CCSDS RECOMMENDATION FOR PROXIMITY-1 SPACE LINK PROTOCOL

[image: image1.wmf]
RECOMMENDATION FOR SPACE

DATA SYSTEM STANDARDS

	XML Formatted Data Unit (XFDU) Structure and Construction Rules

CCSDS [number]

WHITE BOOK

September 15, 2004

[image: image2.wmf]
AUTHORITY

	

	
	Issue:
	
	

	
	Date:
	
	

	
	Location:
	
	

	

This document has been approved for publication by the Management Council of the Consultative Committee for Space Data Systems (CCSDS) and represents the consensus technical agreement of the participating CCSDS Member Agencies. The procedure for review and authorization of CCSDS Recommendations is detailed in Procedures Manual for the Consultative Committee for Space Data Systems, and the record of Agency participation in the authorization of this document can be obtained from the CCSDS Secretariat at the address below.

This document is published and maintained by:

CCSDS Secretariat

Office of Space Communication (Code M-3)

National Aeronautics and Space Administration

Washington, DC 20546, USA

Statement of Intent
The Consultative Committee for Space Data Systems (CCSDS) is an organization officially established by the management of member space Agencies. The Committee meets periodically to address data systems problems that are common to all participants, and to formulate sound technical solutions to these problems. Inasmuch as participation in the CCSDS is completely voluntary, the results of Committee actions are termed Recommendations and are not considered binding on any Agency.

This Recommendation is issued by, and represents the consensus of, the CCSDS Plenary body. Agency endorsement of this Recommendation is entirely voluntary. Endorsement, however, indicates the following understandings:

· Whenever an Agency establishes a CCSDS-related standard, this standard will be in accord with the relevant Recommendation. Establishing such a standard does not preclude other provisions which an Agency may develop.

· Whenever an Agency establishes a CCSDS-related standard, the Agency will provide other CCSDS member Agencies with the following information:

· The standard itself.

· The anticipated date of initial operational capability.

· The anticipated duration of operational service.

· Specific service arrangements are made via memoranda of agreement. Neither this Recommendation nor any ensuing standard is a substitute for a memorandum of agreement.

No later than five years from its date of issuance, this Recommendation will be reviewed by the CCSDS to determine whether it should: (1) remain in effect without change; (2) be changed to reflect the impact of new technologies, new requirements, or new directions; or, (3) be retired or canceled.

In those instances when a new version of a Recommendation is issued, existing CCSDS-related Agency standards and implementations are not negated or deemed to be non-CCSDS compatible. It is the responsibility of each Agency to determine when such standards or implementations are to be modified. Each Agency is, however, strongly encouraged to direct planning for its new standards and implementations towards the later version of the Recommendation.

FOREWORD

Through the process of normal evolution, it is expected that expansion, deletion, or modification of this document may occur. This Recommendation is therefore subject to CCSDS document management and change control procedures which are defined in the Procedures Manual for the Consultative Committee for Space Data Systems. Current versions of CCSDS documents are maintained at the CCSDS Web site:

http://www.ccsds.org/

Questions relating to the contents or status of this document should be addressed to the CCSDS Secretariat at the address indicated on page i.

At time of publication, the active Member and Observer Agencies of the CCSDS were:

Member Agencies
· Agenzia Spaziale Italiana (ASI)/Italy.

· British National Space Centre (BNSC)/United Kingdom.

· Canadian Space Agency (CSA)/Canada.

· Centre National d’Etudes Spatiales (CNES)/France.

· Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)/Germany.

· European Space Agency (ESA)/Europe.

· Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.

· Japan Aerospace Exploration Agency(JAXA)/Japan.

· National Aeronautics and Space Administration (NASA)/USA.

· Russian Space Agency (RSA)/Russian Federation.

Observer Agencies
· Austrian Space Agency (ASA)/Austria.

· Central Research Institute of Machine Building (TsNIIMash)/Russian Federation.

· Centro Tecnico Aeroespacial (CTA)/Brazil.

· Chinese Academy of Space Technology (CAST)/China.

· Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia.

· Communications Research Laboratory (CRL)/Japan.

· Danish Space Research Institute (DSRI)/Denmark.

· European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)/Europe.

· European Telecommunications Satellite Organization (EUTELSAT)/Europe.

· Federal Science Policy Office (FSPO)/Belgium.

