
Software, systems and enterprise —
Architecture description
Logiciel, systèmes et entreprise — Description de l'architecture

INTERNATIONAL
STANDARD

ISO/
IEC/IEEE

42010
Second edition

2022-11

Reference number
ISO/IEC/IEEE 42010:2022(E)

© ISO/IEC 2022
© IEEE 2022

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ii

ISO/IEC/IEEE 42010:2022(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2022
© IEEE 2022
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO or IEEE at the
respective address below or ISO’s member body in the country of the requester.

ISO copyright office	 Institute of Electrical and Electronics Engineers, Inc
CP 401 • Ch. de Blandonnet 8	 3 Park Avenue, New York
CH-1214 Vernier, Geneva	 NY 10016-5997, USA
Phone: +41 22 749 01 11	
Fax: +41 22 749 09 47	
Email: copyright@iso.org	 Email: stds.ipr@ieee.org
Website: www.iso.org	 Website: www.ieee.org

Published in Switzerland

	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved
Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

https://www.iso.org
https://www.ieee.org

ISO/IEC/IEEE 42010:2022(E)

Foreword...v
Introduction..vii
1	 Scope.. 1
2	 Normative references.. 1
3	 Terms and definitions... 1
4	 Conformance... 5
5	 Conceptual foundations.. 5

5.1	 General.. 5
5.2	 Conceptual models of an architecture description... 6

5.2.1	 Context of architecture description... 6
5.2.2	 Architectures and architecture descriptions.. 6
5.2.3	 Stakeholders and concerns.. 7
5.2.4	 Stakeholder perspectives.. 8
5.2.5	 Aspects... 8
5.2.6	 Architecture considerations... 9
5.2.7	 Architecture views and architecture viewpoints... 9
5.2.8	 Model kinds, legends and architecture view components.. 11
5.2.9	 Architecture description (AD) elements... 12
5.2.10	 View methods.. 12
5.2.11	 AD element correspondence.. 13
5.2.12	 Architecture decisions and rationale.. 14

5.3	 Architecture description in the life cycle... 15
5.4	 Architecture description frameworks and languages.. 15

5.4.1	 General.. 15
5.4.2	 Architecture description frameworks.. 15
5.4.3	 ADF utilization... 17
5.4.4	 Architecture description languages... 18

6	 Specification of an architecture description...19
6.1	 Architecture description identification and overview... 19
6.2	 Identification of stakeholders... 20
6.3	 Identification of stakeholder perspectives.. 20
6.4	 Identification of concerns... 20
6.5	 Identification of aspects... 21
6.6	 Inclusion of architecture viewpoints... 21
6.7	 Inclusion of architecture views... 21
6.8	 Inclusion of view components... 22
6.9	 Recording of architecture correspondences... 23

6.9.1	 Consistency within an architecture description... 23
6.9.2	 Correspondences.. 23
6.9.3	 Correspondence methods.. 23

6.10	 Recording of architecture decisions and rationale.. 24
6.10.1	 Decision recording.. 24
6.10.2	 Rationale recording... 25

7	 Architecture description frameworks and architecture description languages.........................25
7.1	 Specification of an architecture description framework... 25
7.2	 Specification of an architecture description language... 27

8	 Architecture viewpoints and model kinds..27
8.1	 Specification of an architecture viewpoint... 27
8.2	 Specification of a model kind... 28
8.3	 View methods.. 28

Annex A (informative) Notes on terms and concepts...29

iii© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

Contents� Page

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

Annex B (informative) Guidelines to specification of architecture viewpoints...40
Annex C (informative) Relationship to other standards... 44
Annex D (informative) Uses of architecture descriptions..51
Annex E (informative) Architecture and architecture description life cycles...53
Annex F (informative) Architecture description frameworks..55
Bibliography..59
IEEE Notices and Abstract..63

iv 	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved
Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed
for the different types of ISO/IEC documents should be noted. This document was drafted in
accordance with the rules given in the ISO/IEC Directives, Part 2 (see www.iso.org/directives or
www.iec.ch/members_experts/refdocs).

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating
Committees of the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its
standards through a consensus development process, approved by the American National Standards
Institute, which brings together volunteers representing varied viewpoints and interests to achieve the
final product. Volunteers are not necessarily members of the Institute and serve without compensation.
While the IEEE administers the process and establishes rules to promote fairness in the consensus
development process, the IEEE does not independently evaluate, test, or verify the accuracy of any of
the information contained in its standards.

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent
rights. Details of any patent rights identified during the development of the document will be in the
Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents) or the IEC
list of patent declarations received (see https://patents.iec.ch).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to
the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see
www.iso.org/iso/foreword.html. In the IEC, see www.iec.ch/understanding-standards.

ISO/IEC/IEEE 42010 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 7, Software and systems engineering, in cooperation with the Software and Systems
Engineering Standards Committee of the Computer Society of the IEEE, under the Partner Standards
Development Organization cooperation agreement between ISO and IEEE.

This second edition cancels and replaces the first edition (ISO/IEC/IEEE 42010:2011), which has been
technically revised.

The main changes are as follows:

—	 The term used to refer to the subject of an architecture description is changed from “system of interest”
to “entity of interest” (EoI) to be compatible with ISO/IEC/IEEE 42020 and ISO/IEC/IEEE 42030
standards and to allow for its application in non-system architecture situations. The term “entity”
is also used in this document when entities are considered as surrounding things in an environment
of an EoI.

—	 The term “architecture description framework” (ADF) replaces “architecture framework” in
the previous edition. It is defined in order to differentiate ADFs from other kinds of architecting
frameworks like architecture evaluation frameworks specified in ISO/IEC/IEEE 42030.

v© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

https://www.iso.org/directives-and-policies.html
https://www.iec.ch/members_experts/refdocs
https://www.iso.org/iso-standards-and-patents.html
https://patents.iec.ch
https://www.iso.org/foreword-supplementary-information.html
https://www.iec.ch/understanding-standards

ISO/IEC/IEEE 42010:2022(E)

—	 Architecture description element, introduced in the 2011 edition (see ISO/IEC/IEEE 42010:2011,
4.2.6, 5.7 and A.6) is now defined in Clause 3 as identified or named part of an architecture description
allowing representing at least stakeholders, concerns, perspectives, and aspects identified in an AD,
and views, view components, viewpoints, and model kinds included in an AD.

—	 Aspect and stakeholder perspective concepts ―already introduced in the 2011 edition (See 3.5, note
1 of 5.6, Annex A and B) are defined and described to accommodate current practice where these
ideas are prevalent.

—	 A correspondence defines an identified or named relation between AD elements, as in Clause 4.2.6
of the 2011 edition. But, to clarify the relationship between AD and correspondence, a note 1 to the
definition is added to state that for the purpose of correspondences, an architecture description
can be considered as an AD element in another architecture description. This correspondence
between ADs is necessary because an architecture can be described by more than one AD and these
alternatives of architectures have related for activities like trade-off analysis and decision making.

—	 The term “architecture view component” is introduced as a separable portion of one or more
architecture views, replacing “architecture model” in the 2011 edition. This change is to account for
the fact that some parts of a view are model-based while others may not be. View components can
be derived from an information source, which can sometimes be a model.

—	 Model-based view components are governed by model kinds and documented by legends. Non-
model-based view components are documented by legends.

—	 Model kinds are identified as a new conformance case to encourage model-based architecting.

—	 The concept of architecture viewpoint is updated to accommodate current practice where a
viewpoint governs one or more architecture views within an AD.

—	 The definition of “model kind” given by the 2011 edition is extended to include categories of models
as used by ADF like UAF.

—	 The figures use an informal entity-relationship diagram notation replacing UML class diagrams in
the 2011 edition, to facilitate comprehension by users of this document. The multiplicities of the
relationships are explained in the text when necessary.

—	 Annex E illustrates a few concepts pertaining to architecture life cycles and architecture description
life cycles.

—	 Annex F shows examples of how some architecture description frameworks can conform to
requirements of this document.

Any feedback or questions on this document should be directed to the user’s national standards
body. A complete listing of these bodies can be found at www.iso.org/members.html and
www.iec.ch/national-committees.

vi 	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved
Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

https://www.iso.org/members.html
https://www.iec.ch/national-committees

ISO/IEC/IEEE 42010:2022(E)

Introduction

The complexity of human-made entities has grown to an unprecedented level. This has led to new
opportunities, and also increased challenges for organizations that create and use these entities.
Architecting is increasingly applied by organizations, teams and individuals, to help manage the
complexity faced by stakeholders of these entities.

Examples of entities include the following: Enterprise, organization, solution, system (including
software systems), subsystem, process, business, data (as a data item or data structure), application,
information technology (as a collection), mission, product, service, software item, hardware item,
product line, family of systems, system of systems, collection of systems, collection of applications.

An architecture of an entity, expressed in one or more architecture descriptions (AD), assists in
understanding the fundamental concepts or properties of the entity, pertaining to its structure,
behaviour, design and evolution, such as feasibility, utility and maintainability and fundamental concepts
for its development, operation, employment, external impacts, utilization and decommissioning.

ADs are used by the parties that create, use and manage human-made entities to improve communication
and cooperation, enabling all parties, organizations, teams and individuals to work together in an
integrated and coherent fashion.

NOTE	 ISO/IEC/IEEE 42020 specifies a set of processes for architecting which can be employed in support of
creating one or more ADs. The architecture elaboration process in ISO/IEC/IEEE 42020 is especially relevant for
creation of ADs.

Whereas an AD is a tangible work product, an architecture is intangible and abstract, understood
through its concepts, properties and principles.

Architecture description frameworks (ADF) are used to codify the conventions and common practices
of architecture description. Architecture description languages (ADL) are used to codify the description
of architectures within different communities and domains of application.

ADs have many uses, such as design, development, documentation, analysis, evaluation, maintenance,
risk mitigation, downstream user specifications, tool specification, communication, planning, guidance,
life cycle support, decision support, review, training, design validation, solution trade studies, cost
comparison and analysis, by a variety of stakeholders throughout the life cycles of their entities of
interest. Annex D describes more uses of an AD.

This document provides terms, definitions and relationships for best practices in ADs. The provisions
of this document serve to specify desired properties of ADs. This document also gives provisions that
specify desired properties of ADFs and ADLs in order to usefully support the development and use of
ADs. This document provides a basis for considering and comparing ADFs and ADLs by providing a
common ontology for specifying their contents.

This document can be used to establish a coherent architecting practice for developing ADs, ADFs
and ADLs within an organization, in the context of an entity of interest (EoI) or its architecture. The
provisions of this document can be used to assess conformance of specifications of ADs, ADFs, ADLs,
viewpoints and model kinds.

The intent of this document is to enable a range of consistent and coherent approaches to describing an
architecture including document-centric and model-based techniques.

This document also provides motivations for use of architecture-related terms and concepts in other
documents such as guides and standards.

Users of this document are advised to consult Clause 5 to gain appreciation of the conceptual
foundations, along with the concepts and principles associated with an AD work product.

This document does not explicitly address completeness or correctness regarding the inclusion of
particular elements in an AD. Nevertheless, completeness and correctness of an AD can be partially
checked, for example, through the consistency of the AD elements established, whether relationships

vii© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

are transitive, and whether AD elements are shown in the views. Consistency rules can also be defined
by showing whether the same particular AD element has correspondences with an AD. In addition,
specifications that appear as elements within an AD are expected to be complete, precise and verifiable
with respect to the subject of the specification.

In this document, the following verbal forms are used:

—	 “shall” indicates a requirement;

—	 “should” indicates a recommendation;

—	 “may” indicates a permission.

viii 	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved
Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

INTERNATIONAL STANDARD ISO/IEC/IEEE 42010:2022(E)

Software, systems and enterprise — Architecture
description

1	 Scope

This document specifies requirements for the structure and expression of an architecture description
(AD) for various entities, including software, systems, enterprises, systems of systems, families of
systems, products (goods or services), product lines, service lines, technologies and business domains.

This document distinguishes the architecture of an entity of interest from an AD expressing that
architecture. Architectures are not the subject of this document.

This document specifies requirements for use of the architectural concepts and their relationships as
captured in an AD. It does not specify requirements for any entity of interest or its environment.

This document specifies requirements for an architecture description framework (ADF), an architecture
description language (ADL), architecture viewpoints and model kinds in order to usefully support the
development and use of an AD.

This document specifies conformance to the requirements for an AD, ADF, ADL, architecture viewpoint
and model kind.

This document does not specify the processes, architecting methods, models, notations, techniques or
tools by which an AD is created, utilized or managed.

This document does not specify any format or media for recording an AD.

2	 Normative references

There are no normative references in this document.

3	 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO, IEC and IEEE maintain terminology databases for use in standardization at the following addresses:

—	 ISO Online browsing platform: available at https://​www​.iso​.org/​obp/​ui

—	 IEC Electropedia: available at https://​www​.electropedia​.org/​

—	 IEEE Standards Dictionary Online: available at https://​dictionary​.ieee​.org/​

NOTE	 For additional terms and definitions in the field of systems and software engineering, see
ISO/IEC/IEEE 24765, which is published periodically as a “snapshot” of the SEVOCAB (Systems and software
Engineering Vocabulary) database and is publicly accessible at www​.computer​.org/​sevocab.

3.1
architecting
conceiving, defining, expressing, documenting, communicating, certifying proper implementation of,
maintaining and improving an architecture (3.2) throughout the life cycle of an entity of interest (3.12)

1© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

https://www.iso.org/obp/ui
https://www.electropedia.org/
https://dictionary.ieee.org/
http://www.computer.org/sevocab

ISO/IEC/IEEE 42010:2022(E)

3.2
architecture
fundamental concepts or properties of an entity in its environment (3.13) and governing principles for
the realization and evolution of this entity and its related life cycle processes

[SOURCE: ISO/IEC/IEEE 42020:2019, 3.3, modified — The notes to entry have been removed.]

3.3
architecture description
AD
work product used to express an architecture (3.2)

Note 1 to entry: A work product is an artifact produced by a process (see ISO/IEC 20246:2017, 3.18).

Note 2 to entry: An AD is a tangible representation of information provided to the stakeholders (3.17). An AD is
considered an information part (3.14).

3.4
architecture description element
AD element
identified or named part of an architecture description (3.3)

Note 1 to entry: AD elements include stakeholders (3.17), concerns (3.10), stakeholder perspectives (3.18), and
aspects (3.9) identified in an AD (3.3), ADLs (3.6), ADFs (3.5) and correspondences (3.11) and correspondence
methods used in an AD, and architecture views (3.7), view components (3.19), architecture viewpoints (3.8), and
model kinds (3.15) included in an AD (3.3).

Note 2 to entry: For the purpose of correspondences (3.11), an AD (3.3) can be considered as an AD element in
another AD (3.3).

3.5
architecture description framework
ADF
conventions, principles and practices for the description of architectures (3.2) established within a
specific domain of application or community of stakeholders (3.17)

EXAMPLE	 Generalized Enterprise-Referencing Architectures Modelling Framework (GERAM)
(ISO 15704:2019, Annex B), Reference Model of Open Distributed Processing (RM-ODP),[2] Unified Architecture
Framework (UAF)[48], and NATO Architecture Framework (NAF)[44].

Note 1 to entry: Architecture description frameworks promote structured organization, consistency of
description, greater potential for reuse, and completeness of architecture views (3.7) and models.

3.6
architecture description language
ADL
means of expression, with syntax and semantics, consisting of a set of representations, conventions,
and associated rules intended to be used to describe an architecture (3.2)

EXAMPLE	 Architecture Analysis and Design Language (AADL),[57] ArchiMate,[61] UML,[49] SysML,[47] UAF
Profile[48].

3.7
architecture view
information part (3.14) comprising portion of an architecture description (3.3)

EXAMPLE	 An Information or Data View addresses information-relevant concerns framed by an Information
viewpoint. It contains as view components (3.19), a conceptual data model, a data management model and a data
access model and correspondences linking those components together.

	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved

2

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

3.8
architecture viewpoint
set of conventions for the creation, interpretation and use of an architecture view (3.7) to frame one or
more concerns (3.10)

Note 1 to entry: In this document, “to frame” concerns means “to shape, compose, give expression to” those
concerns. It is used to distinguish the stages of framing concerns by a viewpoint from addressing those concerns
in a resulting view. This is analogous to the distinction between “framing a problem” and “solving that problem”.

Note 2 to entry: A viewpoint is a frame of reference for the concerns determined by the architect as relevant to
the purpose of the architecture description (3.3).

Note 3 to entry: The conventions of an architecture viewpoint are documented in a specification (3.16) of that
viewpoint. In some communities and architecture description frameworks, “view specification” and viewpoint
are synonyms.

Note 4 to entry: The identification of a viewpoint is often the result of prior knowledge, experience and praxis
in the domain(s) to which the viewpoint applies, indicating the information relevant to addressing the concern
(3.10).

3.9
aspect
part of an entity’s character or nature

EXAMPLE	 Functional, structural and informational aspects of an entity.

Note 1 to entry: A particular aspect can be used for capturing the relevant features of the entity of interest (3.12)
as a refinement of one or more concerns (3.10) under examination with respect to some part of its character, e.g.
the structural character, functional character or informational character of the entity.

Note 2 to entry: Aspects enable the architect to analyse, address and structure concerns (3.10). In general, there
is a many-to-many relation between aspects and concerns (3.10).

Note 3 to entry: See 5.2.5 for more discussion and examples.

3.10
concern
matter of relevance or importance to a stakeholder (3.17)

Note 1 to entry: concerns can be identified with regards to an entity of interest (3.12) or independently, such as
with regards to environment, scenario, situation or use case of that entity.

Note 2 to entry: In this document, interest in an entity is intended to encompass interest in that entity’s
environment (3.13), life cycle, architecture (3.2), requirements, design, implementation and operation. Such
interests are captured via aspects (3.9), concerns and stakeholder perspectives (3.18).

Note 3 to entry: The identification of a concern is often the result of prior knowledge, experience and praxis in
the domain to which the concern applies.

Note 4 to entry: See 5.2.3 for more discussion and examples.

[SOURCE: ISO/IEC/IEEE 42020:2019, 3.8, Notes have been modified]

3.11
correspondence
identified or named relationship between two or more architecture description elements (3.4)

EXAMPLE	 Correspondences are used to express a wide range of relationships, such as equivalence,
composition, refinement, consistency, traceability, dependency, constraint, satisfaction, and obligation.

Note 1 to entry: For the purpose of correspondences, an architecture description (3.3) can be considered as an AD
element (3.4) in another architecture description (3.3).

© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

3

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

Note 2 to entry: Correspondences can be identified or named relationship between architecture description
elements (3.4) in different architecture descriptions (3.3) or between architecture description elements (3.4) stated
in different notations.

3.12
entity of interest
EoI
subject of an architecture description (3.3)

EXAMPLE	 Enterprise, organization, solution, system (including software systems), subsystem, process,
business, data (as a data item or data structure), application, information technology (as a collection), mission,
product, service, software item, hardware item, product line, family of systems, system of systems, collection of
systems, collection of applications.

Note 1 to entry: In this document, the term entity of interest refers to the entity whose architecture (3.2) is under
consideration in the preparation of an architecture description (3.3).

Note 2 to entry: This document distinguishes the entity of interest from other entities which are not the subject
of the architecture description (3.3).

Note 3 to entry: In this document, interest in an entity is intended to encompass interest in that entity’s
environment, life cycle, architecture, requirements, design, implementation and operation. Such interests are
captured via aspects, concerns and stakeholder perspectives.

3.13
environment
context of surrounding things, conditions, or influences upon an entity

Note 1 to entry: The environment of an entity of interest (3.12) includes external entities that can have various
influences upon an entity, such as developmental, technological, business, operational, organizational, political,
economic, legal, regulatory, ecological and social influences as well as external physical effects such as
electromagnetic radiation, charged particles, gravitational effects, and electric and magnetic fields.

Note 2 to entry: A label attached as a qualifier to the term environment identifies a particular context within
another context, such as development environment, test environment, and operational environment.

