an assessment process around the entire effort,
chartered to measure progress and decide when to move from stage to stage. Beginning to
end though, this plan relies on a NASA framework for model-based architecting.

14

Efforts are already under way in the early stages of such an approach. Two, among others in
NASA, are NIMA, the NASA Integrated Model-centric Architecture initiative>, originating
from the NASA Office of the Chief Engineer, and IMCE, the Integrated Model-Centric Engi-
neering initiative® at JPL, which has co-sponsored the pilot effort described below. There is
clearly potential for such initiatives to assume the role described above in elaborating and
coordinating a model-based architecting plan, as long as they can be coordinated. With
such efforts in place though, the real strategic decision to be made is the selection of pilot
efforts. The idea is not to seek a small step that won’t matter, but rather to seek a large step
that can be attempted responsibly and effectively.

One Current Example within NASA — With the need to make meaningful progress in
mind, the IMCE initiative at JPL has forged an alliance with study efforts for a robotic
mission to Europa, a moon of Jupiter. This joint effort has been underway since 2009. A
simplified framework drawn from the ideas described above and rendered in a web-based
collaboration tool has been used to get everything started quickly, while development in
more involved, SysML-based modeling capabilities progressed concurrently. Viewpoints
are being developed as needed. The agility of a simple framework, driven mainly by model-
based architecting concepts generally, rather than by an a priori set of viewpoints, has
enabled the methodology to remain reasonably malleable as the study proceeded.

The collective effort has stabilized and gained acknowledgment as a viable approach; and
real, deliverable artifacts have been produced — all without undue burden to the pre-
project study effort.” Having evolved methodology in concert with delivering required
products on a rigorous schedule has already shown the value of taking such strides in a real
project context with real institutional backing to make it possible. This is the potent combi-
nation that makes it work and makes it worthwhile.

Still, it must be acknowledged that both mission and methodology efforts together remain
very much in their formative stages. This success, so far, is due largely to a unique coopera-
tion between visionary systems engineers and project management, supported with an
adequate level of institutional support. There are several other such activities in place
around NASA, but with few exceptions, these have been motivated at grass-roots levels,
frequently informal, poorly funded, or generally outside sanctioned processes. The distinc-
tion of IMCE’s collaboration with Europa studies has been the unusually overt intent
expressed on the part of both institutional and programmatic management to actually
move deliberately to a new state of systems engineering capability, methodology, and
process wherein architecting is given a distinct and significant role. For model-based
architecting and model-based engineering in general to take hold broadly across NASA,
encouragement of such overt collaborations at the grass roots will need to continue, with
strong support from NASA management.

5 See https://nen.nasa.gov/web/se/nima.

6 See Bayer, T. etal,, “Update - Concept of Operations for Integrated Model- Centric Engineering at JPL”, IEEE
Aerospace Conference, Big Sky, Montana, March 6, 2011.

7See Bayer, T. et al.,, “Model Based Systems Engineering on the Europa Mission Concept Study”, IEEE
Aerospace Conference, Big Sky, Montana, March 5, 2012.

15

Conclusion

This is where leadership must step up to the challenge of making model-based architecting
a reality. The model-based architecting approach recommended here goes beyond broadly
held aspirations for model-based systems engineering generally by shaping this idea
around a more structured, principled, and distinct role for architecting. This can do much
to resolve present deficits in systems engineering in general, and even more importantly,
for complex systems in particular. Architecture, as a product in its own right, can act as a
driving force for stable, integrated technical and programmatic development. And an
architecting framework, supported by model-based tools, can do much to simplify, clarify,
and coordinate many aspects of NASA systems engineering practice and procedure, there-
by improving the quality and performance of our missions, while helping to manage com-
plexity within cost.

Pilot efforts alone are not sufficient. What remains to be added is the critical mass of
support needed from leadership at the center and agency levels. The purpose of this report
has been to try to explain why model-based architecting makes sense for NASA, and there-
fore why such plans and commitments are warranted.

Cee .‘..

This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space Administration.

16