· Hellenic National Space Committee (HNSC)/Greece.

· Indian Space Research Organization (ISRO)/India.

· Institute of Space and Astronautical Science (ISAS)/Japan.

· Institute of Space Research (IKI)/Russian Federation.

· KFKI Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.

· MIKOMTEK: CSIR (CSIR)/Republic of South Africa.

· Korea Aerospace Research Institute (KARI)/Korea.

· Ministry of Communications (MOC)/Israel.

· National Oceanic & Atmospheric Administration (NOAA)/USA.

· National Space Program Office (NSPO)/Taipei.

· Space and Upper Atmosphere Research Commission (SUPARCO)/Pakistan.

· Swedish Space Corporation (SSC)/Sweden.

· United States Geological Survey (USGS)/USA.

DOCUMENT CONTROL

	Document
	Title and Issue
	Date
	Status

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

CONTENTS

Section
Page

21
Introduction

1.1
Purpose and Scope
2
1.2
Rationale
2
1.3
Structure of this Document
3
1.4
DEFINITIONS
5
1.4.1
ACRONYMS and abbreviations
5
1.4.2
TERMinology
5
1.5
References
10
2
Overview of Proposed Packaging Structure
12
2.1
Environment
12
2.2
Logical Structure
13
3
Phased Release Design Decisions
16
4
XFDU Manifest Complex Type
17
4.1
OVERVIEW OF XFDU Manifest
17
4.2
XML SCHEMA
17
4.3
UTILITY TYPES
18
4.3.1
Overview
18
5
Package Header Type
21
5.1
Overview
21
5.2
XML Schema packageHeader Type
22
5.3
Examples
23
5.3.1
Package Header Using mustUnderstand attribute
23
5.4
Semantics and issues
24
6
Content Unit
25
6.1
Overview
25
6.2
XML Schema for contentunittype
25
6.3
examples
27
6.3.1
Simple content unit
27
6.4
Semantics and issue
27
6.4.1
Issues
27
6.4.2
Content Unit Types (proposed)
27
7
Information Package Map
29
7.1
Overview
29
7.2
XML SCHEMA informationPackageMapType
29
7.3
Examples
30
7.3.1
an Information Package Map
30
7.4
Issues and semantics
30
8
Data Object Section
31
8.1
Overview
31
8.2
XML Schema for data Object Type
31
8.3
Examples
34
8.3.1
Verify the checksum of the file
34
8.3.2
Specification of Mimetype and checksum with transformations
34
8.3.3
Referencing and inclusion of data content
34
8.4
Semantics and issues
35
9
Metadata Section Type and Metadata Objects
36
9.1
Overview
36
9.2
XML SCHEMA for Metadata Objects
37
9.3
Examples
38
9.3.1
Metadata section using OAIS Information Model
38
10
Behavior Section and Behavior Objects
40
10.1
overview
40
10.2
XML Schema for Behavior Objects
41
10.3
Examples
43
10.3.1
Web-service-based mechanism
43
10.3.2
Java-based mechanism
43
10.3.3
ANT based mechanism
44
10.3.4
Example of Behavior content unit
44
10.4
Sematics and issues
46
11
Full XML Schema –Normative/Ruling
47
ANNEX Sections
60
Annex 2 UML for XFDU – Needs to be updated
63
Annex 3 Relationship to Other Efforts
66
Annex 4 Design Analysis
69
Annex 5 Use Cases
72
Annex 6 Requirements
75

Table of Figure

13Figure 1 Environment/Conceptual View of XML Packaging

Figure 2: XFDU Manifest Logical View
15
Figure 3: First level Decomposition of XFDUType
18
Figure 4 referenceType Schema Diagram
18
Figure 5: dataObjectPtrTypeSchema Diagram
19
Figure 6 fcontentType/binData/xmlDataSchema Diagram
20
Figure 7: packageHeaderType Schema Diagram
22
Figure 8: contentUnitType XML Schema
25
Figure 9: InformationPackageMapType
29
Figure 10: dataObjectType Schema Diagram
31
Figure 11: mdSecType and metadataSectionType Schema Diagram
37
Figure 12: behaviorObjectType Schema Diagram
41
Figure 13 Full XFDU Schema Diagram
47

Table of Tables

16Table 1:XFDU Functionality by Version

1 Introduction

This concept paper represents the beginning of a series of CCSDS Recommendations and Reports meant to augment the current CCSDS packaging recommendation (References [1], [2], [3], [4], [5], [6]) to accommodate the current computing environment and meet evolving requirements.