3.14
information part
separately identifiable body of information that is produced, stored, and delivered for human and
machine use

3.15
model kind
category of model distinguished by its key characteristics and modelling conventions

EXAMPLE	 Functional models, activity models, structural models, use case models, geopolitical models,
analytic models and economic models.

3.16
specification
information part (3.14) that identifies, in a complete, precise and verifiable manner, the requirements,
design, behaviour, or other expected characteristics of an entity

[SOURCE: ISO/IEC/IEEE 15289:2019, 3.1.26 — “a system, service or process” replaced with “an entity”,
“information item” replaced with “information part”]

3.17
stakeholder
role, position, individual, organization, or classes thereof, having an interest, right, share, or claim, in an
entity of interest (3.12)

EXAMPLE	 End users, operators, acquirers, owners, suppliers, architects, developers, builders, maintainers,
regulators, taxpayers, certifying agencies, and markets.

	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved

4

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

3.18
stakeholder perspective
way of thinking about an entity of interest (3.12), especially as it relates to concerns (3.10)

EXAMPLE	 The labels given to the middle three rows (i.e. owner, designer and builder) of the Zachman
framework[67] correspond to stakeholder perspectives. The rows in the Unified Architecture Framework[48]
and NATO Architecture Framework[44] grids correspond to stakeholder perspectives (although they are called
”domains” and “subjects of concerns,” respectively in those frameworks). See 5.2.4 for more examples.

Note 1 to entry: The way one thinks about an entity can be influenced by one’s beliefs, training, experience,
knowledge, personality, character traits, culture, peer pressure, role or stance, etc.

3.19
view component
architecture view component
separable portion of one or more architecture views (3.7) that is governed by the applicable model kind
(3.15) or legend

EXAMPLE	 An architecture view component describing access control mechanisms can be used in several
views of an architecture description (3.3) to explain functional flows, behaviour and security features of an entity.

Note 1 to entry: In the context of an architecture description (3.3), a legend is an informal documentation of
conventions.

4	 Conformance

The requirements in this document are contained in Clauses 6, 7 and 8. There are five situations in
which claims of conformance with the provisions of this document can be made.

1)	 When conformance is claimed for an architecture description, the claim shall demonstrate that the
specification of the architecture description meets the requirements listed in Clause 6.

2)	 When conformance is claimed for an architecture description framework, the claim shall
demonstrate that the specification of the architecture description framework meets the
requirements listed in 7.1.

3)	 When conformance is claimed for an architecture description language, the claim shall demonstrate
that the specification of the architecture description language meets the requirements listed in 7.2.

4)	 When conformance is claimed for an architecture viewpoint, the claim shall demonstrate that the
specification of the architecture viewpoint meets the requirements listed in 8.1.

5)	 When conformance is claimed for a model kind, the claim shall demonstrate that the specification
of the model kind meets the requirements listed in 8.2.

This document is designed such that “tailoring” is neither required nor permitted for its use when
claims of conformance are made.

5	 Conceptual foundations

5.1	 General

This clause introduces the conceptual foundations of architecture description expressed in a set of
conceptual models (see 5.2) and the application of those foundations to ADs (5.2), ADFs (see 5.4.2) and
ADLs (see 5.4.3). The use of the architecture descriptions to support different architecture practices
is outlined in Annex D. The concepts introduced in this clause are used in Clauses 6 to 8 to express
requirements.

NOTE	 Annex A provides further discussion of the terms and concepts used in this document and presents
examples of their use in an historical context.

© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

5

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

5.2	 Conceptual models of an architecture description

5.2.1	 Context of architecture description

The term "entity of interest" is used in this document to refer to the subject of an architecture
description. The term is intended to encompass, but is not limited to, entities within the following fields
of application, reflecting the intended scope of this document as specified in Clause 1.

—	 software, including software products and services, per ISO/IEC/IEEE 12207;

—	 systems, including one-of-a-kind systems, mass-produced systems, customized, adaptive systems,
stand-alone and embedded systems, per ISO/IEC/IEEE 15288;

—	 enterprises as described in ISO 15704, i.e. human undertakings or ventures that have mission, goals
and objectives to offer products or services, or to achieve a desired project outcome or business
outcome.

This document takes no position on what constitutes an entity within those or other fields of application
or elsewhere. An entity can be a concrete entity or an abstract entity. An AD as specified in this
document is suitable not only for entities in the fields of applications listed above, but also for entities in
fields such as natural systems or conceptual systems.

Each entity of interest is situated in an environment which influences its characteristics and
behaviours. The environment determines the totality of influences upon the entity of interest and the
totality of influences of the entity of interest upon that environment, including its interactions with the
environment and other entities, throughout the life cycle of that entity of interest.

Figure 1 depicts key concepts pertaining to an entity of interest and its architectures as a means of
understanding ADs.

NOTE 1	 The figures and text in the remainder of Clause 5 constitute a set of conceptual models of architecture
description. Figures 1 to 6 use an informal entity-relationship diagram notation to facilitate comprehension by
users of this document. In the figures, rounded rectangles represent information objects, and arrows represent
relationships between objects with the annotation read in the arrow direction. The figures illustrate the key
concepts described throughout Clause 5. Annex A presents the full conceptual model.

NOTE 2	 Identification of the EoI can emerge from the analysis of the concerns of the stakeholders or can
preexist before identification of some stakeholders and their concerns.

EXAMPLE	 The identification of an EoI generally results from the definition of the problem space. The
problem description can be expressed with an architecture definition of a set of operational capabilities (often
called “capability architecture”). At this capability definition stage, identified stakeholders are potentially
concerned by the future EoI.

5.2.2	 Architectures and architecture descriptions

The architecture of an entity of interest comprises the fundamental concepts or properties of that
entity considered in its environment. The architecture of an entity of interest can pertain to any or all
of the entity’s:

—	 constituent elements;

—	 interactions or interrelationships among its elements;

—	 interactions or interrelationships with its environment, including with other entities in that
environment;

—	 behaviour and structure;

—	 principles governing its design, use, operation and evolution.

	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved

6

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

An AD is an expression of an architecture. ADs are work products resulting from architecting efforts. As
a work product, an AD is devised for the specific purpose for which the architecting effort is undertaken,
which is distinct from the purpose of the entity of interest. An AD comprises AD elements (see 5.2.10).

The architecture of an entity of interest can be understood through one or more distinct ADs, each
created for a purpose relative to the architecture and stakeholder needs. Different ADs can, for example,
be based on different stakeholders (see 5.2.3), stakeholder perspectives (see 5.2.4), time periods
(sometimes termed epochs), or specific contexts or usage within the environment.

NOTE	 ISO/IEC/IEEE 42020 specifies a set of processes for architecting which can be employed in support of
creating one or more ADs.

5.2.3	 Stakeholders and concerns

Stakeholders are parties with direct or indirect interests in an entity. Among the stakeholders are those
parties that have influence or control over and those who are impacted by an entity. A stakeholder’s
interests are typically expressed as concerns about an entity of interest or the architecture of which
they are aware. Concerns are often the result of the stakeholder's perspective gained from domain
knowledge, experience, training, responsibility and authority.

Concerns are matters of interest or importance to one or more stakeholders. A concern can be shared
by one or more stakeholders and a stakeholder can hold more than one concern. The legitimacy and
importance of a concern held by a stakeholder can be a consequence of the role of the stakeholder (e.g.
owner, end user or participant, developer, architect, maintainer, disposer) or financial or social rights,
shares, impact or claims (e.g. funding organization, governmental body, party receiving environmental
impact from entity, stakeholder of an entity impacted by the entity of interest).

Some stakeholders’ concerns are contrary to the success of the entity of interest. These stakeholders
can have disagreements on the grounds of political or environmental considerations, can seek active
disruption of the entity’s operations, or even outright destruction of the entity. Adversarial concerns can
be taken into account when developing the architecture of the entity. For example, political objections
can be resolved by incorporating a negotiated solution in the architecture of the entity, or threats can
be mitigated by taking preventative measures.

During the entity of interest’s life cycle, concerns can arise at any time including (but not limited to)
during conceptualization, when design choices are made, from construction or implementation, through
deployment, operation, transfer of ownership, retirement and disposal.

Concerns can manifest in various ways in relation to stakeholder's needs, architecture goals,
expectations, responsibilities, requirements, design constraints and assumptions. Concerns can also
manifest in recognition of dependencies, quality attributes, architecture decisions, risks or other issues.

Concerns can pertain to influences exerted upon or by an entity of interest, including developmental,
technological, business, operational, organizational, political, economic, legal, regulatory, ecological,
social and physical influences. Concerns can also pertain to design influences such as internal structural
features and component interoperability, particularly when architecting a system of systems or an
enterprise.

EXAMPLES	

—	 How is the system maintained?

—	 What system behaviours are safety-critical?

—	 Can the entity of interest attain compliance with national regulations?

—	 What is the cost to operate?

—	 What are the risks, opportunities, satisfaction, resilience, coherence, affordability, complexity and trust
offered by this architecture?

—	 What are the distribution transparencies described in the Reference Model of Open Distributed Processing[1]?

© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

7

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

—	 In case of a flight navigation system of a commercial aircraft, what is GPS signal availability, tracking, degree
of accuracy, line of sight reception, altitude or elevations?

—	 What are the data qualities (i.e. data qualities as described in ISO/IEC 25012:2008, Clause 4 or traditional
system quality attributes as described in ISO/IEC 25010.)?

—	 What is the system’s ability to maintain confidentiality, integrity, and availability for protecting operations?

—	 What is the ability to support a seamless transition from a legacy capability to a modernized operational
capability?

5.2.4	 Stakeholder perspectives

Stakeholders often form distinct groupings, or stakeholder perspectives, based on their common roles,
experiences, beliefs or other characteristics. A perspective can reflect domain knowledge, professional
experience, training or proximity to the entity of interest in its lifecycle (e.g. design, development,
manufacturing, supply, operation and use). Importantly, a stakeholder perspective can also be
influenced by personality, character traits, culture, peer pressure, constituency, etc.

Stakeholder perspectives are ways of thinking about the entity of interest in a context, especially as
they relate to concerns. Typically, there are several ways of thinking about the architecture of the entity
of interest.

The purpose of an AD (see 6.2) guides the identification of concerns that can reflect the perspectives of
some stakeholders. There are often multiple stakeholder perspectives on any entity of interest.

EXAMPLE 1	 Operational and financial perspectives about an industrial production system.

EXAMPLE 2	 Business, management, acquisition and supply perspectives about a banking system.

EXAMPLE 3	 Development, deployment and customization perspectives about a mobile app.

EXAMPLE 4	 Provider and consumer perspectives about a hospitality service.

EXAMPLE 5	 Data user and data provider perspectives about a content provider entity.

Each perspective results in one or more concerns. Because concerns arise from stakeholder
perspectives, architecture viewpoints framing those concerns are often grouped by stakeholder
perspectives. Concerns are based on current interests and influences of the stakeholders and are often
subjective in nature.

5.2.5	 Aspects

Aspects capture a set of characteristics or features of the entity of interest in its environment to address
concerns within an AD.

An aspect can relate to one or more concerns of stakeholders. Usage of known aspects based upon
prior experience within a field of application enables systematic coverage of the range of established
concerns and also the identification of new concerns.

Aspects are based on experience in characterization of architectures and are more objective in nature
as they arise from agreements among experts about practice in a domain and therefore are presumed
to be best practice.

By examining aspects, relevant features or properties of the entity of interest can be discerned or
predicted. Analysis of aspects can uncover one or more concerns.

The definition of the relationships between aspects and concerns are based on the experience of the
architects and are assessed by the stakeholders with their understanding and knowledge.

NOTE	 A.4.2 contains more information about the utility of aspects.

EXAMPLE 1	 Spatial, structural, functional, informational and programmatic aspects in an aircraft AD.

	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved

8

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

EXAMPLE 2	 Behavioural, informational and structural aspects in a computer AD.

EXAMPLE 3	 Connectivity aspects in a communications network AD (commonly shown as separate logical
network and physical network depictions of a configuration of links and nodes in the network).

Figure 1 depicts relationships between concerns, aspects, and stakeholder perspectives as utilized in
an AD.

Figure 1 — Concerns, aspects, and stakeholder perspectives

5.2.6	 Architecture considerations

Architecture considerations are factors taken into account when architecting. Concerns (see 5.2.3),
stakeholder perspectives (see 5.2.4) and aspects (see 5.2.5) are different considerations to consider
while architecting. There are other considerations that can arise due to the architecture practices in
use.

Architecture considerations are useful when specifying architecture viewpoints and when constructing,
interpreting, organizing or using architecture views (see 5.2.7). Architecture considerations can group
specifications of architecture viewpoints, e.g. with respect to stakeholder perspectives.

EXAMPLES	 Considerations include: the ability of stakeholders to interpret the architecture description
languages chosen to express stakeholder views, the degree of formality required for viewpoints and model kinds,
the availability of supporting tools, standard practices used in the given industry domain, the availability of time
and resources, the criticality of the depth of understanding that stakeholders need to achieve.

NOTE	 Other considerations can relate to contexts, criteria, building blocks and domain vocabulary.

5.2.7	 Architecture views and architecture viewpoints

An AD contains one or more architecture views. An architecture viewpoint governs one or more of
these architecture views. A specification of an architecture viewpoint establishes the conventions
for creating, interpreting, presenting and analysing a view to address the concerns framed by that
viewpoint. Viewpoint specifications typically reflect the information elements required to facilitate

© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

9

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

the application of knowledge (including possibly informal or tacit experiential knowledge) to ascertain
whether the architecture addresses the concerns satisfactorily.

NOTE 1	 Architecture concerns, stakeholder perspectives and aspects can serve as an organizing basis for
the viewpoints of an AD. Aspects are refinements of concerns and these aspects can be used to establish the
viewpoint conventions. These aspects are evidenced in the resulting architecture view(s).

EXAMPLE 1	 A telecommunications network (entity) is represented by a network connectivity
deployment diagram that can be used to express the network model (as an architecture view) contained in a
telecommunications architecture description. That view addresses communications parameters such as
throughput and uptime (concerns) of operators and users (stakeholders).

EXAMPLE 2	 A Parts and Variations View describing the content of a product line (entity) including common
parts and individual products with their variants and options.

Figure 2 depicts the relationship between architecture views and architecture viewpoints in an AD.

Figure 2 — Architecture views and architecture viewpoints

An architecture viewpoint frames one or more concerns (see 5.2.3). A concern can be framed by more
than one viewpoint. The architecture viewpoint identifies the specific aspects to be reflected in and
concerns to be addressed by one or more architecture views. The specification of an architecture

	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved

10

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

viewpoint provides conventions, e.g. AD elements, syntax and semantics, usage guidance and direction,
to those who are creating, interpreting or using the architecture views.

NOTE 2	 Distinct from requirements for product acceptance, architecture views for the entity of interest that
addresses concerns and reflects aspects can result in modified requirements.

Using a metamodel or other conventions, the viewpoint specification establishes the manner in which
AD elements (e.g. entities, relationships, attributes and constraints) are used, and possibly transformed
by the viewpoint, when creating a view (see 5.2.9).

Architecture viewpoints are important analytical resources for development of architecture views
because viewpoints reflect the architecting purpose, typical stakeholders and their perspectives,
identified concerns, defined aspects of the entity of interest, and particular AD elements.

NOTE 3	 Clause 8 specifies requirements on specification of architecture viewpoints. Annex B provides
guidance on preparing architecture viewpoints.

5.2.8	 Model kinds, legends and architecture view components

An architecture view is composed of one or more architecture view components. A view component
that can be based on a model or not. Each view component is governed by a model kind or legend
identified by its architecture viewpoint. A model kind determines the conventions for model-based
view components. A legend documents the conventions for view components. These conventions include
the intended uses, the terminology, the notations and their syntax and semantics and symbology of its
governed models. A model kind or legend can be used by more than one viewpoint in an AD. Within an
AD, an architecture view component can be part of more than one architecture view to enable sharing
information when its content and presentation is relevant to more than one view.

EXAMPLE 1	 Model kinds include use cases, activity models [such as structured analysis and design technique
(SADT[53]) and ICAM1) Definition Language (IDEF0[60])], threat models, component models and connectivity
models.

EXAMPLE 2	 A data flow diagram can be a view component of a functional view. A separate control flow
diagram can be a second view component in the same functional view. The functional view can also contain a
narrative that explains how to interpret the flow diagrams in the view. The flow diagrams are model-based while
the narrative is not. The data flow diagram can be part of an information security view.

EXAMPLE 3	 A symbology table can be a legend of an operational view.

Figure 3 depicts the composition of views from view components and the kinds of view components.

1)	 ICAM is an acronym for "Integrated Computer Aided Manufacturing"

© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

11

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

Figure 3 — Conceptual model for views and view components

5.2.9	 Architecture description (AD) elements

An AD element is an occurrence of one or more architectural concepts in an AD. The AD elements
include occurrences of the following architectural concepts: stakeholder, concern, aspect, stakeholder
perspective, architecture viewpoint, architecture view, model kind, legend, architecture view
component, architecture decision, architecture rationale and any correspondence and correspondence
method specified on those constructs.

Any one of these concepts can have multiple occurrences in one or more AD. An AD element occurrence
specifies one or more architectural concepts.

An AD element in an AD can be refined or elaborated by reference to another AD. An AD can utilize
protocols introduced as AD elements of distinct ADs.

As viewpoints (see 5.2.7), model kinds (see 5.2.8) and legends (see 5.2.8) are specified and applied,
additional AD elements are introduced. The governing viewpoint or model kind or legend determines
the syntax and semantic conventions for these introduced AD elements.

EXAMPLE	 AD elements introduced by viewpoints or model kinds include use case constructs such as
preconditions, actors, boundaries, systems; activity model constructs such as activities, inputs, outputs, controls,
and mechanisms; architecture or design patterns to be employed.

5.2.10	 View methods

A specification of an architecture viewpoint includes one or more view methods. View methods provide
guidance, heuristics, metrics, patterns, design rules or guidelines, best practices and examples to aid
in view construction and use of associated views. View methods specify expression rules, modelling
methods, analysis techniques and other operations on views. These methods specify the AD elements
used when creating the view and methods to analyse, interrogate or query views to assess properties of
interest. Requirements on view methods are specified in 8.3.

View methods are divided into categories, including:

—	 Construction methods are the means by which views are prepared using a viewpoint. These can be
in the form of process guidance (how to start, what to do next); or description guidance (templates
for views of this type); or heuristics, styles, patterns, or other idioms to employ.

	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved

12

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

—	 Interpretive methods are the means by which views are to be understood by stakeholders and other
users.

—	 Analysis methods are used to check, reason about, transform, predict, apply and evaluate results
from this view.

NOTE	 View methods are usually defined in a viewpoint and are referenced by or used by model kinds,
architecture description frameworks, and architecture description languages.

EXAMPLE	 View methods pertaining to: chaining dependencies to assess the impact of a change; workshops
to trade-off qualities or other concerns; boundary analyses to determine whether context and entity of interest
are well defined; guidance on partitioning; analysis of architectural complexity; creation and enforcement of
architecture styles (such as layered, aspect-oriented); pattern families to promote intended properties of the
entity of interest; analyses against requirements for completeness and coverage; interpretation and integration
of external models as information sources.

5.2.11	 AD element correspondence

An AD element correspondence identifies an identified or named relation between two or more AD
elements.

An AD element correspondence can relate:

—	 one or more AD elements with one or more AD elements within an AD;

—	 one or more AD elements with one or more AD elements occurring in multiple ADs;

—	 one or more AD elements with one or more AD elements within an ADF or across several ADFs;

—	 one or more AD elements with one or more AD elements using one or more ADLs

For the purposes of correspondences, an AD itself may be considered an AD element of a different AD.

AD element correspondences may be used to indicate consistency relationships within and among ADs;
to facilitate correlations among ADs of related systems; or to enable coordinated interpretation and
analysis of related descriptions.