1.1 Purpose and Scope

The main purpose of this document is to define a staged set of CCSDS Recommendations for the packaging of data and metadata, including software, into a single package (e.g. file or message) to facilitate information transfer and archiving. Another goal is to provide a detailed specification of core packaging structures and mechanisms that meets current CCSDS agency requirements and can be implemented to demonstrate practical, near-term results. This specification needs to be augmented with substantial proof-of-concept and performance prototyping of some of the basic packaging mechanisms in environments that include interactions with registries and repositories.

The scope of application of this document is the entire space informatics domain from operational messaging to interfacing with science archives. In recognition of this varied user community, this document proposes aggressive use of current and emerging W3C and Web Services standards to provide advanced data access techniques and adherence to the OAIS Reference Model (reference [7]) information model to provide improve support for long-term preservation of packaged information.

1.2 Rationale

The current CCSDS Standards for Data Packaging have not undergone a major revision in 15 years. The computing environment and the understanding of metadata have changed radically:

· Physical media (Electronic Transfer

· The primary form of access to, and delivery of, both archived and recently produced data products has shifted from hard media to include substantial network delivery

· No standard language for metadata (XML

· After 'bits' and 'ASCII', the language 'XML' can be viewed as the next universal data standard, as it has grown exponentially

· Homogeneous Remote Procedure Call(CORBA, SOAP

· Communicating heterogeneous systems are increasingly using standard remote procedure calls or messaging protocols. The primary RPC and messaging protocol for the WWW is SOAP, an XML based protocol

· Little understanding of long-term preservation(OAIS RM

· The OAIS Reference Model has become a widely adopted starting point for standardization addressing the preservation of digital information. The OAIS defines and situates within functional and conceptual frameworks the concepts of Information Packages for archiving (Archival Information Packages, or AIPs), producer submission to an archive (Submission Information Packages, or SIPs), and archives dissemination to consumers (Dissemination Information Packages, or DIPs).

· Record formats(Self describing data formats

· Commensurate with XML, and rapidly growing computing power and storage capabilities has been an increasing tendency to use data formats that are more self-describing.

Further, there are a number of new requirements that are needed in the Space domain to facilitate such functions as being able to describe multiple encodings of a data object, and to better describe the relationships among a set of data objects. Therefore it is necessary to define a new set of packaging standards while maintaining the existing functionality.

1.3 Structure of this Document

This document is divided into informative and normative chapters and annexes

Sections 1- 3 of this document are informative chapters that give a high level view of the rationale, the conceptual environment, some of the important design issues and an introduction to the terminology and concept

· Section 1 gives background to this effort, its purpose and scope, a view of the overall document structure, and the acronym list, glossary, and reference list for this document.

· Section 2 provides a high level view of the anticipated computing environment and the key concepts in the domain of information packaging for interchange or archiving

· Section 3 discusses the functionality of the XML Formatted Data Unit (XFDU) and allocates the specification of XML schema to implement this functionality to the current and future versions of this Recommendation

Sections 4 –11 of this document are the normative portion of the specification

There are several important notation issues on the XML Schema sections of this document:

1. The W3C XML Schema fragments in chapters 5-10 are not intended to be complete. The complete and ruling XML Schema for the XFDU Manifest can be found in Chapter 11

2. Each XML Schema section contains both an XML Authority schema diagram and the W3C XML Schema Language specification of a high level type. Due to a design tool decision the XML Authority Schema diagram expands declared attribute groups that are specified once and referenced many times in the W3C XML Schema Language Specification. For this reason it may appear that the XML Schema Diagrams have more specified attributes than the corresponding W3C XML Schema language specifications

3. Since the XML Schema portions of this document only specify the XFDU Manifest the term XFDU is used rather than XFDU Manifest or xfduManifest. This is only true in the W3C XML Schema specification and the associated XML Authority schema diagrams

Section 4, entitled "Packaging Techniques" is transition from informative to normative sections. It provides a description and an XML schema diagram of the first level elements of the XFDU packaging specification material that is proposed to be the basis for the White Book. It also discusses the “utility” types that are reused many times within the XFDU schema.