An AD element correspondence may be governed by a correspondence method which expresses rules,
practices or models to specify the particular relation between the AD elements.

AD element correspondences and correspondence methods can be used to express and enforce
architecture relations such as composition, refinement, consistency, traceability, dependency,
constraint, satisfaction and obligation [26] of AD elements.

EXAMPLE 1	 A correspondence between an AD element within a view and the concern that it addresses;
between an architecture view and the aspect that it implements; between an AD element and the function that
it implements; between an interface on a component and the stack of standards to which the interface conforms;
between a data object on a functional flow and the full data structure definition; between a system and the
organizational structure that implements it.

EXAMPLE 2	 “Self-referential” correspondences are an activity that is refined into two or more activities of the
same kind, or an activity that can recursively invoke itself.

Figure 4 depicts the nature of AD element correspondences.

© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

13

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

Figure 4 — Conceptual model of AD element correspondences

EXAMPLE 3	 A correspondence method can specify that all AD elements trace to a concern or requirement.
Compliance to that method can be recorded in the form of a traceability matrix, with a rationale provided for
each AD element that does not trace to a concern or requirement. The AD elements in a correspondence do not
need to be distinct. A correspondence can be defined between an AD element and itself.

NOTE 1	 Requirements for using correspondences and correspondence methods are specified in 6.9. Additional
examples of their use are given in A.7.

NOTE 2	 Correspondences in this document are similar to view correspondences in ISO/IEC 10746-2 (RM-
ODP) and ISO/IEC 19793.

NOTE 3	 Usually correspondence methods are “cross model” or “cross view” or “cross AD” since
correspondences within a view component are part of the conventions of the specification of the model kind.

NOTE 4	 Correspondences and correspondence methods can be applied to multiple AD elements to express
architecture relations pertaining to multiple AD elements.

5.2.12	 Architecture decisions and rationale

An architecture decision is a collection of choices made in the overall context of an architecture. These
choices usually pertain to various AD elements, entity requirements, or environmental influences on
the architecture.

EXAMPLE 1	 Selection of architecture concepts, choice of AD elements, selection of ADFs, choice of architecture
layering scheme, choice of underlying technology, choice of business components, choice of tactics to use for
achieving system qualities, choice of business processes, choice of applicable patterns, choice of style(s) to be
applied, choice of range of implementation technologies or other realizations to be considered, and choice of
option sets to be considered.

Architecture rationale records explanation, justification or reasoning about architecture decisions.
The rationale for a decision can include the following items: the basis for making a decision, impact
on quality attributes, alternatives and trade-offs considered, potential consequences of the decision,
architectural principles, and citations to sources of additional information.

EXAMPLE 2	 Meeting cost commitments, meeting time commitments, using proven technologies, minimizing
rework, reducing capital investments, achieving interface compatibility, satisfying constraints imposed by the
operational context.

	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved

14

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

EXAMPLE 3	 Modelling tool selections to align with related architectures (e.g. customer’s enterprise
architecture) to ensure interoperability and traceability.

NOTE	 Requirements for capturing decisions and rationale within an AD are specified in 6.10.

5.3	 Architecture description in the life cycle

Architecting activities occur and ADs are produced for various reasons throughout the life of the entity
of interest, from initial concept through the operation, refurbishment or final retirement from use, and
eventual disposal of this entity.

NOTE 1	 Since an AD describes the concept of the entity of interest, in some cases, ADs continue to be produced
even after retirement as long as there is interest in the concept, and can be parked or discarded as per the policies
of the organization.

ADs are the work products that result from architecting, which takes place within the context of a
project and/or organization (company, network of companies, consortium and standardization body).

During the entity of interest life cycle, an AD can precede or follow architecture creation, updating or
changing.

NOTE 2	 See Annex E for more details of the role of architecting in the life cycle.

5.4	 Architecture description frameworks and languages

5.4.1	 General

ADFs and ADLs are now widely used in architecting to facilitate normalized expression of the
architecture for those constructing and using ADs, and to ensure consistency of style and content
coverage across ADs. ADFs and ADLs built on the concepts of architecture description presented in this
document, can be utilized effectively for:

a)	 generalized reference frameworks and languages intended to guide more specific ADFs;

b)	 special purpose frameworks and languages intended to enable better analytical understanding
and situational awareness;

c)	 entity implementation frameworks and languages intended to facilitate entity engineering,
operation and retirement.

5.4.2	 Architecture description frameworks

An ADF establishes a common practice for creating, interpreting, analysing and using ADs within a
particular domain of interest, e.g. defense, aerospace and banking. An ADF can also guide or serve
as a reference for one or more than one specialized ADF. For a generalized entity of interest within
the context of a particular domain of practice, an ADF intended as a reference typically identifies
architecture viewpoints for expected or known architecture considerations, often as stakeholder
perspectives, concerns or aspects related to structure, function (both behaviour and fitness) and life
cycle. For a reference use, the many different stakeholder perspectives can be generalized. Utilizing
an architecture viewpoint, users of the reference have access to views appropriate for the generalized
entity of interest that can satisfy the architecture considerations framed by that viewpoint.

An architecture viewpoint identified in an ADF, which intends to guide or serve as a reference for
more specific ADF, identifies the typical concerns, aspects, model kinds and view methods, which
constitute the conventions governing views associated with that viewpoint. Users of an ADF serving
as a generalized reference can specialize the architecture considerations, the specifications of
architecture viewpoints, and thus the resulting architecture views, as an ADF to use in implementing
the architecture of a particular entity of interest.

© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

15

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

The architecture viewpoints identified in an ADF can result from experiences with architecture
viewpoints specified or used by prior architecting efforts to determine satisfaction of concerns about
an entity of interest to the extent of detail consistent with the purpose of the ADF.

NOTE 1	 Particular architecture decisions are made in ADFs: selection of stakeholders and related concerns,
specific aspects and stakeholder perspectives. An ADF will structure ADs according to these decisions.

An ADF provides a structuring formalism to organize AD elements that are usually associated with the
architecture viewpoints used to generate associated views. The purpose of the structuring formalism
is to provide ways of representing relationships among various elements of the architecture and
enhancing opportunities for analysis of interactions among those elements.

NOTE 2	 The most common structuring formalisms use architecture considerations, i.e. concerns, stakeholder
perspectives and aspects, represented in a grid or matrix format.

EXAMPLE 1	 Well known structuring formalisms include: GERAM cube in ISO 15704, Reference Architectural
Model Industrie 4.0 (RAMI 4.0)[34], TOGAF phases (Business, Data, Application and Technology),[62] NAF grid,[44]
UAF grid,[48] and Zachman Framework matrix[67].

Figure 5 depicts the conceptual model of an ADF.

Figure 5 — Conceptual model of an architecture description framework

An ADF defines structural categories used in the structuring formalism. These categories result from
correspondence methods that group AD elements into meaningful configurations for presentation,
analysis, and management of the AD for the entity of interest.

NOTE 3	 Sometimes categories are represented by “dimensions” in a graphic portrayal, such as the rows
and columns used in several frameworks. A structuring formalism in grid form usually has two framework
dimensions but formalisms can have a single framework dimension, often segmented in a multi-layer hierarchy,
or several framework dimensions where visual representation of framework dimensions above three is difficult.

EXAMPLE 2	 A two-dimensional grid is used in the Zachman[67] and UAF[48] ADFs where stakeholder
perspectives are depicted as rows and aspects of the generalized entity of interest are depicted as columns.

NOTE 4	 An ADF used as a reference can successfully rely on generalized architecture considerations and an
agreed upon common vocabulary for the encompassed domain of interest. Specializations for implementation
often necessitate careful customization to meet stakeholder expectations, particularly when adapting an ADF
used as a reference for a particular purpose or for better comprehension by those stakeholders sponsoring
the architecting effort. As a result of the introduction of specialized AD elements, a change in vocabulary and
specifications of architecture viewpoints can be necessary.

	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved

16

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

Within an ADF, architecture viewpoints are important analytical resources for development of
architecture views because viewpoints reflect the architecting purpose, typical stakeholders and their
perspectives, identified concerns, defined aspects of the entity of interest, and particular AD elements.

Depending upon the intended application for a framework, the extent of detail resulting from a
viewpoint can vary widely. A framework for reference can be expected to have more generalized
stakeholder perspectives and architecture considerations, often partitioned into multiple functional
clusters, e.g. product and life cycle.

5.4.3	 ADF utilization

When sharing typical AD elements in a common methodology, users can develop and maintain a less
generalized domain specific ADF as a reference with architecture considerations and stakeholder
viewpoints with appropriate model kinds and legends. Some ADFs used for references include explicit
definitions of the AD elements associated with the model kinds and legends to use for each view of the
entity of interest. Additional model kinds can address needed architecture considerations not covered
by a particular framework.

A specialized framework, or one intended for implementation rather than reference, uses more specific
and possibly more detailed stakeholder concerns, specific aspects and often a narrow portion of, or no
consideration of, the life cycle.

NOTE 1	 Particular practice communities establish norms in areas where similar architecting is recurring:
stakeholders with recurring concerns, conventions for addressing specific aspects, and architecting practices for
establishing customary perspectives. An ADF will structure ADs according to these norms.

Usage of ADFs in different situations is likely to identify new combinations of architecture considerations
and useful viewpoints, model kinds, legends, views and correspondences. In different situations the
following can occur:

—	 omission of life cycle or part of life cycle;

—	 inclusion of only some stakeholders or aspects;

—	 inclusion of overlapping sets of aspects;

—	 inclusion of only sub-domain or sub-groups of aspects;

—	 inclusion of new or adapted viewpoints as new concerns emerge;

—	 identification of previously unrealized correspondences.

Stakeholder concerns are often better understood when examined from different stakeholder
perspectives across different aspects of the entity of interest, such as structure, behaviour and
connectivity.

Some stakeholders look at an architecture from a business perspective and can be interested in the
functionality that is required or provided (what capability of the entity is being created or changed, or
what new processes are necessary?) and some stakeholders look at an architecture from an economic
perspective and can be interested in the financial consequences of the same functionality (what are the
investment implications and what is the expected impact on the bottom line?).

NOTE 2	 ADFs frequently encompass both provisions for AD and additional architecting practices.

NOTE 3	 Requirements for an ADF are specified in 7.1.

NOTE 4	 Annex F gives more information about ADFs and how they can be related to the concepts and
requirements of the document.

NOTE 5	 ADFs identify one or more AD elements which are instances of the architectural constructs:
stakeholder, concern, stakeholder perspective, aspect, architecture viewpoint, model kind, legend, etc.

© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

17

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

One way to look at ADFs is to consider that an ADF is specifying the information model of an architecting
effort (or project) that is tasked with the development of an architecture and its description. In other
words, the ADF describes in an organized form the information elements that are to be produced.

If the ADF is expressed in a generic way, then it can only be used as a reference model (or partial
model) of this information model, which then needs to be specialized by adding necessary detail for the
purposes of the effort. Conversely, if the ADF is already specialized for the purposes of an application
domain, then less tailoring is needed before utilization.

However, given the objective(s) of a particular architecting effort, domain specific ADFs can be further
specialized. For example, some viewpoints, aspects, or perspectives may not be relevant from the point
of view of these objective(s), or in turn there may exist concerns that are specific to the particular effort
and shall therefore be addressed, which requires that additional viewpoints be specified and used.

This continuum from generic to reference (or partial) and particular models is an application of the
identical concepts expressed in ISO 15704 (for further details, see C.4).

5.4.4	 Architecture description languages

An ADL is a specified syntax and semantics intended for use in describing the architecture of an entity
of interest. An ADL is a language for stakeholders, including those involved in the architecting effort
that allows the expression of architecture considerations by means of AD elements pertaining to the
entity of interest, and the architecting context. An AD can use more than one ADL, even a different
ADL for each viewpoint, or even distinct ADLs for each model kind specified by a single architecture
viewpoint.

EXAMPLE 1	 UML profiles for architecture description are defined using stereotypes, tag definitions, and
constraints applied to specific model elements (classes, attributes, operations, and activities) with a profile
collection of such extensions collectively customized for a particular domain (e.g. aerospace, healthcare,
financial) or platform (J2EE, .NET), and a modelling profile can define a particular model kind as part of its
specification. Often general-purpose modelling languages, e.g. UML[49], SysML[47], OPM (ISO/PAS 19450), are
embellished with profiles specifically intended for use in ADs.

ADLs can be employed (or devised) to express specific architecture considerations which an architect
needs to address.

NOTE 1	 The use of more than one ADL in an AD requires great care to avoid confusion and misunderstanding.

An ADL provides a way to create and understand the view components that compose into architecture
views. Suitable ADL selection occurs by considering view methods that specify how information is
selected, transformed and presented in an architecture view. View methods determine the information
to capture when constructing ADs, to use for the analysis of captured descriptions, and the information
needed for the description of architecture concepts and features.

ADLs can provide necessary rigor for the development of an AD. The semantics of an ADL can be
specified in increasing extents of formality and expressive power by: a vocabulary or glossary using
natural language, a taxonomy of terms and relationships, a meta-model expressing the uses of language
constructs, and as an ontological theory using axioms in a formal logic or as an analytical theory using
differential equations, tensor calculus, etc.

As transition occurs from a very generic reference ADF through a domain specific ADF and practice
specific ADF to an implementation ADF, different ADLs are likely to be employed to meet more refined
specifications of architecture viewpoints for architecture views.

EXAMPLE 2	 The transition from a generic Zachman Framework[67] to a UAF[48] involves a transition from
general information and computing technology (ICT) ADL terminology to a precise terminology based on the UAF
Domain Meta-Model.[48] This terminology can be implemented with the UAF Profile[48] using SysML[47] notation
and semantics, which in turn is transitioned to implementation-specific ADL for a particular project modelling
profile extension of UML[49].

As multiple ADs are created for the same domain entity of interest, consistency or at least traceability
amongst them is important to maintain; therefore, it is necessary to capture consistency conditions

	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved

18

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

using correspondences (see 6.9.2) or a unified underlying ontology (see A.6 on projective and synthetic
view creation approaches). The constructs of the actual ADLs used in practice are then subsets of this
integrated ontology.

EXAMPLE 3	 AADL,[57] ArchiMate,[61] Systems Modelling Language (SysML),[47] ISO 19440, Business Process
Model and Notation (BPMN),[46] Unified Modelling Language (UML),[49] Unified Architecture Framework (UAF)
Profile[48] and the viewpoint languages of RM-ODP[3][4].

NOTE 2	 ADLs identify one or more AD elements which are instances of the architectural constructs:
stakeholder, concern, architecture viewpoint, model kind, legend, etc.

Figure 6 provides the conceptual model for an ADL.

NOTE 3	 Requirements on ADLs are specified in 7.2.

Figure 6 — Conceptual model of an architecture description language

6	 Specification of an architecture description

6.1	 Architecture description identification and overview

An AD shall identify the entity of interest and the expected environment of that entity of interest.

An AD shall include a statement of its intended purpose.

An AD shall include identifying information and supplementary information as determined by the
project and/or organization.

EXAMPLE	 Date of issue and status; authors, reviewers, approving authority, issuing organization; change
history; summary; scope; context; glossary; version control information; configuration management information
and references. See ISO/IEC/IEEE 15289 or ISO/IEC TS 33060 for additional examples.

NOTE 1	 For an AD intended to serve as a reference for another AD, the entity of interest is abstract, or a
generalization of entities of interest, and the purpose of the AD is to express a reference architecture which could
provide a basis for further ADs.

NOTE 2	 This document does not specify a format for ADs.

NOTE 3	 This document does not prescribe how ADs are created. For example, they can be individually
constructed, generated with automated tools, derived from or based upon other information sources and models.

© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

19

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

NOTE 4	 This document does not prescribe the extent or expectation regarding the use of formal modelling
methods in an AD. While informal methods can be used effectively, formal modelling methods are often less
ambiguous.

6.2	 Identification of stakeholders

An AD shall identify the stakeholders having concerns that are considered fundamental to the
architecture of the entity of interest and consistent with the purpose of the AD.

EXAMPLE	 Stakeholders include users, operators, acquirers, owners, suppliers and vendors, architects,
designers and developers, implementers, maintainers, regulators (including government), testers, public-at-
large, adversaries and competitors.

An AD should identify the possible impacts of the architecture on the current and future stakeholders.

Consideration shall be given to recommendations made in previous evaluations of the architecture or
of related architectures.

An AD shall include a statement of known resource limitations or other constraints that prevented the
AD from addressing identified stakeholders and architecture considerations, i.e. concerns, perspectives,
and aspects.

Non-conformances shall be identified and explained with rationales.

6.3	 Identification of stakeholder perspectives

An AD shall identify stakeholder perspectives considered relevant to the architecture of the entity of
interest and consistent with the purpose of the AD.

An AD shall associate each identified perspective with the identified stakeholders holding that
perspective.

Within the scope of the intended purpose of the AD, the architecting effort should identify present or
future stakeholder perspectives which may be relevant to the entity of interest.

For each identified perspective, an AD shall enumerate its resulting concerns from among identified
concerns (per 6.4).

EXAMPLE	 Stakeholder perspectives include: strategic, organizational, operational, logical, physical and
technological perspectives.

NOTE 1	 This document does not prescribe: the granularity of concerns; the granularity and dependencies of
stakeholder perspectives; how stakeholder perspectives relate to each other; or how stakeholder perspectives
relate to other statements about an entity such as stakeholder needs, entity goals, or entity requirements. These
issues are subjects for specific AD, ADFs, architecting methods, or other practices.

NOTE 2	 See Annex F for examples of stakeholder perspectives as used in ADFs.

6.4	 Identification of concerns

An AD shall identify the concerns considered relevant to the architecture of the entity of interest and
consistent with the purpose of the AD.

EXAMPLE	 Concerns include the following: suitability of the architecture for achieving the objectives for the
entity of interest, enterprise capability and capacity to implement the entity of interest, the feasibility of realizing
and operating the entity of interest, the potential risks and impacts of the entity of interest to its stakeholders
throughout its life cycle, added value to the stakeholder(s), reuse of known architectures, resilience, extensibility,
adaptability, latency, resource utilization, effectiveness, operability, usefulness, usability, interoperability,
complexity, sustainability and evolvability of the entity of interest, environmental impacts of the development,
use, and disposal of the entity of interest.

	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved

20

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

An AD shall associate each identified concern with the identified stakeholders holding that concern.

NOTE 1	 In general, the association of concerns with stakeholders is many-to-many.

NOTE 2	 Consideration of past, present or future concerns can be relevant to the entity of interest.

NOTE 3	 Concerns expressed as interrogative questions and with appropriate detail to the purpose of the AD
enable more efficient and effective communication.

6.5	 Identification of aspects

An AD shall identify aspects considered relevant to the architecture of the entity of interest and
consistent with the purpose of the AD.

Each identified aspect shall be associated with the concerns that apply.

EXAMPLE	 Aspects include, among others, structural, behavioural, functional, programmatic aspects.

NOTE	 This document does not prescribe: the granularity and dependencies of aspects; how aspects relate
to each other; or how aspects relate to other statements about an entity such as stakeholder needs, entity goals,
or entity requirements. These issues are subjects for specific ADs, ADFs, ADLs, architecting methods, or other
practices. See Annex F for examples of ADFs that use particular aspects and stakeholder perspectives.

6.6	 Inclusion of architecture viewpoints

An AD shall include or reference each architecture viewpoint used therein.

Each architecture viewpoint shall include version identification as specified by the organization and/
or project.

The specification of each included architecture viewpoint shall be in accordance with the provisions of
Clause 8.

Each concern identified in accordance with 6.4 shall be framed by at least one architecture viewpoint.

Each stakeholder perspective identified in accordance with 6.3 shall be associated with the architecture
viewpoints which cover that perspective.

EXAMPLE	 Function, Information, Resource, and Organization.

NOTE 1	 This document does not require the use of any particular architecture viewpoints.

NOTE 2	 Annex B and Annex C provide additional information pertaining to specification of architecture
viewpoints.