Sections 5-10 present a detailed breakdown of the important entities represented in the schema. Each section is organized in the following manner:

· N.1 – Overview

· N.2 – XML schema and XML Authority diagrams

· N.3 – XML Example

· N.4 –Semantics and Issues
Section 11 is the full XML Schema for the Version 1 XFDU. In the case of differences between the full Schema in Section and the narratives and partial schemas in prior chapters the full XML Schema is the ruling specification.

Annexes 1-6

· Annex 1 provides a Unified Modelling Language (UML) view of the overall XFDU.

· Annex 2 provides the full examples that are the source of the examples in Sections 5-10

· Annex 3 provides a summary of relevant external standards

· Annex 4 provides a discussion of the decisions that resulted in the level of functionality specified in this Recommendation

· Annex 5 identifies some use cases developed in CCSDS sponsored XML workshops

· Annex 6 identifies requirements that have been derived from use cases and actual experience with the current CCSDS packaging standards.

1.4 DEFINITIONS

1.4.1 ACRONYMS and abbreviations

AIC
Archival Information Collection

AIP
Archival Information Package

AIU
Archival Information Unit

ASCII
American Standard Code for Information Interchange

CCSDS
Consultative Committee for Space Data Systems

CD-ROM
Compact Disk - Read Only Memory

CORBA
Common Object Request Broker Architecture

CRC
Cyclical Redundancy Check

DIME
Direct Internet Message Encapsulation

DIP
Dissemination Information Package

FITS
Flexible Image Transfer System
GIF
Graphics Interchange Format

ISBN
International Standard Book Number

ISO
International Organization for Standardization

METS
Metadata Encoding and Transmission Standard

MIME
Multipurpose Internet Mail Extensions
OAIS
Open Archival Information System

OWL
Web Ontology Language
PDI
Preservation Description Information

PDS
Planetary Data System

RDF
Resource Description Format

SFDU
Standard Formatted Data Unit

SIP
Submission Information Package

SOAP
Simple Object Access Protocol

UML
Unified Modeling Language

UNICODE
Universal Code

URI
Uniform Resource Identifier

URL
Uniform Resource Locator

URN
Uniform Resource Name

W3C
World Wide Wed Consortium

WWW
Worldwide Web

XFDU
XML Formatted Data Unit

XML
Extensible Markup Language

1.4.2 TERMinology

Archival Information Package (AIP): An Information Package, consisting of the Content Information and the associated Preservation Description Information (PDI), which is preserved within an OAIS.

Application Data Unit: A Content Unit type where all the objects are related to one or more primary content objects of interest
Association: Refers to a relationship between Components in a Collection, or other metadata related to a Component or the Collection as a whole.
Behavior Object: Contains an interface definition element that represents an abstract definition of the set of behaviors and a mechanism that is a module of executable code that implements and runs those interfaces.
Behavior Section: Contains zero or more behavior objects

CCSDS Control Authority: An organization under the auspices of the CCSDS that supports the transfer and usage or SFDUs by providing operational services of registration, archiving, and dissemination of data descriptions. It is comprised of:

· The CCSDS Secretariat supported by the Control Authority Agent

· Member Agency Control Authority Offices

Component: Refers to a file that can be grouped together to be part of a Collection, or Package.
Collection: Refers to Components that are gathered together along with a Manifest. This is analogous to files on a file system.
Content Data Object: The Data Object, which together with associated Representation Information, is the original target of preservation.

Content Information: The set of information that is the original target of preservation. It is an Information Object comprised of its Content Data Object and its Representation Information. An example of Content Information could be a single table of numbers representing, and understandable as, temperatures, but excluding the documentation that would explain its history and origin, how it relates to other observations, etc.
Context Information: The information that documents the relationships of the Content Information to its environment. This includes why the Content Information was created and how it relates to other Content Information objects.
Content Objects: The data and/or metadata objects, and any Content Units, logically within a given Content Unit.

Content Unit: XML Structure that contains pointers to data objects and associated metadata objects, and possibly other Content Units.
Data: A reinterpretable representation of information in a formalized manner suitable for communication, interpretation, or processing. Examples of data include a sequence of bits, a table of numbers, the characters on a page, the recording of sounds made by a person speaking, or a moon rock specimen.