NOTE 3	 An architecture viewpoint can serve as a contract between architect and other stakeholders. For the
concerns framed by the viewpoint, architect and stakeholders can agree on what notations and representational
conventions will be used to address those concerns. This contract agreement can be made before any detailed
architecting is undertaken to reduce or avoid surprises.

6.7	 Inclusion of architecture views

An AD shall include one or more architecture views for each architecture viewpoint used.

NOTE 1	 When a viewpoint governs more than one view in a particular AD, they are describing one architecture.

EXAMPLE 1	 Several kinds of views can be described for a functional viewpoint: for example, functional chains
express the behaviour and function trees express decomposition.

Each architecture view shall include version identification as specified by the organization and/or
project.

© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

21

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

Each stakeholder perspective identified by the AD in accordance with 6.3 shall be addressed by at least
one view in accordance with the view’s governing viewpoint.

Each concern identified by the AD in accordance with 6.4 shall be addressed by at least one view in
accordance with the view's governing viewpoint.

Each architecture aspect identified by the AD in accordance with 6.5 shall be addressed by at least one
view in accordance with the view’s governing viewpoint.

Each architecture view shall adhere to the conventions of its governing architecture viewpoint. Each
architecture view may address more than one concern.

Each architecture view shall include or provide a reference for:

a)	 identifying and supplementary information as specified by the organization and/or project;

b)	 identification of its governing architecture viewpoint;

c)	 one or more view components that address all of the concerns (per 6.4) framed by its governing
architecture viewpoint (per 6.6) and that cover some or all of the entity of interest with respect to
that viewpoint; and

d)	 the recording of any known issues within a view with respect to its governing architecture
viewpoint.

NOTE 2	 “Known issues” per d) include unresolved issues, risks, exceptions and deviations from the governing
model kinds or legends. Open issues can lead to decisions to be made. Exceptions and deviations can be
documented as decision outcomes and rationale (per 6.10).

NOTE 3	 Per c), it is not necessary to require that each view covers the entire entity of interest with regard to
the purpose and scope of the AD. It can, for example, be scoped to purposely be limited to one particular portion
of the entity, sometimes by direction, sometimes by limited time or resources, or sometimes based on the narrow
scope of the architecting effort

An AD may include other information which is not part of any architecture view.

EXAMPLE 2	 Information parts not within any view could include overviews of the entity of interest,
architecture principles, architecture patterns and architecture styles whose application spans more than
one view; referenced bases for the architecture, such as domain or reference architectures; correspondences
between views; and architecture rationale. This information can assist stakeholders and other users of the AD
responsible for its maintenance and development.

6.8	 Inclusion of view components

An architecture view shall be composed of one or more view components in accordance with its
governing architecture viewpoint.

Each view component shall include version identification as specified by the organization and/or
project.

Each view component shall identify its governing model kind, if any, and adhere to the conventions of its
governing architecture viewpoint (see 6.6).

Within a view, one or more view components can be used to selectively present some or all of the
informational content required by the architecture viewpoint to highlight points of interest.

A view component may be a part of more than one architecture view. Correspondences can express the
relationships among components shared across views.

	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved

22

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

When a view component does not have a governing model kind, i.e. for an information part not described
with a model, a view component legend shall be included to specify the conventions used in that view
component.

EXAMPLE	 A view component that is a record of expert opinion, rather than a model that one can analyse
using calculations, simulation, or any other suitable analysis method.

NOTE 1	 Sharing view components between architecture views permits an AD to capture distinct but related
concerns without redundancy or repetition of the same information in multiple views and reduces possibilities
for inconsistency. Sharing of view components also permits an aspect-oriented style of AD[52]: view components
shared across architecture views can be used to express architectural perspectives; view components shared
within an architecture view can be used to express architectural textures. View components can be used as
“containers” for applying architecture patterns[27] or architecture styles to express fundamental schemes (such
as layers, three-tier, peer-to-peer and model-view-controller) within architecture views.

NOTE 2	 This document does not prescribe the level of formality of view components to be used in an AD. While
model-based view components that have a formal specification of semantics and syntax can be less ambiguous,
non-model-based view components can also be used effectively.

6.9	 Recording of architecture correspondences

6.9.1	 Consistency within an architecture description

An AD shall record any known inconsistencies.

An AD should include or reference an analysis of consistency of its architecture views, its view
components and other AD elements.

Correspondences and correspondence methods, as specified in 6.9.2 and 6.9.3, may be used to express,
record, enforce and analyse consistency between views, their view components and other AD elements
within and among ADs.

6.9.2	 Correspondences

An AD shall include or reference a list of AD element correspondences.

An AD element correspondence shall identify one or more participating AD elements.

EXAMPLE	 An AD element satisfies a Requirement as demonstrated by an Evaluation Method: TracesToDemo
(an AD Element, a Requirement, an Evaluation Method).

An AD element correspondence may involve elements within an AD or across several ADs.

An AD element correspondence shall identify any governing correspondence methods (see 6.9.3).

Each AD element correspondence shall identify the participating ADs.

NOTE	 AD element Correspondences can be used to express relations among ADs, ADFs, and ADLs. See
Zachman Framework [56] example in Annex F.

6.9.3	 Correspondence methods

An AD shall include or reference a list of correspondence methods applying to itself or its AD elements.

A correspondence method applying to one or more AD elements can originate in the AD elements, in the
AD itself; in the specification of a model kind or an architecture viewpoint used for the AD (see 8); or in
the specification of an ADF or ADL used therein (see 7).

NOTE 1	 For each applied correspondence method, an AD shall record whether the method holds (is satisfied)
or otherwise record all known violations. A correspondence method holds if an associated correspondence can
be shown to be satisfied. A correspondence method is violated if an associated correspondence cannot be shown
to be satisfied or when no associated correspondence exists.

© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

23

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

An AD shall include or reference each correspondence method applying to it.

NOTE 2	 A correspondence method applying to an AD could originate in the AD; in the specification of a
viewpoint or a model kind (see Clause 8); or in the specification of an ADF or ADL selected for use in that AD (see
Clause 7).

6.10	 Recording of architecture decisions and rationale

6.10.1	 Decision recording

An AD shall record architecture decisions considered essential to the architecture of the entity of
interest within the scope and intended purpose of the AD.

NOTE 1	 An AD expresses decisions about an architecture. Architecture rationale expresses why decisions
have been chosen.

The AD should record alternative decisions considered and rejected and the rationale for those choices.

The organization and/or project should establish a decision recording and sharing strategy and criteria
for selecting important decisions to record and support with rationale in the AD.

Decisions, among others, to consider for selection criteria are those:

—	 regarding architecturally significant requirements;

—	 needing a major investment of effort or time to make, implement or enforce;

—	 affecting key stakeholders or a number of stakeholders;

—	 addressing fundamental concerns (such as performance, evolvability, safety);

—	 necessitating intricate or non-obvious reasoning;

—	 that are highly sensitive to changes;

—	 that are likely to be costly to change;

—	 that form a base for project planning and management (such as work breakdown structure creation,
critical chain identification and management quality gate tracking);

—	 that result in the replacement of assumptions with known information;

—	 that result in significant capital expenditures or indirect costs;

—	 linked to requirement compliance;

—	 linked to technical standard selection;

—	 linked to system vulnerability mitigation.

When recording decisions, the inclusion of the following information should be considered:

—	 unique decision identification;

—	 clear statement of decision;

—	 identification of decision authority or owner;

—	 identification of constraints and assumptions that influence the decision;

—	 link decision to the concerns or aspects of an entity to which it pertains;

—	 link decision to AD elements affected by the decision;

	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved

24

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

—	 link to decision rationale;

—	 relationships to other decisions;

—	 consequences of the decision (relating to other decisions) are recorded;

—	 timestamps for when the decision occurred, when approved and when modified;

—	 source citations for additional information.

NOTE 2	 The lists of decisions are not intended to be exhaustive.

NOTE 3	 Sometimes recording rejected alternatives and their rationale for rejection is useful, e.g. when in the
future the rationale no longer applies and the decisions are necessary.

EXAMPLE	 Examples of types of relationships are: constrains, influences, enables, triggers, forces, subsumes,
refines, conflicts with, exposes, and is compatible with (See Reference [39] and Reference [60]).

Relations among decisions can be captured via correspondences or by applying correspondence
methods.

6.10.2	 Rationale recording

An AD should include or reference a rationale for each architecture viewpoint selected for use (per 6.6).

An AD should include or reference a rationale for each ADF and each ADL selected for use.

An AD shall include or reference rationale for each essential architecture decision (per 6.10.1).

An AD should include or reference evidence of consideration and rationale for selection of alternatives.

An AD should include a rationale for an AD limitation (e.g. resource problem, timing problem, and effort
avoided for well-known description already covered by other ADs).

7	 Architecture description frameworks and architecture description languages

7.1	 Specification of an architecture description framework

7.1.1	 An ADF (3.5) shall include or reference:

a)	 information identifying the ADF and its intended scope of applicability;

b)	 version identification of the ADF as specified by the organization and/or project;

c)	 one or more typical stakeholders (per 6.2);

d)	 one or more typical concerns held by typical stakeholders (per 6.4);

e)	 one or more architecture viewpoints that frame those typical concerns (per 8.1);

7.1.2	 When expected in a conforming AD, an ADF should specify:

a)	 one or more stakeholder perspectives (per 6.3);

b)	 one or more aspects (per 6.5);

c)	 definition of one or more structuring formalisms to organize viewpoints (per 5.4.2);

d)	 one or more model kinds that apply to specified architecture viewpoints (per 8.2);

e)	 definition of one or more legends that apply to specified architecture viewpoints;

© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

25

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

f)	 identification of ADLs that can be used to create views with regards to the viewpoint specification
(per 7.2);

g)	 correspondence methods (per 6.9.3);

h)	 view methods (per 8.3);

i)	 version identification as specified by the organization and/or project.

The intended scope of use can range on a scale between the very generic (all industries and application
domains and all kinds of entities of interest (EoI), and the use of the ADF for multiple purposes) through
to the very special or particular (such as intended to cover a given industry, application domain, or kind
of EoI, a particular EoI, or a particular EoI in a given stage of its life, or for a particular purpose). This
classification is similar to the genericity dimension defined as a structuring formalism in ISO 15704
(see A.4.4).

NOTE 1	 The word typical in the list above is intended to mean ‘typical in the intended scope of applicability’.

The specification of an ADF should include conditions on applicability.

EXAMPLE 1	 The following are conditions on applicability:

—	 An ADF can require an AD to identify stakeholders when the entity of interest operates within a jurisdiction
impacting their business model.

—	 An ADF can permit an AD to omit a real-time viewpoint when none of its concerns have been identified for the
entity of interest.

—	 An ADF can allow an AD to omit use of a particular model kind when no selected viewpoint uses that model
kind.

The specification of an ADF should indicate its consistency with the concepts in 5.2.

NOTE 2	 The above requirement can be met through a metamodel, a mapping of framework constructs to the
requirements in Clause 5, a text narrative, or in some other manner.

An AD that conforms to the requirements of Clause 6 adheres to a specification of an ADF when the AD
identifies and considers the applicability of each:

—	 stakeholder (per 6.2) identified by the ADF;

—	 stakeholder perspective (per 6.3) identified by the ADF;

—	 concern (per 6.4) identified by the ADF;

—	 aspect (per 6.5) identified by the ADF;

—	 architecture viewpoint (per 8.1) specified by the ADF;

—	 correspondence method (per 6.9.3) specified by the ADF.

A specification of an ADF may establish additional rules for adherence.

An AD can adhere to one or more specifications of ADFs, or to no framework specifications.

NOTE 3	 For an AD to adhere to more than one framework specification entails a reconciliation between each
framework specification’s identified stakeholders, concerns, aspects, stakeholder perspectives, architecture
viewpoints, model kinds, and correspondence methods within the AD.

	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved

26

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

An ADF may have a structuring formalism with one or more structural categories to provide ways of
representing relationships among various elements of the architecture and enhancing opportunities
for analysis of interactions among those elements.

EXAMPLE 2	 Structural categories include architectural constructs such as: domains, model kinds,
perspectives, aspects, interrogatives, levels of abstraction, subjects of concern, aspects of concern, phases, layers
and architectural tiers.

NOTE 4	 See Annex F for examples of architecture frameworks using aspects, stakeholder perspectives and
other structural categories.

7.2	 Specification of an architecture description language

The specification of an ADL shall include or reference:

a)	 identification of typical concerns (6.4) or aspects (6.5) covered by the ADL;

b)	 the identification of one or more view methods to be selected from the ADL (per 8.3);

c)	 one or more model kinds (per 8.2) implemented by the ADL for use in framing the relevant concerns
or reflect the relevant aspects;

d)	 any architecture viewpoints (per 8.1) implemented by the ADL;

e)	 any correspondence methods (per 6.9.3);

f)	 version identification as specified by the organization and/or project.

8	 Architecture viewpoints and model kinds

8.1	 Specification of an architecture viewpoint

The specification of an architecture viewpoint shall include or reference:

a)	 any stakeholder perspectives associated with this viewpoint (per 6.3);

b)	 one or more concerns (per 6.4) framed by this architecture viewpoint;

c)	 one or more aspects related to those concerns (per 6.5);

d)	 known typical stakeholders (per 6.2) holding those concerns which are framed by this architecture
viewpoint (per item b));

e)	 model kinds (per 8.2) and legends for use when constructing views (per 8.2);

f)	 correspondence methods capturing relations within resulting views and their view components
(per 6.8);

g)	 references to any sources of information about this viewpoint.

A specification of an architecture viewpoint should identify view methods (per 8.3) used to create,
interpret or analyse views governed by the associated architecture viewpoint; and one or more model
kind (per 8.2).

Each legend shall provide guidance to users in interpreting the view components which it documents.

The specification of an architecture viewpoint can use correspondence methods.

© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

27

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

The specification of an architecture viewpoint can be included as part of an AD (Clause 6), as a part of
the specification of an ADF or ADL (Clause 7) or individually using the requirements of this clause.

NOTE 1	 When a specification of an architecture viewpoint is included and applied in an AD, the typical
stakeholders of item e) are replaced by the known stakeholders identified in the AD.

NOTE 2	 This document does not require any particular specifications of architecture viewpoints to be used.

NOTE 3	 Annex B provides guidance to specification of architecture viewpoints.

8.2	 Specification of a model kind

The specification of a model kind shall include or reference:

a)	 conventions such as definition of a language, notation or modelling technique comprising the model
kind;

b)	 any view methods (per 8.3) and correspondence methods associated with the model kind;

c)	 any version identification as specified by the organization and/or project;

d)	 any sources of information about this model kind.

NOTE	 Item a) can be met in a number of ways such as with a metamodel, grammar or template for the
specification of a model kind that defines the structure and interpretation of its models (see B.2.9).

8.3	 View methods

A specification of an architecture viewpoint may include one or more view methods.

View methods shall be defined in the specifications of model kinds (see 8.2), viewpoints (see 8.1), ADLs
(see 7.2), and ADFs (see 7.1) when it is necessary to provide guidance on how views are constructed or
used.

If a model is used as an information source when creating a view, a view method should define how
AD elements will be portrayed in the view component, how model data are transformed or translated
for use in the view component and how relationships between information from different sources are
portrayed in the view component.

If a “non-model” is used as an information source when creating a view, a view method should define
how its contents are portrayed in the view component as AD elements, how the non-model-related
data are transformed or translated for use in the view component, and how relationships between
information from different sources are portrayed in the view component.

	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved

28

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

Annex A
(informative)

Notes on terms and concepts

A.1	 General

This annex discusses the principles, concepts and terms on which this document is based. Figure A.1
depicts the main concepts of AD.

Figure A.1 — Conceptual model of an architecture description

This document makes use of several terms (architecture, concern, aspect, stakeholder perspective,
architecture view, architecture viewpoint, view component, model kind) which are in wide usage with

© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

29

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

several different meanings across the community. This Annex discusses these terms, the motivations
for their definitions in this document, and contrasts these definitions with other usages.

This document defines minimal requirements on ADs to support the scope established in Clause 1. The
approach is to allow organizations maximum flexibility in applying the standard while demonstrating
conformance with the requirements in Clauses 6, 7 and 8. Given the multi-disciplinary nature of
architecting, the intent is to meet the needs of multiple stakeholders and allow different ways to
describe the architecture of an entity of interest. The organization of ADs into architecture views
governed by architecture viewpoints provides a mechanism for the separation of concerns based on
the stakeholders, while providing an integrated view of the whole entity that is fundamental to the
notion of architecture.

Establishing the quality of an architecture being described by a conforming AD (Is this a good
architecture?) or the quality of an AD itself (Is this AD complete and consistent?) are factors for the
evaluation of the AD. This document does not presume to impose conditions that are required for
quality considerations. It does recommend that results of such evaluations be recorded (per 6.2).

NOTE	 Evaluation of architectures is the subject of ISO/IEC/IEEE 42030.

A.2	 Entities and their architectures

In this document, the term architecture is intended to convey the essence or fundamentals of an entity
of interest. There are several key aspects to the definition of architecture (3.2) in this document. This
definition is chosen to encompass a variety of previous uses of the term “architecture” by recognizing
their underlying common themes. Principal among these is the need to understand and control those
elements of an entity of interest that contribute to its utility, cost, time and risk within its environment.
In some cases, the fundamental elements are physical or structural components of the entity and their
relationships. Sometimes, the fundamental elements are functional or logical elements. In other cases,
what is fundamental or essential to the understanding of an entity are its overarching principles or
patterns. Properties can also be the fundamental characteristics of an entity, its elements and their
relationships. The definition of architecture in this document is intended to encompass these distinct,
but related uses, while encouraging a more rigorous delineation of what constitutes the architecture of
an entity.

The phrase “concepts or properties” is used in the definition of architecture (3.2) to allow two differing
philosophies to use this document without prejudice. These two philosophies are:

—	 Architecture as concept: wherein architecture is a conception of an entity in one’s mind;

—	 Architecture as property: wherein architecture is a property or attribute of an entity of interest.

Empirical studies have discovered four metaphors for architecture found in organizations[59]:

—	 architecture as blueprint;

—	 architecture as literature;

—	 architecture as language;

—	 architecture as decision.

The conceptual foundation of this document does not presume any one of these metaphors; rather it
works equally well with any of them. The existence of these multiple metaphors supports a central
design tenet of this document: that architecture is inherently based upon multiple stakeholders with
multiple concerns and using multiple viewpoints and aspects.

A.3	 Concerns

This document uses the term concern to mean any topic of interest pertaining to the entity being
architected or to the architecture itself. Stakeholders, including the architect, of that subject entity hold

	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved

30

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

these concerns. Some concerns drive or relate to the architecture and therefore this document requires
their identification as a part of the AD. Concerns range over a wide spectrum of interests (including
technical, personal, developmental, technological, business, operational, organizational, political,
economic, legal, regulatory, ecological, social influences).

The motivation for using this term comes from the phrase “separation of concerns” in software and
systems engineering, coined by Edsger W. Dijkstra.

Let me try to explain to you, what to my taste is characteristic for all intelligent thinking. It is,
that one is willing to study in depth an aspect of one’s subject matter in isolation for the sake of
its own consistency, all the time knowing that one is occupying oneself only with one of the
aspects. We know that a program must be correct and we can study it from that viewpoint only;
we also know that it should be efficient and we can study its efficiency on another day, so to speak.
In another mood we may ask ourselves whether, and if so: why, the program is desirable. But
nothing is gained—on the contrary!—by tackling these various aspects simultaneously. It is what
I sometimes have called “the separation of concerns”, which, even if not perfectly possible, is yet the
only available technique for effective ordering of one's thoughts, that I know of. This is what I mean
by “focusing one’s attention upon some aspect”: it does not mean ignoring the other aspects, it is
just doing justice to the fact that from this aspect’s point of view, the other is irrelevant. It is being
one- and multiple-track minded simultaneously[30].