Data Dictionary: A formal repository of terms used to describe data.
Data Object: Contains some file content and any data required to allow the information consumer to reverse any transformations that have been performed on the object and restore it to the byte stream intended for the original designated community and described by the Representation metadata in the Content Unit

Data Object Section: Contains a number of dataObject element

Description Data Unit: A Content Unit where all the content objects are metadata objects.
Descriptive Information: The set of information, consisting primarily of Package Descriptions, which is provided to Data Management to support the finding, ordering, and retrieving of OAIS information holdings by Consumers.

Designated Community: An identified group of potential Consumers who should be able to understand a particular set of information. The Designated Community may be composed of multiple user communities.

Digital Object: An object composed of a set of bit sequences.

Dissemination Information Package (DIP): The Information Package, derived from one or more AIPs, received by the Consumer in response to a request to the OAIS.

Exchange Data Unit: A Content Unit type where the objects have been packaged for a reason. It is assumed that all the objects are related though the exact relationship is not one of a set of predefined types.
FcontentType: Entity that encapsulates either binary or XML arbitrary content

Finding Aid: A type of Access Aid that allows a user to search for and identify Archival Information Packages of interest.

Fixity Information: The information that documents the authentication mechanisms and provides authentication keys to ensure that the Content Information object has not been altered in an undocumented manner. An example is a Cyclical Redundancy Check (CRC) code for a file.

Information: Any type of knowledge that can be exchanged. In an exchange, it is represented by data. An example is a string of bits (the data) accompanied by a description of how to interpret a string of bits as numbers representing temperature observations measured in degrees Celsius (the representation information).

Information Object: A Data Object together with its Representation Information.

Information Package: The Content Information and associated Preservation Description Information that is needed to aid in the preservation of the Content Information. The Information Package has associated Packaging Information used to delimit and identify the Content Information and Preservation Description Information.

Information Package Map: Outlines a hierarchical structure, for the original object being encoded, by using a series of nested contentUnit elements
Manifest: A document containing metadata about Components, and the Associations between them. This information is stored as a Component, using an XML language designed for just this purpose.

Metadata: Data about other data.

Metadata Section: Contains or References all of the metadata for all items in the XFDU packageOpen Archival Information System (OAIS): An archive, consisting of an organization of people and systems, that has accepted the responsibility to preserve information and make it available for a Designated Community. It meets a set of responsibilities, as defined in Section 3.1 of the OAIS Reference Model that allows an OAIS archive to be distinguished from other uses of the term ‘archive’. The term ‘Open’ in OAIS is used to imply that this Recommendation and future related Recommendations and standards are developed in open forums, and it does not imply that access to the archive is unrestricted.

Package: Refers to a Collection that is bundled together, or packaged, into one file using a defined packaging scheme. All Packages are Collections, but not all Collections have been packaged, so they are not all Packages.

Package Header: Contains aadministrative metadata for the whole XFDU, such as version, operating system, hardware, author, etc, and metadata about transformations and behaviours that must be understood, in particular, transformations which must be reversed to access the data content.
Package Interchange File: A collection of files that have been bundled together into a single container.
Physical Object: An object (such as a moon rock, bio-specimen, microscope slide) with physically observable properties that represent information that is considered suitable for being adequately documented for preservation, distribution, and independent usage.

Preservation Description Information (PDI): The information which is necessary for adequate preservation of the Content Information and which can be categorized as Provenance, Reference, Fixity, and Context information.
Process Description Unit: Contains a description that can range from an automated scripting language to an English language description of the steps a person /intelligent agent would take in performing a process.
Provenance Information: The information that documents the history of the Content Information. This information tells the origin or source of the Content Information, any changes that may have taken place since it was originated, and who has had custody of it since it was originated. Examples of Provenance Information are the principal investigator who recorded the data, and the information concerning its storage, handling, and migration
Reference Information: The information that identifies, and if necessary describes, one or more mechanisms used to provide assigned identifiers for the Content Information. It also provides identifiers that allow outside systems to refer, unambiguously, to a particular Content Information. An example of Reference Information is an ISBN.
Representation Information: The information that maps a Data Object into more meaningful concepts. An example is the ASCII definition that describes how a sequence of bits (i.e., a Data Object) is mapped into a symbol.