As specified in this document, each architecture viewpoint frames one or more concerns (see 6.6) so
that a view resulting from the application of that architecture viewpoint addresses identified concerns
for the entity of interest. Separating the treatment of concerns by views allows stakeholders to focus on
what is of special interest to them and offers a means of organizing and managing complexity of the AD
(see 6.7). The literature of enterprise, systems and software engineering records a large inventory of
such concerns. Examples are given in 5.2.3.

A.4	 Aspects and perspectives

A.4.1	 General

Historically architecting efforts were driven by the concerns of stakeholders. However, the advent
of ADFs (and to a much lesser extent ADLs) established practices that drew upon prior architecting
experience which resulted in the organizing of architecting efforts which are not necessarily driven by
concerns specific to the architecting effort in question but significantly driven by this prior experience.
This approach to architecting enabled specific concerns to be identified at a later point in time after
first building architecture views using the ADF-driven approach.

This prior experience is typically encapsulated in grid-based ADFs, typically of two dimensions, but
sometimes of three or more dimensions. While there is no uniformity in the established practice as
to what the respective rows and columns comprise, it appears there are at least two orthogonal sets
which are prevalent.

One such dimension is the “aspect.” Architects do not necessarily address all aspects simultaneously
nor even all possible aspects but tend to address them in a specific order (with iteration as appropriate)
dependent upon the architecting objectives, prior experience and any method being applied. Some
aspects may not be important for particular architecting efforts (e.g. because they are not relevant to
the architecture of interest, or its kind of architecture, or because they are not a driver for that specific
architecture).

The other dimension “stakeholder perspective,” is also fundamental and captures what an architect
does, namely employing different ways of thinking about an entity or its architecture driven e.g. by
concerns, prior experience or method.

Stakeholder perspective is driven more by architecting thinking and approach. Aspect is driven more by
what is or may be needed to be covered in an AD. Concerns form (and are amenable to being addressed
through and mapped onto) some combination of one or more aspects and one or more stakeholder
perspectives.

© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

31

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

The use of aspects and stakeholder perspectives is compatible with a more organized and disciplined
(and standardized) approach to both architecting and AD. It is noted that some architectural issues can
be direct stakeholder concerns in particular domains or circumstances. In such cases, they are usually
addressed through the mechanism of stakeholder perspectives. In other cases, they are not, but instead
can be addressed through the mechanism of aspects. This gives rise to variation in the organizing of
material employed in commonly used ADFs.

A.4.2	 Aspects

Aspects provide a way to partition the architecture to enable a more systematic examination of
the architecture’s fundamental concepts such as structure and properties, and the evaluation of
architecture alternatives. This document uses the term aspect as an organizing basis for views in an
architecture description (see 6.5). Aspects, concerns and stakeholder perspectives focus views on
cohesive sets of interests within an architecture description. Aspects, concerns and perspectives can
provide a basis for capturing many of the relevant architecture considerations with respect to the
architecture.

The aspects align with technical architecting specialities which access relevant architectural
information to be able to analyse, synthesize, assess, elaborate their particular aspect(s) and in turn
add to (i.e. develop, embellish, elaborate on, increase confidence in, etc.) the architectural information.
Examples of roles with specialities include information architects and analysts, security architects,
reliability engineers, human factors specialists, human organization experts, and cost forecasters.

EXAMPLE 1	 Spatial, structural, functional, connectivity, taxonomic, informational and roadmap aspects in an
aircraft AD.

EXAMPLE 2	 Behavioural, informational and structural aspects in a computer AD.

EXAMPLE 3	 Logical connectivity and physical connectivity aspects in a communications network AD
(corresponding to the so-called logical network and physical network depictions of a configuration of links and
nodes in the network).

Aspects are neutral with respect to any particular concern although these concerns can be mapped
to many relevant aspects. By examining the aspects of an architecture description, certain relevant
features or properties of the entity can be discerned or predicted.

Aspects often reflect domain knowledge and come from the experience of engineers and architects.
They also come from the ADFs that have found certain aspects to be useful for architecting for the
scoped domain for that framework. These aspects are also embedded in methods that are taught to
architects and encapsulated in some modelling tools.

Concerns will apply directly to what is relevant or important with regard to an entity of interest or an
architecture whereas an aspect is a part of the character or nature of the architecture entity itself.

Treating a “stakeholder concern” as the starting point for creating architecture views assumes that one
already knows a priori who the stakeholders are and what their concerns may be. In many complex
entities, this is not feasible. Some stakeholders are often not known until creation of some architecture
views for the aspects considered to be relevant and customary for the domain. When these views are
shown to potential stakeholders, then they can likely reveal to us the concerns they may have (if any)
for the implied architecture solution.

Concerns of the architect as a stakeholder will typically differ from aspects in being not as extensive
in scope and less structured in form. Over time and following review and consolidation these concerns
can become codified into aspects, usually as they apply to a specific domain of application.

Aspects can be used to examine the entity to get a more complete understanding of how the architecture
addresses that concern. Aspects can likewise aid understanding to what extent the architecture is not
addressing that concern.

The relationship between concerns and aspects can be illustrated with these examples: one can
analyse, for example, the entity’s behaviour (as an aspect) against several concerns, like: portability,

	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved

32

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

performance; or one can assess a concern such as security through analysis of, for example, behavioural,
structural and organizational aspects.

Aspects are also useful during evaluation of alternative architectures (see ISO/IEC/IEEE 42030).

The concept of aspects has been used in software development to deal with “cross-cutting concerns.”
An aspect is a feature of a program shared across by many parts of the program and unrelated to its
primary function (Kiczales et al [39]).

Non-functional properties such as performance, cost, and quality factors (like reliability, confidentiality
and resilience) are concerns that are structured using the notion of aspects (5.2.5). These non-
functional properties are often termed “-ilities” or “non-functional requirements (NFRs)”.

A.4.3	 Stakeholder perspectives

This document uses the term stakeholder perspective to mean a particular way of thinking about
an entity, especially one that is influenced by one’s beliefs or experiences. The way one thinks about
an entity (i.e. one’s perspective) can be influenced by organizational role, training, experience,
knowledge, personality, character traits, culture, peer pressure, etc. Different ways of thinking about
an architecture are often employed when architecting. (See examples in 5.2.4.)

EXAMPLE	 From UAF[48]: strategic, operational, services, personnel, resources, security, projects, standards,
actual resources. From ArchiMate[61]: strategy, business, application, technology, physical, implementation,
migration. From NAF[44]: concepts, service specifications, logical specifications, resource specifications,
architecture metadata. From DODAF[31]: capability, operational, services, systems, standards, data, and
information, projects. From ISO 15704 (GERAM): identity, concept, requirements, preliminary design, detailed
design, implementation, operation, decommissioning.

The determination of relevant stakeholder perspectives is dependent upon the interests of, and stances
adopted by, the various stakeholders that are relevant to the architecture. For a given stakeholder
perspective there are usually multiple concerns and aspects to be considered.

A.4.4	 Structuring formalisms and structural categories

An ADF can provide a structuring formalism, i.e. a set of rules for using architecture considerations and
correspondences between them, to organize the architecture viewpoints used to generate associated
views, e.g. a grid framework formalism. The purpose of the structuring formalism is to provide ways
of representing relationships among various elements of the architecture and enhancing opportunities
for analysis of interactions among those elements.

EXAMPLE 1	 Well known structuring formalisms include: GERAM cube in ISO 15704, Reference Architectural
Model Industrie 4.0 (RAMI 4.0)[34], TOGAF stack (business, information systems, technology)[62], NAF grid,[44]
UAF grid,[48] and Zachman Framework matrix[67].

In this document, this concept of framework dimensions is called “structural categories” since the way
these categories are used in various ADFs is not always aligned with the concept of “dimensions.” So,
the structural categories term is used herein since it is a broader and more inclusive concept.

An ADF can define structural categories used in the structuring formalism. Sometimes these categories
are represented by “dimensions” in a graphic portrayal, such as the rows and columns used in
several frameworks. A structuring formalism in grid form usually has two framework dimensions
but formalisms can have a single framework dimension, often segmented in a multi-layer hierarchy,
or many framework dimensions where visual representation of framework dimensions above three is
difficult.

EXAMPLE 2	 A two-dimensional grid is used as a structuring formalism by some ADFs where stakeholder
perspectives correspond to rows and aspects correspond to columns.

The structural categories (i.e. dimensions) of the formalism can include things such as domains, model
kinds, perspectives, aspects, interrogatives, levels of abstraction, subjects of concern, aspects of
concern, phases, layers, architectural tiers.

© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

33

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

Some commonly used ADFs have a two-dimensional grid or matrix to organize their specifications of
architecture viewpoints. The two-dimensional grid originated with Zachman.[67] (Today, many other
forms can be found such as cubes, stars, pentagons and ellipses.) These are examples of structuring
formalisms used on those frameworks.

The rows in these grids are the perspectives referred to in this document, although the names of
these rows in the frameworks will vary: UAF[48] calls them domains, ArchiMate[61] calls them layers,
NAF[44] calls them “subjects of concern”, GERAM in ISO 15704 has two of its three primary dimensions
representing extent of abstraction (genericity) and life cycle modelling phase. The underlying idea is
the same across these frameworks and this concept has been adopted by this document. The concept
also makes explicit that a viewpoint provides a perspective.

‘Genericity’ is a key conceptual approach from ISO 15704 that applies to an enterprise when modelling
the expression of increasingly specific concepts. ISO 15704 defines three levels of genericity: generic,
partial and particular. This genericity concept is applicable to other kinds of entities and to the notion
of ADFs as well. A progression of increasingly specific (i.e., less generic) ADFs can be used to provide
more specificity as one approaches the level of implementation of entities in the real world.

EXAMPLE 3	 One possibility is to begin with the generic ICT terminology ADF, such as concepts used in the
Zachman Framework, and transition to an ADF with more prototypical domain detail, such as UAF (with a UAF
Profile and accompanying SysML notation and semantics), which in turn can transition to an implementation-
specific ADF for a particular project using a further modelling profile extension with detail sufficient for the
particular domain specific context.

The transitions from generic through partial to particular that provide more domain-specific detail in
an ADF are useful due to reasons of quality and efficiency, since any particular project prefers to use
an ADF tailored to the application area (such as having predefined perspectives and aspects that are
common and reusable in similar projects), has previously been tested (prior success provides expertise
and knowledge), and utilizes a terminology shared among experts of the given domain.

A.4.5	 Relationship between aspect and stakeholder perspective

Stakeholder perspective and aspect are closely related and often confused. While perspective is the
way one thinks about something, aspect can be used for capturing the relevant features of the entity of
interest. An aspect of properties or concepts associated with the entity is perceived when viewing it and
thinking about it from a particular perspective. When the perspective is shifted, often the properties
or concepts are different. Likewise, when the viewing aspect is changed then different properties or
concepts about the entity can be discerned.

Aspects and stakeholders perspectives are commonly used in the ADF as a way to organize
architecture viewpoints as illustrated by the examples described in Annex F (see References [38]
[63]). An architecture view can be constructed for a particular aspect and a particular perspective.
The perspective can represent an aggregation of concerns held by one or more stakeholders. When
an architecture framework matrix or grid uses these concepts, the columns usually represent aspect-
related items and the rows usually represent perspective-related items.

A.4.6	 Complementary ADF approaches

The combination of stakeholder perspectives and aspects to conduct architecting in a manner informed
by prior experience can serve as a different and complementary approach to architecting driven by
identified stakeholders and their specific concerns (see 5.2.3). For example, using prior experience in
conducting the architecting of a similar entity situated in a similar environment, potential issues can be
identified which when raised with stakeholders give rise to real concerns.

Using established aspects from known stakeholder perspectives can be enormously helpful in reducing
architecting effort to arrive at suitable architecture viewpoints. However, architects need to exercise
care not to let these aspects and stakeholder perspectives of prior architecting effort overshadow
concerns not previously expressed nor to discount emerging concerns as the architecting project
unfolds.

	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved

34

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

The roles fulfilled by aspects and stakeholder perspectives are different. For a given perspective there
are usually multiple aspects to be considered. When the stakeholder perspective is changed, then the
properties or concepts that are perceived are different.

A.5	 Architecture views and viewpoints

The terms architecture view and architecture viewpoint are central to this document. Although
sometimes used synonymously, in this document they refer to separate and distinct concepts.

It is a goal of this document to encompass existing AD practices by providing common terminology and
concepts. Many existing practices express architectures through collections of models. Typically, these
models are further organized into cohesive groups, called views. The cohesion of a group of models or
other information is determined by the perspective taken and the concerns and aspects addressed by
that group of models and other information sources. In this document, a specification of an architecture
viewpoint refers to the conventions for expressing an architecture with respect to a given perspective,
set of concerns and aspects:

A view is a way of expressing the architecture of an entity of interest from a particular viewpoint.

The use of multiple views to express an architecture is a fundamental premise of this document. The
need for multiple views in ADs is widely recognized. While the use of multiple views is widespread,
authors differ on what views are needed, based on audience, and on appropriate methods for expressing
each view. Because of the wide range of opinion, this document does not require a predefined set of
architecture viewpoints and their specifications; it encourages the practice of defining or selecting
architecture viewpoints appropriate to the entity of interest.

A consequence of making architecture viewpoints first-class entities is that they are among the
constructs considered as AD elements.

The remainder of this subclause provides brief historical notes on the use and evolution of the term
“viewpoint” in systems and software.

The earliest use of first-class viewpoints appears in Ross’ Structured Analysis (SADT) in 1977.[53] In
requirements engineering, Nuseibeh, Kramer and Finkelstein treat viewpoints as first-class entities,
with associated attributes and operations[43]. These works inspired the formulation of architecture
viewpoints as specified in Clause 8. The term is chosen to align with the ISO Reference Model of Open
Distributed Processing (RM-ODP),[2] which uses the term in these ways:

A viewpoint (on a system) is an abstraction that yields a specification of the whole system related
to a particular set of concerns. (see ISO/IEC 10746-1:1998, 6.2.2.)

A viewpoint (on a system) is a form of abstraction achieved using a selected set of architectural
constructs and structuring rules, in order to focus on particular concerns within a system. (see
ISO/IEC 10746-2:2009, 3.2.7.)

However, where this document uses “architecture view” to refer to the application of a viewpoint to a
particular entity, RM-ODP[2] uses the term “viewpoint specification”.

A specification of an architecture viewpoint contains the conventions (such as notations, languages
and types of models) for constructing a certain kind of view. An architecture viewpoint offers a way
of looking at an entity’s architecture and provides the architect with resources for modelling an entity
with respect to the concerns framed by that viewpoint. That viewpoint can be applied to many entities.
Each view is one such application.

Every architecture view must have a specification of an architecture viewpoint specifying the
conventions for interpreting the contents of the view. In this document, legends are introduced to
document the conventions of view components.

Within an individual AD, this document requires that each view needs to be governed by an architecture
viewpoint. This means that each view conforms to one set of conventions (possibly including one or

© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

35

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

more specifications of model kinds, possibly presented in more than one way for diverse stakeholders).
In situations where there is a need to use two or more viewpoints to produce a view, a single viewpoint
can be developed by composing the two or more viewpoints which can then be used to produce the
view. Alternatively, usage of multiple viewpoints can be simply documented in the view.

In situations where there is a need to consider the whole entity of interest for the development of a
view; but the boundary of the entity is not known then, parts of the entity can become the focus from
the perspective of the concerns framed and aspects revealed by the governing architecture viewpoint.
For example, to develop a performance view of a networked entity, both network transmission delays
and processing times can be considered to produce a complete end-to-end view of the performance
of the entire entity of interest, but somethings like size, weight, power consumption, bandwidth and
throughput need not be considered.

An AD can focus on the entity of interest at a specific point of time (for example, when it is delivered
to a customer), or consider the evolution of the architecture over several time scales. Any view can be
constructed from a series of view components, each representing the entity of interest at a given point
of time, stage or phase. The composition of such view components within a view would describe how
that entity evolves over time, while still allowing the view to deal with the whole entity of interest.

There are two common approaches to the construction of views: the synthetic approach[55] and the
projective approach.[25] In the synthetic approach, the architect constructs views of the entity of
interest and integrates these views within an AD, using correspondences. In the projective approach,
an architect derives each view through some routine, possibly mechanical, procedure of extraction
from an underlying information source or set of models. This document is designed to be usable with
either of these approaches to views.

Annex B and Annex C provide further information and references pertaining to specification of
architecture viewpoints.

A.6	 Correspondences

Correspondences are used to identify or express named relations within and between AD elements.

Although many model kinds and ADLs include constructs to capture relations (such as relationships
in entity-relation-attribute diagrams, associations in UML), when an AD utilizes multiple viewpoints
and model kinds, there may not be any available way to identify and express named relations between
these diverse representations. In such cases, correspondences can be used to identify and express these
named relations.

The 2011 edition of this document introduced correspondences and correspondence rules to express
and enforce relations between AD elements. In this document, AD element is an identified or named part
of an architecture description. AD elements include stakeholders, concerns, stakeholder perspectives,
and aspects identified in an AD, and views, view components, viewpoints, and model kinds included in
an AD.

In addition, AD elements include ADs themselves and instances of the constructs introduced by
viewpoints and model kinds. Any of these AD elements can participate in relations expressed by
correspondences. Correspondences have a number of uses. They can be used to express consistency,
traceability, composition, refinement and model transformation, and dependences of any type within
and between ADs.

A survey of uses of model relations together with a taxonomy and classification of relation mechanisms
is found in Reference [26]. Correspondences can be used to meet the requirements of 6.9.1 for recording
view consistencies and inconsistencies.

In this edition, correspondence rules are generalized to correspondence methods. Correspondence
methods capture intended relationships that are to be enforced on correspondences within and
between AD elements.

	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved

36

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

The remainder of this subclause presents examples of correspondences and correspondence methods.
The features of the correspondence mechanism, in relation to similar mechanisms in the literature, are
discussed.

EXAMPLE 1	 Consider two view components in an automotive system’s AD: a software application view
component and an electronic control unit (ECU) view component. The software application view component
includes these elements: Autopilot, Dashboard (consisting of Controls, Instrument panel cluster, Center stack),
Braking, GPS, LIDAR and Sensor Fusion. The ECU view component identifies a number of ECUs, numbered
1 through 4. A correspondence, depicting the assignment of applications to ECUs, is shown in Figure A.2 as a
matrix. The form of a correspondence is not specified by this document.

Figure A.2 — Example of a correspondence

The example meets the requirement of 6.9.2: it has a unique name (“bundled on”), identifies participating
elements (the applications and ECU), and identifies an optional correspondence method (M1).

A correspondence method expresses a constraint to be enforced on correspondences. EXAMPLE 2
presents a simple correspondence method.

EXAMPLE 2	 M1: every application must be bundled onto at least one ECU.

The correspondence named “bundled on” in EXAMPLE 1 satisfies M1 because all applications are
assigned to at least one ECU.

Most correspondences will be expressed in terms of elements of views or view components, but this is
not required. EXAMPLES 3 and 4 show other forms of correspondences.

EXAMPLE 3	 Tasks Interactions: For every instance of the model kind, Tasks needs to have a refinement to an
instance of model kind Interactions.

This correspondence method can be satisfied by the correspondence shown in Figure A.3 where there
are Users, Operators and Auditors. Each task instance (view component depicted as a triangle) is
refined into an interaction instance (view component depicted with a pentagon). Alternatively, this can
be recorded as a matrix, as in EXAMPLE 1.

In EXAMPLE 3 the participants in the correspondence are not elements within view components, but
view components themselves. A correspondence can relate any AD elements (see 5.2.11 and 6.9.2);
users of this document are free to introduce other types of AD elements suited to their purposes.

Many correspondences will be binary, but this is not required. A correspondence can relate an arbitrary
number of AD elements. EXAMPLE 4 illustrates an n-ary correspondence method.

EXAMPLE 4	 View Versioning: The version identifier of each view needs to be greater than 1.5 prior to
publication of this AD.

© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

37

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

Figure A.3 — Example of a correspondence satisfying the Task-Interactions method

The term “correspondence” is chosen to align with RM-ODP. The correspondence mechanism is designed
to be compatible with view correspondences in RM-ODP[2] however, there are some differences. Notable
differences are:

a)	 The term “correspondence” is used in this document rather than “view correspondence”. In RM-
ODP, each view is homogeneous—a single viewpoint language is used per viewpoint specification.
In RM-ODP a viewpoint specification is what is referred to in this document as an architecture
view (see A.5).

b)	 This document permits heterogeneous views: each view consists of one or more view components
wherein each can utilize a different modelling convention (see 6.8). It is useful to be able to state
a correspondence between view components in different modelling languages, not just between
views. Therefore, “view correspondence” is a special case of what is needed in this document, and
that term is somewhat misleading in this more general case;

c)	 RM-ODP view correspondences express binary relations where correspondences in this document
express n-ary relations;

d)	 RM-ODP view correspondences are defined on elements of view specifications whereas
correspondences in this document do not need to refer to individual elements of models, but
arbitrary AD elements;

e)	 Correspondences and correspondence methods can be used to identify and express named relations
across ADs.

Mathematically, a correspondence is an n-ary relation. A correspondence method is an intentional
definition of an n-ary relation. Relations include 1-1 mappings (isomorphisms) and functions as special
cases, both of which are too restrictive for many applications of correspondences. Relations have useful
properties which permit composition, reasoning and allow efficient representation and manipulation
(see Reference [42] and references therein).

	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved

38

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

A.7	 Perspectives on architecture description languages

The term architecture description language (ADL) has been in use since the 1990s in the software,
systems and enterprise architecture communities. Within the conceptual model of this document, an
ADL is any language for use in describing an architecture.

Early ADLs included Rapide (Stanford),[41] Wright (CMU)[65], and Darwin[37] (Imperial College) . ADLs
focused on structural concerns: large-scale system organization expressed in terms of components,
connectors and configurations with varying support for framing behavioural concerns. More recently,
“wide-spectrum” ADLs have been developed which support a wider range of concerns. These include
Architecture Analysis and Description Language (AADL)[57], SysML,[47] and ArchiMate.[61] EXAMPLEs
1 to 3 describe some contemporary ADLs with reference to their relationship to the conceptual model
defined in this document.

Within the conceptual model of this document, an ADL is any language for use in describing an
architecture. An ADL can be used for a single model kind (e.g. Darwin[37]), multiple model kinds (e.g.
UML, Rapide, AADL), a single viewpoint (e.g. ACME[33]), or multiple viewpoints (e.g. ArchiMate, SysML).
Therefore, an ADL can be used by one or more specifications of architecture viewpoints to frame
identified concerns within an AD.

EXAMPLE 1	 ArchiMate[61] organizes ADs into several layers of concerns: Business, Application and Technology
(or Infrastructure), specifies several aspects of concerns within each of those layers: Structural, Behavioural
and Informational aspects, and defines a number of basic architecture viewpoints for these. Each architecture
viewpoint is defined via its own metamodel, relating that architecture viewpoint to others, and specifying the
stakeholders, concerns, purpose, layers and aspects.

EXAMPLE 2	 The Systems Modelling Language (SysML[47]) is built upon UML. SysML defines several types of
diagrams: Activity, Sequence, State Machine, Use Case, Block Definition, Internal Block, Package, Parametric, and
Requirement diagrams. In the terms of this document, each SysML diagram type provides a different type of
view. SysML provides first-class constructs for Stakeholders, Concerns, Views and Architecture Viewpoint so
that users can create new model kind in accordance with this document.

EXAMPLE 3	 The Unified Architecture Framework Profile (UAFP[48]) is a modelling language focused on
representation of the enterprise and includes language extensions to UML/SysML that allow the extraction
of specified and custom models from an integrated AD. The models describe the enterprise (and associated
“resources”) from a set of stakeholders’ concerns through a set of predefined architecture viewpoints,
specifications of views and associated views Given that in architecture practice multiple models would be
created separately from a number of specifications of architecture viewpoints and in multiple versions, to be
able to maintain cross-model consistency the UAFP allows the definition of constraints to express this. UAFP
is defined as a UML 2 / SysML v1.6 profile, corresponding to the actual domain concepts (UAF concepts and
relationships) separately defined in the UAF Domain Meta Model (DMM).[48] This separation allows UAF to be
used in conjunction with more than one ADF (such as DoDAF[31] or NAF,[44] for example).

An ADL frames a particular set of concerns for an audience of stakeholders, by defining one or more
model kinds together with any other methods or tools. Similar to an ADF or an architecture viewpoint,
an ADL is a reusable resource—it is not limited in use to an individual entity or AD.

© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

39

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

Annex B
(informative)

Guidelines to specification of architecture viewpoints

B.1	 General

This annex provides a template for preparing specifications of architecture viewpoints and annotated
guidelines to a sample of currently available specifications of architecture viewpoints.

B.2	 Template for documenting specification of architecture viewpoints

B.2.1	 Template overview

A template for the specification of architecture viewpoints is presented. An architecture viewpoint that
is documented in this form meets the requirements of 8.1.

The template identifies the contents of a specification of an architecture viewpoint. Each element of
the content includes its name (B.2.X), and a brief description of its intended content, and guidance for
developing that content. In some cases, additional contents are nested within top-level description
contents of the specification.

B.2.2	 Architecture viewpoint name

The name for the architecture viewpoint. If there are synonyms or other common names by which the
architecture viewpoint is known, in addition to the name of the architecture viewpoint, other common
names can be identified.

B.2.3	 Architecture viewpoint overview

An abstract or brief overview of the architecture viewpoint and the related architecture viewpoint
features.

B.2.4	 Concerns

A listing of the architecture-related concerns to be framed by this architecture viewpoint per 8.1
item b). This helps decide whether the related architecture viewpoint will be useful for modelling a
particular entity of interest.

A listing of the kinds of issues an architecture viewpoint is not appropriate for to avoid misuse. This can
be a good antidote for certain overly used viewpoints and model kinds.

B.2.5	 Stakeholder perspectives

A listing of any stakeholder perspectives associated with this architecture viewpoint [per 8.1 item b)].

B.2.6	 Aspects

A listing of the aspects refining the above concerns [per 8.1 item c)] or encompassing potential concerns.

NOTE	 The identification of concerns, stakeholder perspectives and aspects are intended to assist architects
and other stakeholders in determining the utility of this viewpoint for their entity of interest.

	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved

40

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

B.2.7	 Typical stakeholders

A listing of the stakeholders expected to be users or audiences for views prepared using this architecture
viewpoint [per 8.1 item d)].

NOTE	 When an architecture viewpoint is selected for use and applied in an AD, it is useful to document the
association of actual stakeholders with concerns framed by this viewpoint and related specification (per 6.4).

B.2.8	 Correspondence methods

A listing of any correspondence methods defined by this viewpoint or its model kinds (per 8.1, 8.2 and
6.9.3).

These methods can be applied across view components, across views within an AD or across ADs.

B.2.9	 Specification of model kinds

B.2.9.1	 General

The architecture viewpoint identifies each model kind [per 8.1 item e)].

For each model kind used, describe its conventions, language or modelling techniques. These are
key modelling resources which the specification of the architecture viewpoint makes available that
establish the vocabularies for constructing the architecture views.

This document does not require one style for documenting specifications of model kinds. A specification
of a model kind can be documented in various ways, including:

a)	 by specifying a metamodel that defines its core constructs and relationships;

b)	 by providing a template to be filled in by users;

c)	 via a language definition, modelling profile or by reference to an existing modelling language;

d)	 by some combination of these, or other means.

Guidance on methods a) to c) is provided in B.2.9.2 to B.2.9.4.

B.2.9.2	 Metamodel related to the specification of a model kind

A metamodel presents one or more constructs which are the AD elements that comprise the vocabulary
of the model kind and its specification. There are various ways of representing metamodels. The
metamodel will present:

—	 entities: What are the major sorts of elements that are present in models of this kind?

—	 attributes: What properties do entities possess in models of this kind?

—	 relationships: What relations are defined among entities in models of this kind?

—	 constraints: What kinds of constraints are there on entities, attributes and/or relationships in
models of this kind?

Within an AD, instances of entities, attributes, relationships and constraints are AD elements in the
sense of 5.2.9.

NOTE	 When specification of an architecture viewpoint specifies multiple model kinds it can be useful
to specify a single architecture viewpoint related metamodel unifying the definition of the model kinds.
Furthermore, it is often helpful to use a unified metamodel to express a set of related architecture viewpoints
(such as when defining an ADF or ADL).

© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

41

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

B.2.9.3	 Templates of specifications of model kinds

Provide a template or form specifying the format or expected content of view components governed by
this model kind specification.

Each such template, form, or their parts, can have a legend to be used when this model kind is used
within an AD.

B.2.9.4	 Language related to the specification of a model kind

Identify an existing notation or modelling language or define one that can be used when applying this
model kind in an AD. Describe its syntax, semantics, and tool support, as needed.

B.2.10	View methods

Define methods available on views. (see 5.2.10 and 8.3).

B.2.11	Examples

This subclause provides examples for users.

B.2.12	Notes

Any additional information that users of this specification may need or find helpful.

B.2.13	Sources

Identify the sources for this specification, if any, including author, history, literature references and
prior art [per 8.1 item g)].

B.3	 Resources for specifications of architecture viewpoints

The following represent some resources for well-documented specifications of architecture viewpoints.
Not all of these are documented in accordance with the requirements of this document but can be used
in an AD or included in an ADF specification in a conforming manner.

—	 Callo-Arias, America, and Avgeriou, “Defining execution viewpoints for a large and complex
software-intensive system”[27].

The source above documents an “execution viewpoint catalog” for understanding the execution of
complex software-intensive systems. The four architecture viewpoints are specified: Execution
Profile, Execution Deployment, Resource Usage and Execution Concurrency. Correspondence
methods between the architecture viewpoints are also included.

—	 Clements, et al., “Documenting Software Architectures: views and beyond”[28].

The source above provides extensive resources for defining 3 categories of specifications of
architecture viewpoints. These categories, called viewtypes, are Module, Component and
Connector and Allocation viewtypes. Within each viewtype, a number of styles are defined.

—	 Eeles and Cripps, “The Process of Software Architecting”[32].

The source above defines a process for software architects, using the IEEE 1471-2000[1] model as
a foundation. Provides a template for specifications of architecture viewpoints and architecture
viewpoint catalogues including: Requirements, Functional, Deployment, Validation, Application,
Infrastructure, Systems Management, Availability, Performance, Security; and the “work products”
(i.e. model kind specifications) for each.

	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved

42

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

—	 Architecture viewpoint Repository[64]

The website is a repository for architecture viewpoints specified by the community.

—	 Kruchten, “The ‘4+1’ view model of software architecture”[40]

The source above specifies architecture viewpoints for Logical, Development, Process and Physical
views. The resulting views are integrated via Scenarios.

—	 Rozanski and Woods, “Software Systems Architecture: Working with Stakeholders Using Viewpoints
and Perspectives”[54]

The source above defines a catalogue of architecture viewpoints: Functional, Information, Concurrency,
Development, Deployment and Operational viewpoints and perspectives (see 5.2.4): Security,
Performance and Scalability, Availability and Resilience, and Evolution perspectives for software-
intensive systems.

NOTE	 Rozanski and Woods’ perspectives do not fit the definition in this document.

© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

43

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

Annex C
(informative)

Relationship to other standards

C.1	 General

This annex illustrates how ADs created in accordance with this document can meet the requirements
of other standards. This document specifies the core terminology and the concepts usable for AD. Other
standards can use this document as a normative reference in order to define one or more architecture
viewpoints, concerns, aspects and perspectives to be used in ADs within projects and enterprises.

C.2	 Use with ISO/IEC/IEEE 42020

ISO/IEC/IEEE 42020 specifies requirements, recommendations and permissions for architecture
processes suitable for the enterprise, organization or project. In this reference document, AD is mainly
addressed by a process called “architecture elaboration”, explaining how to describe or document an
architecture in a sufficiently complete and correct manner for the intended uses of the architecture.
Nevertheless, another ISO/IEC/IEEE 42020 process, called “architecture conceptualization”, can be
undertaken to serve as the basis for an AD in order to characterize the problem space and determine
suitable solutions that address stakeholder concerns, achieve architecture objectives and meet
relevant requirements. Both architecture conceptualization and architecture elaboration are specified
in ISO/IEC/IEEE 42020 through an extensive set of activities, tasks, outcomes and work products.
Recognizing that particular projects or organizations do not need to use all of the processes specified
by this document, full conformance and tailored conformance are defined to accommodate a flexible
implementation approach to claim conformance to ISO/IEC/IEEE 42020.

C.3	 Use with ISO/IEC/IEEE 42030

ISO/IEC/IEEE 42030 provides a conceptual foundation for examining architecture related information
that can help determine facts about the architecture. It provides a generic, conceptual guiding
framework that can be used for the planning, execution, and documentation of architecture evaluations.
The elements presented can be used to determine architecture value, determine architectural
characteristics, validate whether an architecture can address evaluation criteria, validate whether
the architecture addresses current and future stakeholder needs, and also provide inputs to decisions
made at the operational and tactical levels. ISO/IEC/IEEE 42030 proposes three tiers for architecture
evaluation. The evaluation synthesis tier aids in combining results from multiple value assessments
to determine to what extent the evaluation objectives will be achieved. The value assessment tier
aids in determining the amount and kind of value a stakeholder can expect from the architecture.
The architectural analysis tier aids in examining the key attributes of an architecture, or the relevant
attributes of the architecture entity, as well as actual or potential impacts on stakeholders or on the
environment. In ISO/IEC/IEEE 42030, AD is considered to help determine the different architecture
concepts and architecture related information necessary for the purposes of architecture evaluation.
Nevertheless, AD is considered in order to determine the value due to an architecture and quality
characteristics exhibited by the entity and its architecture.

C.4	 Use with ISO 15704

ISO 15704 specifies a reference base of concepts and principles for enterprise architectures that enable
enterprise development, enterprise integration, enterprise interoperability, human understanding

	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved

44

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

and computer processing and further specifies requirements for models and languages created for
expressing such enterprise architectures.

ISO 15704 specifies those terms, concepts and principles considered necessary to address stakeholder
concerns and to carry out enterprise creation programs as well as any incremental change projects
required by the enterprise throughout the whole life of the enterprise and forms the basis by which
enterprise architecture and modelling standards can be developed or aligned.

ISO 15704 does not present or adopt specific methodologies for creating or using enterprise
architectures or models but does utilize this document as a source of some terminology and overall
characterization of an architecture description. However, the focus is on establishing a reference base
capable of supporting specific enterprise programs, rather than a design intended to fulfil the stated
requirements.

ISO 15704 identifies an extensive collection of potential artefacts for expressing an enterprise-
referencing architecture and its associated methodologies. Not all of these artefacts will be applicable,
necessary or even desirable for all architecting efforts. The identification of these artefacts assures that
this document meets the needs of the widest possible number of enterprise-referencing architecture
and methodology situations. Users of this document need to assess not only the value of generating an
identified artefact but also the value of maintaining that artefact under the changing circumstances of
the referenced enterprise.

The approach taken in ISO 15704 is the use of systems thinking and systems theory in enterprise
architecture and about how it is possible to reconcile and understand, based on a single overarching
framework, the interplay of two major enterprise change endeavours: enterprise engineering (i.e.
deliberate change) and evolutionary, organic change. This approach has stood the test of time in diverse
applications [51].

ISO 15704 is concerned with the complete life cycle architecture of entities in an enterprise context and
advocates model-based architecting and a framework to be used for organizing models of these entities.

Accordingly, a modelling framework is to provide the means (dimensions) to organize models according
to:

—	 The extent of abstraction used by the model, such as covering identity, concept, requirements,
preliminary (architectural) design, detailed design, build/implementation, operation and
decommissioning. (Note that the scope of ISO 15704 is therefore broader than architectural design.)

—	 The type of information (or aspect) about the entity as conveyed by the model (function, information,
resource, and organization), which characterizes viewpoints across extents of abstraction.

—	 The scope of information covered (models describing mission fulfilment and mission control)

—	 The scope according to the means of implementation (models describing human-implemented and
technology-implemented parts of the entity)

In addition, ISO 15704 provides a categorization of models according to a genericity-to-specificity axis.
Accordingly, in a modelling framework there is a continuum, covering

—	 Generic models that capture the semantics of concepts used across all of the dimensions of enterprise
modelling in the domain of interest. Typical representations of generic models (in increasing level
of formality) include taxonomies, meta-models, and ontological theories. The level of detail of meta-
models would vary depending on the domain (examples include ISO 19440, UAF domain meta-
model, etc.)

—	 Partial models, which are reusable, paradigmatic, typical models (or model fragments, or model
building blocks) that capture characteristics common to many enterprises within or across one

© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

45

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

or more industrial sectors. Combined with the extent of abstraction axis this provides for the
organization of models.

An important kind of partial model is a reference model, which captures the common characteristics
of a set of particular entities, such as the model of a product line, or a collection of models covering
the architecture of a product line.

NOTE	 Most ISO standards can be represented as partial models or reference models.

—	 Particular models, each describing an individual entity of interest.

An example of a modelling framework is provided in ISO 15704:2019 Annex B (GERAM) and ISO 19439,
which latter is an elaboration of GERAM’s GERA Modelling Framework (see Figure C.1).

Figure C.1 — Depiction of GERA modelling framework

Practitioners may use a tool-supported architecture modelling framework (AMF) to organize models as
above, because in this way various views of these models can be produced and packaged for stakeholder
consumption as proposed by architecture description frameworks (ADFs).

This approach is more economical than updating views and propagating the effects of such updates
across multiple views, because often the same model can be used to extract from it a multitude of
views (both in form and level of detail, according to stakeholder viewpoints); this will eliminate many
correspondence problems across views that otherwise may arise if using purely description-based
architecture views.

Another distinguishing feature of the GERAM approach is the use of recursion and iteration to manage
the complicated relationships within an enterprise and its supply chain (see Figure C.2).

	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved

46

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

Figure C.2 — Recursive use of ADs that iterate life cycle modelling phases

C.5	 Use with ISO/IEC/IEEE 12207

ISO/IEC/IEEE 12207 defines one process specifically pertaining to software architecture: architecture
definition (see ISO/IEC/IEEE 12207). The concept of architecture in this document is consistent with
the architectural design processes of ISO/IEC/IEEE 12207. However, ISO/IEC/IEEE 12207 places
requirements on an AD in addition to those of this document. Specifically, an architecture definition
needs to include an identification of the architecture entities included in the software and an allocation
of key stakeholder concerns and critical software requirements to those items.

As observed in the NOTE accompanying ISO/IEC/IEEE 12207:2017, 6.4.4.3 c) 2), architecture is not
necessarily concerned with all requirements, but rather only with those that drive the architecture,
hence the focus of the architecture definition process on the critical software requirements.

© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

47

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

The expected use of an AD can include other ISO/IEC/IEEE 12207 processes. In particular, an AD is
used to communicate the architecture to the Design Definition process and can be used to facilitate the
communications between the acquirer and the developer roles in other software life cycle processes.

An AD can conform to this document and to ISO/IEC/IEEE 12207.

C.6	 Use with ISO/IEC/IEEE 15288

ISO/IEC/IEEE 15288 defines one process specifically pertaining to system architecture: architecture
definition. The concept of architecture in this document is consistent with the architecture definition
process of ISO/IEC/IEEE 15288. However, ISO/IEC/IEEE 15288 places requirements on an AD in
addition to those herein. Specifically, an architecture definition needs to include an identification of
the architecture entities included in the system and an allocation of key stakeholder concerns and
critical system requirements to those items. These can be achieved in various ways, such as by creating
decomposition and allocation architecture viewpoints, or through use of correspondences.

As observed in the NOTE accompanying ISO/IEC/IEEE 15288:2015, 6.4.4.3 c) 2), architecture is not
necessarily concerned with all requirements, but rather only with those that drive the architecture,
hence the focus of the architecture definition process on the critical system requirements.