Representation Network: The set of Representation Information that fully describes the meaning of a Data Object. Representation Information in digital forms needs additional Representation Information so its digital forms can be understood over the Long Term.

Software Installation Unit: A Content Unit that holds all of the information that an XFDU processor needs in order to create a software instance on a particular system
Structure Information: The information that imparts meaning about how other information is organized. For example, it maps bit streams to common computer types such as characters, numbers, and pixels and aggregations of those types such as character strings and arrays.

Submission Information Package (SIP): An Information Package that is delivered by the Producer to the OAIS for use in the construction of one or more AIPs.

Transformation: A Digital Migration in which there is an alteration to the Content Information or PDI of an Archival Information Package. For example, changing ASCII codes to UNICODE in a text document being preserved is a Transformation.

XFDU Manifest: A Manifest that is conformant to the XML Schema specified in this Recommendation

XFDU Package: A Package Interchange File that contains an XFDU Manifest and is conformant to the semantics specified in this document

Xlink: W3C Recommendation that defines XML-conforming syntax for expressing links among XML documents and other Internet resources, and defines some of the behavior of applications that support it.

XML Formatted Data Unit: The complete contents as specified by the Information Package Map (i.e., the highest level Content Unit) component of the XML Manifest This includes the XML Manifest document, files contained in the XML Manifest, files referenced in the XFDU Manifest including those contained within the XFDU Package, and resources (i.e., files and XFDU Packages) external to the XFDU Package. The XFDU is a logical entity and may never exist as a physical entity.
XML Schema: W3C schema specification for XML documents using XML syntax
Zip: A file that contains other files that are compressed to preserve space.
1.5 References

[1] Standard Formatted Data Units-Structure and Construction Rules. Recommendation for Space Data System Standards, CCSDS 620.0-B-2. Blue Book. Issue 2., Washington, D.C.: CCSDS, May 1992. (Also as ISO 12175)

[2] ASCII Encoded English (CCSD0002). Recommendation for Space Data System Standards, CCSDS 643.0-B-1. Blue Book. Issue 1. Washington D.C.: CCSDS, November 1992. (Also ISO 14962)

[3] Standard Formatted Data Units — Control Authority Procedures. Recommendation for Space Data Systems Standards, CCSDS 630.0-B-1. Blue Book. Issue1. Washington, D.C., CCSDS, June 1993. (Also 13764)

 [4] Standard Formatted Data Units — Control Authority Data Structures. Recommendation for Space Data System Standards, CCSDS 632.0-B-1. Blue Book. Issue 1. Washington D.C.: CCSDS, November 1994. (Also ISO 15395)

[5] Standard Formatted Data Units-Referencing Environment. Recommendation for Space Data System Standards, CCSDS 622.0-B-1. Blue Book. Issue 1. Washington, D.C.: CCSDS, May 1997. (Also ISO 15888)

[6] Parameter Value Language Specification (CCSD0006 and CCSD0008). Recommendation for Space Data System Standards, CCSDS 641.0-B-2. Blue Book. Issue 2. Washington D.C.: CCSDS, June 2000. (Also ISO 14961)

[7] Reference Model for an Open Archival Information System (OAIS). Recommendation for Space Data System Standards, CCSDS 650.0-B-1. Blue Book. Issue 1. Washington D.C.: CCSDS, January 2002. (Also ISO 14721)

[8] Metadata Encoding and Transmission Standard (METS) <http://www.loc.gov/standards/mets/>

[9] XPack <http://www.anitesystems.de/home.htm>

[10] Soap with Attachments <www.w3.org/TR/SOAP-attachments>

[11] Direct Internet Message Encapsulation (DIME)

 <http://msdn.microsoft.com/library/en-us/dnglobspec/html/draft-nielsen-dime-02.txt>

[12] XML <http://www.w3c.org/XML/>

[13] Xlink <www.w3.org/TR/xlink>

[14] XML Authority <

[15] W3C Packaging <http://www.w3.org/TR/2004/WD-xop10-20040608/>

[16] Open Office packaging <http://xml.openoffice.org/>

[17] Globus packaging <http://www.globus.org/gt2/packaging/index.html>

[18] Fedora http://www.fedora.info/
2 Overview of Proposed Packaging Structure

This section provides an overview of some of the key concepts that are incorporated in the design of the XFDU packaging recommendation.