The expected uses of an AD can include other ISO/IEC/IEEE 15288 processes. In particular, an AD
is used to communicate the system architecture to the design definition process and can be used to
facilitate the communications between the acquirer and the developer roles in other system life cycle
processes.

An AD can conform to this document and to ISO/IEC/IEEE 15288.

C.7	 Use with open distributed processing standards

C.7.1	 General

The reference model of open distributed processing (RM-ODP)[2] defines an ADF for distributed
processing systems; systems “in which discrete components may be located in different places, or
where communication between components may suffer delay or may fail.” (see ISO/IEC 10746-2).

The RM-ODP framework defines five viewpoints for specifying ODP systems and a set of correspondences
between them.

For each viewpoint, there is an associated viewpoint language which defines “the concepts and rules
for specifying ODP systems from the corresponding viewpoint”.

An AD conforming to this document and using ISO/IEC 10746-3 would include the viewpoints defined
by ISO/IEC 10746-3 and views to implement these viewpoints. A conforming AD does not need to be
limited to the five predefined viewpoints of ISO/IEC 10746-3; the AD can include additional viewpoints
and views, as needed.

Elements of that specification specific to ADs (such as stakeholders) are omitted here since they are
particular to individual systems. Unless noted, all contents are direct quotes or close paraphrases from
ISO/IEC 10746-3.

NOTE	 ISO/IEC 19793 defines a UML profile for the specification of open distributed processing systems
using these viewpoints.

C.7.2	 Enterprise viewpoint

The enterprise viewpoint frames these concerns:

—	 the purpose, scope and policies for an ODP system;

—	 roles played by the system;

	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved

48

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

—	 activities undertaken by the system;

—	 policy statements about the system.

In the enterprise language, an ODP system and its environment are represented as a community of
objects. The community is defined in terms of:

—	 enterprise objects comprising the community;

—	 roles fulfilled by each of those objects;

—	 policies governing interactions between enterprise objects fulfilling roles;

—	 policies governing the creation, usage and deletion of resources by enterprise objects fulfilling
roles;

—	 policies governing the configuration of enterprise objects and assignment of roles to enterprise
objects;

—	 policies relating to environment contracts governing the system.

NOTE 1	 Roles constrain the behaviour of the objects that fulfil them.

NOTE 2	 Policies are defined in terms of permissions, obligations, and prohibitions.

NOTE 3	 The enterprise language is defined in ISO/IEC 15414.

C.7.3	 Information viewpoint

The information viewpoint frames these concerns: the semantics of information and information
processing in an ODP system.

The information language is defined in terms of three schemata:

—	 invariant schema: predicates on objects which always need to be true;

—	 static schema: state of one or more objects at some point in time;

—	 dynamic schema: allowable state changes of one or more objects.

C.7.4	 Computational viewpoint

The computational viewpoint frames these concerns: a functional decomposition of the system into
objects which interact at interfaces.

The computational language covers concepts for specifying:

—	 computational objects;

—	 interfaces to objects and interface definitions;

—	 interactions at interfaces, as either operations or continuous streams;

—	 implicit and explicit bindings and compound binding objects.

C.7.5	 Engineering viewpoint

The engineering viewpoint frames these concerns: the mechanisms and functions required to support
distributed interaction between objects in the system.

The engineering language includes concepts for specifying:

—	 configurations of engineering objects for management purposes, including nodes (for resources),
capsules (for protection) and clusters (for activation);

© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

49

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

—	 the structure of communication channels that connect engineering objects, in terms of stubs,
binders, protocols and interceptors;

—	 templates for providing required transparencies, such as migration, relocation, replication and
failure transparencies.

C.7.6	 Technology viewpoint

The technology viewpoint frames these concerns: the selection of implementable standards for the
system, their implementation and testing.

The technology language includes concepts to:

—	 capture the choice of technology to be used, in terms of the selection of existing standards or
domain-specific specifications for these technologies;

—	 express how the specifications for an ODP system are implemented;

—	 provide support for testing.

	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved

50

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

Annex D
(informative)

Uses of architecture descriptions

D.1	 General

ADs can be used in a variety of settings and life cycle models. This annex illustrates a few uses of ADs
throughout the life cycle of their entities of interest.

D.2	 Uses of architecture descriptions

Uses for ADs include, but are not limited to:

a)	 as basis for entity design and development activities;

b)	 as basis to analyse and evaluate alternative implementations of an architecture;

c)	 as development and maintenance documentation;

d)	 to support informed technical, investment or other strategic decisions, to reduce or mitigate
attendant risk;

e)	 documenting essential features of an entity of interest, such as:

1)	 intended use and environment;

2)	 principles, assumptions and constraints to guide future change;

3)	 points of flexibility or limitations of the entity with respect to future changes;

4)	 architecture decisions, their rationales and implications;

5)	 recording its architecture styles;

f)	 as input to automated tools for simulation, system generation and analysis;

g)	 specifying a group or family of entities sharing common features (such as can be codified as a
reference architecture, reference model or product line architecture);

h)	 communicating among parties involved in the development, production, deployment, operation
and maintenance of an entity of interest streamlining the flow from architecture and system
engineering to development;

i)	 as basis for preparation of acquisition documents (such as requests for proposal and statements of
work);

j)	 communicating among clients, acquirers, suppliers and developers as a part of contract negotiations;

k)	 documenting the characteristics, features and design of an entity for potential clients, acquirers,
owners, operators and integrators;

l)	 planning for transition from a legacy architecture to a new architecture;

m)	 as guide to operational and infrastructure support and configuration management;

n)	 as support to life cycle planning, scheduling and budgeting activities;

© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

51

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

o)	 establishing criteria for certifying implementations for compliance with an architecture;

p)	 as compliance mechanism to external, program-, project- or organization-specific policies (for
example legislation, or overarching architecture principles adopted by governance);

q)	 as basis for review, analysis, and evaluation of the entity throughout its life cycle;

r)	 as basis to analyse and evaluate alternative architectures;

s)	 sharing lessons learned and reusing architectural knowledge through definition of architecture
viewpoints, architecture patterns and architecture styles;

t)	 training and education of stakeholders and other parties on best practices in architecting and
evolution;

u)	 as evidence for entity functional and non-functional properties;

v)	 scenario-based simulation.

NOTE	 Annex C discusses the use of ADs in the context of other standards.

	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved

52

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

Annex E
(informative)

Architecture and architecture description life cycles

E.1	 General

ADs can be used in a variety of settings and life cycle models. This annex illustrates a few concepts
pertaining to architecture life cycles and AD life cycles.

E.2	 Architecting in the life cycle

Architecting contributes to the conceptualization, development, operation and maintenance of an
entity from its initial conception through its operation, refurbishment or final retirement from use, and
eventual disposal.

Architecting can take place throughout the life cycle of the entity, not necessarily only within the early
stage of its life. Therefore, an entity’s architecture potentially influences processes throughout the
entity’s life cycle. While it is expected that the architecture of an entity remains stable over a longer
period, from time to time the architecture of the entity (or a part of the entity) can incrementally evolve.
Less frequently an entity can go through a significant transformation, with necessary re-architecting
being performed.

ADs are the work products resulting from the execution of architecting efforts to transmit, share
and record the architecture of the entity and associated decisions across the life cycle. The original
and subsequent (incremental or extensive) architecting efforts communicate and document the
outcome from using ADs. The status and history of solution alternatives and versions are expressed as
architecture descriptions.

NOTE 1	 ISO/IEC/IEEE 15288 and ISO/IEC/IEEE 12207 describes the architecture definition process.
ISO/IEC/IEEE 42020 complements this definition toward a complete set of architecture processes in support of
architecting efforts.

The developed models and other information parts, as well as the ADs themselves, each have their
own life cycle. During architecture development the need for the architecture is identified, the
architecture concepts are defined, its details are elaborated, trade-offs and possible realizations are
analysed, evaluated and approved, and released for use, then utilized. Later the AD can be updated, and
new versions released. Ideally the stages of utilization are long and stable, because of the efficiencies
achieved by using a shared architecture in the life cycle of multiple entities. Therefore, the architecture
of the entity(ies) of interest has its own life cycle.

Conversely, the life cycle of any entity is fundamentally influenced by the life cycle of its architecture.
For example, investment decisions to create a project to develop a system of systems based upon the
existing systems in a service ecosystem heavily depend on the existence of a stable, trusted, shared and
agreed-upon architecture of its integrating infrastructure. When planning the life cycle stages of an
entity, the plan will take into account the predicted life cycle stages of the chosen architecture.

The process of architecting involves thinking about the entity of interest from multiple perspectives,
and these perspectives correspond to life cycle phase activities. For example, the architect will consider
the entity from the business perspective, including the entity’s identity, as well as the concept of the
entity (such as its role in the market, the capabilities, the relationships to the business context, and the
policies and principles that need to govern the solution). The architect will also consider the high-level
requirements that the entity needs to satisfy (functional and non-functional requirements), and from
the business analyst’s perspective translate this to a specification. The architect will also translate

© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

53

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

these requirements to an architectural solution, which is a preliminary design of the entity of interest
and prepare the solution for evaluation.

The phases (identity definition, concept development, requirements definition, preliminary design, as
defined in ISO 15704) are activity types that are normally iterated within the architecture development
stage (as defined in ISO/IEC/IEEE 15288 and ISO/IEC/IEEE 12207) until the relevant stakeholder
questions can all be addressed in a satisfactory manner. The concept of phase is therefore referring to
a type of activity, whereupon instances of that activity are repeated as necessary during a stage and
typically across multiple future stages of the entity’s life.

The need for iterations depends on multiple factors, such as the innovation content of the architecture
development, skills and maturity of the organization, the availability of reference architectures or
patterns that can be reused, and the methodology used.

It is typical for architecture development to be performed in the organizational setting of a project or
program, in which case the program and its projects need to be architected as well, as entities in their
own right. The same is true in the setting of systems of systems and of supporting systems (as defined
in ISO/IEC/IEEE 15288 and ISO/IEC/IEEE 24748-1), each of these systems are implemented as entities
that would need to be architected if not pre-existing.

In the process of architecture development architects must engage in two-way communication with
stakeholders – both for getting informed and to inform. Work products incorporate various information
parts (more and more often various models), which then form the basis of creating ADs that are in a
form that stakeholders and architects mutually understand and that satisfy the goal of architecting as
defined by architecture governance and management.

This document does not depend upon, assume or prescribe any particular life cycle.

NOTE 2	 Annex C demonstrates how this document can be used when applying the life cycle processes of
ISO/IEC/IEEE 12207 and ISO/IEC/IEEE 15288. ISO/IEC/IEEE 42020 specifies a set of processes for architecting,
and for architecture governance, management, and enablement within the context of a life cycle.

	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved

54

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

Annex F
(informative)

Architecture description frameworks

F.1	 General

This annex provides examples of ADFs and the way they use the concepts defined in 5.4.2 (see Figure 6).
Each of them conforms to applicable requirements of 7.1.

F.2	 Evolution of ADFs

In systems and software engineering, the notion of ADF dates back to the 1970s.[31][67][29] The motivation
for definition of the term (3.5) and its specification (see 7.1) in this document is to provide a means
of evolving existing and future ADFs in a uniform manner to promote sharing of information about
entities, architectures and techniques for AD, better uniformity to enable improved understanding of
the architectures being described, and interoperability between architecture communities who use
different conceptual foundations. The uniform definition of architecture viewpoints and coordinated
collections of associated specifications can promote reuse of tools and techniques by the communities
using these frameworks.

The specification of ADF is intended to establish the relationships between an ADF and other concepts
in this document (illustrated in Figure 2 and Figure 6). ADFs often include additional content,
prescriptions and relationships, such as process guidance, life cycle connections, and documentation
formats, not defined by this document. These are potential future areas of standardization.

F.3	 ADF concepts

F.3.1	 ADF domains

Various architecture frameworks have been in existence over a few decades.

EXAMPLE	 GERA Framework provided by ISO 15704, Industrial Internet Architecture Framework,[36]
Kruchten’s “4+1” view model,[40] NATO Architecture Framework (NAF),[44] US Department of Defence
Architecture Framework (DoDAF),[31] OASIS - Reference Architecture Foundation for Service Oriented
Architecture,[45] Reference Model for Open Distributed Processing (RM-ODP),[2][3][4] The Open Group’s
Architecture Framework(TOGAF),[62] OMG’s Unified Architecture Framework,[48] and Zachman’s information
systems architecture framework[67].

NOTE	 GERAM provides an ADF for an enterprise architecture modelling activity and is therefore a modelling
framework covering the whole of life for an entity of interest.

Most of them are dedicated to creating ADs in different domains like:

—	 Zachman[67] and TOGAF[62] for information systems;

—	 Kruchten’s “4+1” view model[40] for software;

—	 NAF,[44] DoDAF[31] and UAF[48] for enterprises and systems of systems;

—	 GERA (ISO 15704) for enterprise modelling of socio-technical systems of systems, e.g. industrial
automation, transformation, critical infrastructure.

© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

55

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

F.3.2	 Identification of stakeholders and definition of their perspectives

Some ADFs like Zachman[67] clearly identify typical stakeholders like: Planner, Owner, Designer, Builder,
Implementer and User.

Others identify stages in the AD related to a class of typical stakeholders like: The Open Group’s
Architecture Framework (TOGAF),[62] with Business Architecture, Information System Architecture
and Technology Architecture.

Others identify stakeholder perspectives like:

—	 UAF[48] with “domains”: Architecture Management, Strategic, Operational, Services, Personnel,
Resources, Security, Projects, Standards, and Actual Resources;

—	 ArchiMate[61] with “layers”: Strategy, Business, Application, Technology, Physical, Implementation,
and Migration;

—	 NAF[44] with “subjects of concerns”: concept specification, service specification, logical specification,
physical resource specification, and architecture meta-data;

—	 DoDAF[31] with “viewpoints”: Capability, Operational, Services, Systems, Standards, and Data and
Information;

—	 GERA (ISO 15704) with “levels of abstraction” or “life cycle phases”: Identity, concept, requirements,
preliminary design, detailed design, implementation, operation and decommissioning.

F.3.3	 Definition of aspects

ADFs organize the properties and features of architecture models and views in various ways, such as:

—	 Zachman[67] with “interrogatives”: What, How, Where, Who, Where, Why;

—	 NAF[44] with “aspects of concerns”: Taxonomy, Structure, Connectivity, Processes, States, Sequences,
Information, Constraints and Roadmap;

—	 UAF[48] with “model kinds”: Motivation, Taxonomy, Structure, Connectivity, Processes, States,
Sequences, Information, Parameters, Constraints, Roadmap and Traceability.

ADFs attempt to generalize or harmonize multiple particular ADs to offer guidance for creation of new
particular cases by specifying generic stakeholder perspectives and generic aspects (see Zachman[67]
[66] and others).

F.3.4	 Specification of architecture viewpoint

An ADF generally specifies architecture viewpoints providing specifications of model kinds to frame
typical concerns and to govern the architecture views and ease understanding of the legends.

EXAMPLE	 Reference Model for Open distributed (RM-ODP)[3] defines the following concepts:
enterprise, information, computational, engineering and technology viewpoint specifications.

ADFs often utilize one or more structural categories to represent distribution of architecture viewpoints
in a two-dimensional grid or matrix. See References [38][63] for example. There are some ADFs, such
as GERA (ISO 15704) and SABSA[56], which use three or more categories to convey the complexity of
describing architectures.

F.3.5	 Specification of formalisms and languages

Generally the ADFs define their formalism for constructing models with a metamodel: like DoDAF’s[31]
DoDAF Metamodel (DM2), UAF’s[48][48] Domain Metamodel (DMM), and NAF’s[44] metamodel (MM).

	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved

56

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

Some of them also provide languages, which can be used to implement the formalism, like:

—	 UAF[48][48] with its Profile;

—	 ArchiMate modelling language[61];

—	 Constructs for enterprise modelling (ISO 19440).

F.4	 Compliance with ADF requirements

Currently none of the ADF fully comply with all the requirements itemized in 7.1. Nevertheless, each of
the items is addressed by several of the ADF and all these items are considered as necessary in an AD.
Consequently, the provisions in 7.1 provide areas for improvement for these frameworks.

Table F.1 and Table F.2 show an interpretation of how some of the published ADFs comply with 7.1
requirements.

NOTE	 In Table F.1 and Table F.2 “Partial” means that the requirement is fulfilled to some degree but is not
expressed with explicit wording. “Yes” is used when the requirement is met. “No” states that the requirement is
not addressed.

Table F.1 — ADF requirements compliance (1/2)

 GERA (ISO 15704) RM-ODP[2] Zachman[67] TOGAF[62]

Information identi-
fying the ADF

Implementation depend-
ent

Implementation
dependent Yes Yes

Stakeholder identifi-
cation Organization viewpoint No Yes No

Concern identifica-
tion

Covered by identification,
concept and requirements

life cycle phases
Yes

(in Viewpoints) Partial Partial

Aspects Aspect-oriented views No Called “interroga-
tives” No

Stakeholder per-
spectives

Covered by identification,
concept and requirements

life cycle phases
No Yes Called “phases”

Formalism GERAM Metamodel UML Profile No No

Architecture View-
point

Aspect-oriented view-
points

Viewpoint specifi-
cation or viewpoint

language
Partial No

Model kinds Criteria explained One per viewpoint Partial Partial
Legends and corre-
spondence methods Partial Formalized Partial Partial

Framework methods GERAM No Partial TOGAF/ADM

Table F.2 — ADF requirements compliance (2/2)

 UAF[48] NAF[44] DoDAF[31] ArchiMate[61]

Information identi-
fying the ADF Yes Yes Yes Yes

Stakeholder identifi-
cation

Yes (in view specifica-
tions) No No

Yes (as part of
the "Motivation

Elements")
Concern identifica-

tion
Yes (in view specifica-

tions) Partial Partial Yes (in View-
points)

© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

57

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

 UAF[48] NAF[44] DoDAF[31] ArchiMate[61]

Aspects Called “Model kinds” Called “Aspects of
concerns” No Called “Aspects”

Stakeholder per-
spectives Called “domains” Called “subjects of

concerns”
Called “view-

points” Called “Layers”

Formalism Domain metamodel
(DMM) and a Profile NAF metamodels DM2 metamodel ArchiMate Speci-

fication
Architecture View-

point
Called “view specifica-

tions” within a Grid
Called “viewpoints”

within a Grid Called “Models” Called “viewpoint
mechanism”

Model kinds
Recommended imple-

mentations in UAF Pro-
file’s view specifications

Partial Partial ArchiMate Speci-
fication

Legends and corre-
spondence methods Partial Partial Partial Partial

Framework methods No NAF Chapter 2 6 Step Approach No

Table F.2 (continued)Table F.2 (continued)

	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved

58

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

Bibliography

[1]	 IEEE 1471:2000, IEEE Recommended Practice for Architectural Description for Software-Intensive
Systems

[2]	 ISO/IEC 10746-1, Information technology — Open Distributed Processing — Reference model:
Overview — Part 1:

[3]	 ISO/IEC 10746-2, Information technology — Open distributed processing — Reference model:
Foundations — Part 2:

[4]	 ISO/IEC 10746-3, Information technology — Open distributed processing — Reference model:
Architecture — Part 3:

[5]	 ISO/IEC/IEEE 12207:2017, Systems and software engineering — Software life cycle processes

[6]	 ISO/IEC/IEEE 15288:2015, Systems and software engineering — System life cycle processes

[7]	 ISO/IEC/IEEE 15289:2019, Systems and software engineering — Content of life-cycle information
items (documentation)

[8]	 ISO/IEC 15414, Information technology — Open distributed processing — Reference model —
Enterprise language

[9]	 ISO 15704:2019, Enterprise modelling and architecture — Requirements for enterprise-referencing
architectures and methodologies

[10]	 ISO 19439:2006, Enterprise integration — Framework for enterprise modelling

[11]	 ISO 19440:2020, Enterprise modelling and architecture — Constructs for enterprise modelling