2.1 Environment

Figure 1 illustrates an abstract package in a generic computing environment to provide a basis for discussion of concepts relevant to this document. The focus of this diagram is a collection of physical files that have been bundled together because of some interrelationship. In this case this collection of files have been bundled together into a single container called a Package Interchange File and an XML document called a manifest has been included to document the relations among and index the locations of the various files containing data and metadata. The figure also shows external resources including other packages, file systems and repositories. In an environment with sufficient connectivity, reliability, and bandwidth the package could include pointers to resources outside of the package. The resolution of these pointers would be a software service provided by the data producer or a software toolkit at the data consumer site.

[image: image3.jpg]XFDU

URI

it
aterhuage File

Package Interchange File

£

Figure 1 Environment/Conceptual View of XML Packaging
2.2 Logical Structure

This section maps the Conceptual View presented in the previous section to the terms and concepts used within the normative sections of this Recommendation.

Two high level entities are discussed in Figure 1; the Manifest, the Package Interchange File and the XFDU. The normative sections of this Recommendation specify a concrete implementation of these conceptual entities. The high level entities are mapped into implementation specific entities as follows:

An XFDU Manifest is a Manifest that is conformant to the XML Schema specified in this Recommendation

An XFDU Package is a Package Interchange File that contains an XFDU Manifest and is conformant to the semantics specified in this document

Figure 2 provides an expanded view of the XFDU Manifest document showing the key entities and the possible references among them. The arrowheads show the direction of the references (e.g., the contentUnit entity references the dataObject entity). The Content Unit provides the primary view into the package as it refers to each of the data objects and it associates appropriate metadata with each data object. The Content Unit reference to the metadata is via one or more metadata Category pointers. For each such pointer, there is a set of metadata classes that may be chosen to further classify the metadata object. The actual Metadata Object may be included in the manifest file or referenced by URI. A Content Unit may also contain other Content Units reference external XFDUs. The figure also introduces the names and XML Labels for some of the XML entities that are discussed in the next section

A simple structure which groups together all the information about each Information Object would work for a few objects but would lead to implementation difficulties when one has large numbers of large objects. A number of techniques are used to help to alleviate the potential problems and to simplify further extraction, processing and repackaging of information contained in a package. Similar types of components are grouped into Sections such as the metadataSection in order to help to simplify parsing and referencing implementations. The wrapping of the referencing pointers allows uniform access to information whether it is within the package or outside, accessed by URN. The XFDU Manifest allows the structure of the package to be viewed without having to parse the full structure.

An XML Formatted Data Unit (XFDU) is the complete contents as specified by the Information Package Map (i.e., the. highest level Content Unit) component of the XML Manifest This includes the XML Manifest document, files contained in the XML Manifest, files referenced in the XFDU Manifest including those contained within the XFDU Package, and resources (i.e., files and XFDU Packages) external to the XFDU Package. The XFDU is a logical entity and may never exist as a physical entity.

[image: image4.jpg]data objects

metadata objects

|

dataObjectSec

sl 1

metadataSec

metadata
Category

i 14 Pointers
(ol 1ds)

behaviorSec
behav&mfu ‘mationPackage
RIS
ort st
O Information
& Package Map

Figure 2: XFDU Manifest Logical View

3 Phased Release Design Decisions

The following table provides a brief summary the functionality that should be supported by the XFDU packaging recommendation and the allocation of these requirements to this and future versions of this Recommendation. Annex 3 provides an overview of the major design decisions that resulted in the specified functionality while brief descriptions of related efforts that were studied can be found in Annex 4.

	Function/Feature
	Version 1,0
	Future Versions

	Packaging techniques
	1. Single XML Document

2. Archive File (e.g., tar, zip)
	XML
messaging form (e.g., Soap with Attachments

	Manifest
	Mandatory
	

	Format Description Types
	1. Markup Languages (XML and vocabularies)

2. MIME types,

3. Self describing formats

4. Detached data descriptions (e.g., EAST)
	

	Metadata/data linkage options
	1.Inclusion in Manifest as base64 or XML,

2. Referenced directly as binary or XML

3. Referenced or Included as Data Object

	