[12]	 ISO/PAS 19450:2015, Automation systems and integration — Object-Process Methodology

[13]	 ISO/IEC 19793:2015, Information technology — Open Distributed Processing — Use of UML for
ODP system specifications

[14]	 ISO/IEC 20246:2017, Software and systems engineering — Work product reviews

[15]	 ISO/IEC/IEEE 24748-1:2018, Systems and software engineering — Life cycle management — Part
1: Guidelines for life cycle management

[16]	 ISO/IEC/IEEE 24765:2017, Systems and software engineering — Vocabulary

[17]	 ISO/IEC 25010:2011, Systems and software engineering — Systems and software Quality
Requirements and Evaluation (SQuaRE) — System and software quality models

[18]	 ISO/IEC 25012:2008, Software engineering — Software product Quality Requirements and
Evaluation (SQuaRE) — Data quality model

[19]	 ISO/IEC 25024:2015, Systems and software engineering — Systems and software Quality
Requirements and Evaluation (SQuaRE) — Measurement of data quality

[20]	 ISO/IEC 33001:2015, Information technology — Process assessment — Concepts and terminology

[21]	 ISO/IEC TS 33060:2020, Information technology — Process assessment — Process assessment
model for system life cycle processes

[22]	 ISO/IEC/IEEE 42010:2011, Systems and software engineering — Architecture description

[23]	 ISO/IEC/IEEE 42020:2019, Software, systems and enterprise — Architecture processes

© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

59

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 42010:2022(E)

[24]	 ISO/IEC/IEEE 42030:2019, Software, systems and enterprise — Architecture evaluation framework

[25]	 Atkinson C., Gerbig R., Tunjic C., “A multi-level modelling environment for SUM-based
software engineering”, Proceedings of the 1st Workshop on View-Based, Aspect-Oriented and
Orthographic Software Modelling (VAO '13), ACM Press, 2013

[26]	 Boucké N., Composition and relations of architectural models supported by an architectural
description language. Doctoral dissertation, Katholieke Universiteit Leuven, October 2009

[27]	 Callo-Arias T.B., America P., Avgeriou P., “Defining execution viewpoints for a large and
complex software-intensive system”, Proceedings of WICSA/ECSA 2009

[28]	 Clements P., Bachmann F., Bass L., Garlan D., Ivers J., Little R. et al., Documenting
Software Architectures: Views and Beyond. Addison-Wesley, Boston, 2002

[29]	 Darnton G., Giacoletto S., Information in the Enterprise. Digital Press, Burlington, MA,
1992

[30]	 Dijkstra E.W., On the role of scientific thought. 1974. https://​www​.cs​.utexas​.edu/​users/​EWD/​
transcriptions/​EWD04xx/​EWD447​.html

[31]	 DoD Architecture Framework, version 2.02, https://​dodcio​.defense​.gov/​library/​dod​
-architecture​-framework/​

[32]	 Eeles P., Cripps P., The Process of Software Architecting. Addison Wesley, 2010

[33]	 Garlan D., Monroe R.T., Wile D., ACME: An Architecture Description Interchange, Proceedings
of the 1997 conference of the Centre for Advanced Studies on Collaborative research, 7-22.

[34]	 Heidel R., The Reference Architecture Model RAMI 4.0 and the Industrie 4.0 component, 2019

[35]	 Hilliard R., “Viewpoint modelling”, First ICSE Workshop on Describing Software Architecture
with UML, May 2001

[36]	 Industrial Internet Architecture Framework https://​www​.iiconsortium​.org/​

[37]	 Magee J., Kramer J., Dynamic structure in software architectures, ACM SIGSOFT Foundations
of Software Engineering (FSE), pages 3-14, 1996, Conference Sa Francisco CA October 16-18,
1996

[38]	 Josey A, Lankhorst M, Band I, Jonkers H, Quartel D., “An Introduction to the ArchiMate®
3.0 Specification”, June 2016

[39]	 Kiczales G., Lamping J., Menhdhekar A., Maeda C., Lopes C., Loingtier J.M. et al., Aspect-
oriented programming. In Akșit, M., Matsuoka, S., eds.: Proceedings European Conference on
Object-Oriented Programming. Volume 1241. Springer-Verlag, Berlin, Heidelberg, and New York
(1997) 220–242

[40]	 Kruchten P.B., The ‘4+1’ View Model of Architecture. IEEE Softw. 1995, 12 (6) pp. 45–50

[41]	 Luckham D.C., Kenney J.J., Augustin L.M., Vera J., Bryan D., Mann W., Specification and
analysis of system architecture using Rapide. IEEE Trans. Softw. Eng. 1995 April, 21 (4) pp. 336–
355

[42]	 Muskens J., Bril R.J., Chaudron M.R.V., “Generalizing consistency checking between software
views”, Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture
(WICSA’05), 169–180, Washington, DC: IEEE Computer Society, 2005

[43]	 Nuseibeh B., Kramer J., Finkelstein A., A framework for expressing the relationships between
multiple views in requirements specification. IEEE Trans. Softw. Eng. 1994, 20 (10) pp. 760–773

[44]	 NATO. Architecture Framework version 4, https://​www​.nato​.int/​cps/​en/​natohq/​topics​_157575​
.htm

	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved

60

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html
https://dodcio.defense.gov/library/dod-architecture-framework/
https://dodcio.defense.gov/library/dod-architecture-framework/
https://www.iiconsortium.org/
https://www.nato.int/cps/en/natohq/topics_157575.htm
https://www.nato.int/cps/en/natohq/topics_157575.htm

ISO/IEC/IEEE 42010:2022(E)

[45]	 OASIS, Reference Architecture Foundation for Service Oriented Architecture Version 1.0

[46]	 OMG Business Process Model and Notation (BPMN™), https://​www​.omg​.org/​spec/​BPMN/​About​
-BPMN/​

[47]	 Systems Modelling Language Object Management Group https://​www​.omg​.org/​spec/​SysML/​
About​-SysML/​

[48]	 Unified Architecture Framework Object Management Group https://​www​.omg​.org/​spec/​
UAF/​About​-UAF/​

[49]	 Unified Modelling Language Object Management Group , (UML®), https://​www​.omg​.org/​
spec/​UML/​About​-UML/​

[50]	 OMG UML Profile for DoDAF/MODAF https://​www​.omg​.org/​updm/​

[51]	 Bernus Peter, Richard Martin, Ovidiu Noran, and Arturo Molina. IFIP WG5.12 Architectures for
Enterprise Integration: Twenty-Five Years of the GERAM Framework, in Goedicke M. et al., (Eds.):
Advancing Research in Information and Communication Technology, IFIP AICT 600, pp. 1–24,
2021. https://​doi​.org/​10​.1007/​978​-3​-030​-81701​-5​_10

[52]	 Ran A., “ARES Conceptual Framework for Software Architecture”, M. Jazayeri, A. Ran, and F. van
der Linden (eds.), Software Architecture for Product Families Principles and Practice, Boston:
Addison-Wesley, 1–29, 2000

[53]	 Ross D.T., Structured Analysis (SA): a language for communicating ideas. IEEE Trans. Softw.
Eng. 1977, SE-3 (1) pp. 16–34

[54]	 Rozanski N., Woods E., Software Systems Architecture: Working with Stakeholders Using
Viewpoints and Perspectives. Addison-Wesley, 2005

[55]	 Sabetzadeh M., Finkelstein A., Goedicke M., “Viewpoints”, P. Laplante (ed.), Encyclopedia of
Software Engineering, Taylor and Francis, 2010

[56]	 SABSA Institute Resource, The SABSA White Paper, W100, Published 2009

[57]	 Society of Automotive Engineers, Architecture Analysis & Design Language, http://​www​
.aadl​.info/​

[58]	 Shaw M., Prospects for an engineering discipline of software. IEEE Softw. 1990 November

[59]	 Smolander K., “Four Metaphors of Architecture in Software Organizations: Finding out The
Meaning of Architecture in Practice”, Proceedings of the 2002 International Symposium on
Empirical Software Engineering (ISESE’02)

[60]	 ISO/IEC/IEEE 31320-1:2012, Information technology — Modeling Languages — Part 1: Syntax and
Semantics for IDEF0

[61]	 The Open Group, ArchiMate Specification, https://​www​.opengroup​.org/​archimate​-forum/​
archimate​-overview

[62]	 The Open Group Architecture Framework (TOGAF) https://​www​.opengroup​.org/​togaf/​

[63]	 Unified Architecture Method (UAM) https://​www​.unified​-am​.com/​UAM/​index​.htm

[64]	 Viewpoints Repository for ISO/IEC/IEEE 42010, http://​www​.iso​-architecture​.org/​viewpoints/​

[65]	 Wright ADL website, http://​www​.cs​.cmu​.edu/​~able/​wright/​

[66]	 XP Z67-140 Information Technology –ARCADIA– Method for Systems Engineering supported
by its conceptual modelling language –General Description– Specification of the engineering
definition method and the modelling language, AFNOR

© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

61

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

https://www.omg.org/spec/BPMN/About-BPMN/
https://www.omg.org/spec/BPMN/About-BPMN/
https://www.omg.org/spec/SysML/About-SysML/
https://www.omg.org/spec/SysML/About-SysML/
https://www.omg.org/spec/UAF/About-UAF/
https://www.omg.org/spec/UAF/About-UAF/
https://www.omg.org/spec/UML/About-UML/
https://www.omg.org/spec/UML/About-UML/
https://www.omg.org/updm/
https://doi.org/
http://www.aadl.info/
http://www.aadl.info/
https://www.opengroup.org/archimate-forum/archimate-overview
https://www.opengroup.org/archimate-forum/archimate-overview
https://www.opengroup.org/togaf/
https://www.unified-am.com/UAM/index.htm
http://www.iso-architecture.org/viewpoints/
http://www.cs.cmu.edu/~able/wright/

ISO/IEC/IEEE 42010:2022(E)

[67]	 Zachman J.A., A Framework for Information Systems Architecture. IBM Syst. J. 1987, 26 (3)

	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved

62

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

63

ISO/IEC/IEEE 42010:2022(E)

IEEE Notices and Abstract

Important Notices and Disclaimers Concerning IEEE Standards Documents

IEEE Standards documents are made available for use subject to important notices
and legal disclaimers. These notices and disclaimers, or a reference to this page
(https://​standards​.ieee​.org/​ipr/​disclaimers​.html), appear in all standards and may be found under the
heading “Important Notices and Disclaimers Concerning IEEE Standards Documents.”

Notice and Disclaimer of Liability Concerning the Use of IEEE Standards Documents

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating
Committees of the IEEE Standards Association (IEEE SA) Standards Board. IEEE develops its standards
through an accredited consensus development process, which brings together volunteers representing
varied viewpoints and interests to achieve the final product. IEEE Standards are documents developed
by volunteers with scientific, academic, and industry-based expertise in technical working groups.
Volunteers are not necessarily members of IEEE or IEEE SA, and participate without compensation from
IEEE. While IEEE administers the process and establishes rules to promote fairness in the consensus
development process, IEEE does not independently evaluate, test, or verify the accuracy of any of the
information or the soundness of any judgments contained in its standards.

IEEE does not warrant or represent the accuracy or completeness of the material contained in its
standards, and expressly disclaims all warranties (express, implied and statutory) not included in
this or any other document relating to the standard, including, but not limited to, the warranties of:
merchantability; fitness for a particular purpose; non-infringement; and quality, accuracy, effectiveness,
currency, or completeness of material. In addition, IEEE disclaims any and all conditions relating to
results and workmanlike effort. In addition, IEEE does not warrant or represent that the use of the
material contained in its standards is free from patent infringement. IEEE Standards documents are
supplied “AS IS” and “WITH ALL FAULTS.”

Use of an IEEE standard is wholly voluntary. The existence of an IEEE Standard does not imply that
there are no other ways to produce, test, measure, purchase, market, or provide other goods and
services related to the scope of the IEEE standard. Furthermore, the viewpoint expressed at the time a
standard is approved and issued is subject to change brought about through developments in the state
of the art and comments received from users of the standard.

In publishing and making its standards available, IEEE is not suggesting or rendering professional or
other services for, or on behalf of, any person or entity, nor is IEEE undertaking to perform any duty
owed by any other person or entity to another. Any person utilizing any IEEE Standards document,
should rely upon his or her own independent judgment in the exercise of reasonable care in any given
circumstances or, as appropriate, seek the advice of a competent professional in determining the
appropriateness of a given IEEE standard.

IN NO EVENT SHALL IEEE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO: THE NEED
TO PROCURE SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE PUBLICATION, USE OF, OR RELIANCE UPON ANY STANDARD, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE AND REGARDLESS OF WHETHER SUCH DAMAGE WAS FORESEEABLE.

Translations

The IEEE consensus development process involves the review of documents in English only. In the event
that an IEEE standard is translated, only the English version published by IEEE is the approved IEEE
standard.

© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

https://standards.ieee.org/ipr/disclaimers.html

64

ISO/IEC/IEEE 42010:2022(E)

Official statements
A statement, written or oral, that is not processed in accordance with the IEEE SA Standards Board
Operations Manual shall not be considered or inferred to be the official position of IEEE or any of
its committees and shall not be considered to be, nor be relied upon as, a formal position of IEEE. At
lectures, symposia, seminars, or educational courses, an individual presenting information on IEEE
standards shall make it clear that the presenter’s views should be considered the personal views of that
individual rather than the formal position of IEEE, IEEE SA, the Standards Committee, or the Working
Group.

Comments on standards
IEEE does not provide interpretations, consulting information, or advice pertaining to IEEE
Standards documents
Suggestions for changes in documents should be in the form of a proposed change of text, together with
appropriate supporting comments. Since IEEE standards represent a consensus of concerned interests,
it is important that any responses to comments and questions also receive the concurrence of a
balance of interests. For this reason, IEEE and the members of its Societies and Standards Coordinating
Committees are not able to provide an instant response to comments, or questions except in those
cases where the matter has previously been addressed. For the same reason, IEEE does not respond
to interpretation requests. Any person who would like to participate in evaluating comments or in
revisions to an IEEE standard is welcome to join the relevant IEEE working group. You can indicate
interest in a working group using the Interests tab in the Manage Profile & Interests area of the
IEEE SA myProject system. An IEEE Account is needed to access the application.

Comments on standards should be submitted using the Contact Us form.

Laws and regulations
Users of IEEE Standards documents should consult all applicable laws and regulations. Compliance
with the provisions of any IEEE Standards document does not constitute compliance to any applicable
regulatory requirements. Implementers of the standard are responsible for observing or referring to
the applicable regulatory requirements. IEEE does not, by the publication of its standards, intend to
urge action that is not in compliance with applicable laws, and these documents may not be construed
as doing so.

Data privacy
Users of IEEE Standards documents should evaluate the standards for considerations of data privacy
and data ownership in the context of assessing and using the standards in compliance with applicable
laws and regulations.

Copyrights
IEEE draft and approved standards are copyrighted by IEEE under US and international copyright
laws. They are made available by IEEE and are adopted for a wide variety of both public and private
uses. These include both use, by reference, in laws and regulations, and use in private self-regulation,
standardization, and the promotion of engineering practices and methods. By making these documents
available for use and adoption by public authorities and private users, IEEE does not waive any rights in
copyright to the documents.

Photocopies
Subject to payment of the appropriate licensing fees, IEEE will grant users a limited, non-exclusive
license to photocopy portions of any individual standard for company or organizational internal
use or individual, non-commercial use only. To arrange for payment of licensing fees, please contact
Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978
750 8400; https://​www​.copyright​.com/​. Permission to photocopy portions of any individual standard
for educational classroom use can also be obtained through the Copyright Clearance Center.

	 ﻿� © ISO/IEC 2022 – All rights reserved
� © IEEE 2022 – All rights reserved
Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

https://development.standards.ieee.org/myproject-web/public/view.html#landing
https://standards.ieee.org/content/ieee-standards/en/about/contact/index.html
https://www.copyright.com/

65

ISO/IEC/IEEE 42010:2022(E)

Updating of IEEE Standards documents
Users of IEEE Standards documents should be aware that these documents may be superseded at
any time by the issuance of new editions or may be amended from time to time through the issuance
of amendments, corrigenda, or errata. An official IEEE document at any point in time consists of the
current edition of the document together with any amendments, corrigenda, or errata then in effect.

Every IEEE standard is subjected to review at least every 10 years. When a document is more than
10 years old and has not undergone a revision process, it is reasonable to conclude that its contents,
although still of some value, do not wholly reflect the present state of the art. Users are cautioned to
check to determine that they have the latest edition of any IEEE standard.

In order to determine whether a given document is the current edition and whether it has been amended
through the issuance of amendments, corrigenda, or errata, visit IEEE Xplore or contact IEEE. For more
information about the IEEE SA or IEEE’s standards development process, visit the IEEE SA Website.

Errata

Errata, if any, for all IEEE standards can be accessed on the IEEE SA Website. Search for standard
number and year of approval to access the web page of the published standard. Errata links are located
under the Additional Resources Details section. Errata are also available in IEEE Xplore. Users are
encouraged to periodically check for errata.

Patents

IEEE Standards are developed in compliance with the IEEE SA Patent Policy.

IMPORTANT NOTICE

IEEE Standards do not guarantee or ensure safety, security, health, or environmental protection, or
ensure against interference with or from other devices or networks. IEEE Standards development
activities consider research and information presented to the standards development group in
developing any safety recommendations. Other information about safety practices, changes in
technology or technology implementation, or impact by peripheral systems also may be pertinent
to safety considerations during implementation of the standard. Implementers and users of IEEE
Standards documents are responsible for determining and complying with all appropriate safety,
security, environmental, health, and interference protection practices and all applicable laws and
regulations.

Abstract

ISO/IEC/IEEE 42010:2022 addresses the creation, analysis and sustainment of architectures
of entities through the use of architecture description work products. A conceptual model for
architecture description is established. Architecture viewpoint, stakeholder perspectives,
architecture aspects, model kinds, architecture description frameworks and architecture description
languages are introduced for codifying conventions and common practices of architecture
description. The required content is specified for architecture descriptions, architecture viewpoints,
architecture description frameworks, architecture description languages, and model kinds. Annexes
provide the motivation and background for key concepts and terminology and examples of applying
ISO/IEC/IEEE 42010:2022.

Keywords: architecture description, architecture view, architecture viewpoint, architecture view
component, architecture description framework, architecture description language, architecture
decision, architecture rationale, architecture consideration, concern, architecture aspect,
stakeholder perspective, model kind, correspondence, correspondence method.

© ISO/IEC 2022 – All rights reserved	 ﻿
© IEEE 2022 – All rights reserved

Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

https://ieeexplore.ieee.org/browse/standards/collection/ieee/
https://standards.ieee.org/content/ieee-standards/en/about/contact/index.html
https://standards.ieee.org/standard/index.html
https://ieeexplore.ieee.org/browse/standards/collection/ieee/
https://standards.ieee.org/about/sasb/patcom/index.html

ISO/IEC/IEEE 42010:2022(E)

ISBN 978-1-5044-9155-6 STD25753 (PDF); 978-1-5044-9156-3 STDPD25753 (Print)

© ISO/IEC 2022 – All rights reserved © IEEE 2022 – All rights reserved
Authorized licensed use limited to: MIT Libraries. Downloaded on November 29,2022 at 18:28:57 UTC from IEEE Xplore. Restrictions apply.

	Front Cover
	Contents
	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Conformance
	5 Conceptual foundations
	6 Specification of an architecture description
	7 Architecture description frameworks and architecture description languages
	8 Architecture viewpoints and model kinds
	Annex A (informative) Notes on terms and concepts
	Annex B (informative) Guidelines to specification of architecture viewpoints
	Annex C (informative) Relationship to other standards
	Annex D (informative) Uses of architecture descriptions
	Annex E (informative) Architecture and architecture description life cycle
	Annex F (informative) Architecture description frameworks
	Bibliography
	IEEE Notices and Abstract
	Back Cover