	Relationship Description
	1. Unit types indicate predefined relationships

2. Classification of metadata pointers

3. User defined metadata model support

4.Predefined support of OAIS Information model

5. Xlink attributes
	Formal Description Language

· RDF

· OWL

	Behaviors
	1. Description of Abstract Interfaces

2. Inclusion of, or reference to, implementation specific mechanisms/methods

	1. Invoking behavior as value of content units

2. Scripting Behaviors

	Extensibility
	Element substitution using XML Schema substitutionGroup
	1. Type Substitution using xsi: type

	Encodings and Transformations
	The ability to allow/reverse multiple transformations on files
	

	Instance Validation
	XML schema type validation

Enumerated lists
	Constraints and business rules using Schematron

	
	
	

Table 1:XFDU Functionality by Version

4 XFDU Manifest Complex Type

4.1 OVERVIEW OF XFDU Manifest

The following are brief descriptions of the five complex types/elements that may be contained in an XFDU Manifest (XFDUType). A high level XML Authority [REF14] XML schema diagram of the XFDU is shown as Figure 3.

1. Package Header (packageHeader): Administrative metadata for the whole XFDU Packag3, such as version, operating system, hardware, author, etc, and metadata about transformations and behaviours that must be understood, in particular, transformations which must be reversed to access the data content.

2. Metadata Section (metadataSection): This section records all of the metadata for all items in the XFDU package. Multiple metadata objects are allowed so that the metadata can be recorded for each separate item within the XFDU object. The metadata schema allows the package designer to define any metadata model by providing attributes for both metadata categories and a classification scheme for finer definition within categories. The XFDU also provides predefined metadata categories and classes via enumerate attributes that follow the OAIS information model
3. Information Package Map (informationPackageMap) outlines a hierarchical structure for the original object being encoded, by a series of nested contentUnit elements. Content units contain pointers to the data objects and to the metadata associated with those objects.
4. Data Object Section (dataObjectSection) contains a number of dataObject elements. A Data Object contains a bytestream and any data required to allow the information consumer to reverse any transformations that have been performed on the object and restore it to the byte stream intended for the original designated community and described by the Representation metadata in the Content Unit

5. Behavior Section (behaviorSection) may contain any number of behavior objects. Each behavior object can be used to associate executable behaviors with content in the XFDU object. A behavior object contains an interface definition element that represents an abstract definition of the set of behaviors and a mechanism that is a module of executable code that implements and runs those interfaces

4.2 XML SCHEMA

[image: image5.jpg]253 clza®d

@ textinfo,
string

)

@ version
string

5

+ packageHeader |
packageHeaderType

+ metadataSectiong]
metadataSectionType

+XFDU]

XEDUType

+ dataObjectSectiong]
dataObjectsectionType

+ informationPackageMap]
informationPackageMapType

8 6 8 8 &

+ hehaviorSectiong]
ekl

Figure 3: First level Decomposition of XFDUType

4.3 UTILITY TYPES

4.3.1 Overview

These classes are reused throughout the XFDU schema to represent some recurring structures:

1. referenceType
-
Entity that can reference a resource via a URI
2. dataObjectPtr is an empty element that references dataObjects using the XMLID

3. fcontentType
-
Entity that encapsulates either binary or XML arbitrary content.

a. binData - Entity that encapsulates base64 encoded data (e.g. binary data)

b. xmlData -
Entity that encapsulates 1 to many pieces of arbitrary XML data
As discussed in Section 1.3 The XML Authority schema diagrams below show details of the XML attribute groups not shown in the associated W3C XML Schema language segments in the text. The full schema in Section 11 provides the specification of these attribute groups. XML Schemas

[image: image6.jpg]referenceType

@olﬂ% @.lex{lnfn% Oln(Type% .nlhean(Type%
o string #ystring string
® arcrole

O lype% . href% O rnle%

string

3

A alsgmd alsses

Figure 4 referenceType Schema Diagram

<xsd:complexType name = "referenceType">

<xsd:attribute name = "ID" type = "xsd:ID"/>

<xsd:attributeGroup ref = "LOCATION"/>

<xsd:attributeGroup ref = "xlink:simpleLink"/>

</xsd:complexType>

[image: image7.jpg]dataObjectPirType.

Figure 5: dataObjectPtrTypeSchema Diagram

<xsd:complexType name = "dataObjectPtrType">

<xsd:annotation>

<xsd:documentation>

The dataObjectPtrType is a type that can be used to reference dataObjects by dataObjectID.

The dataObjectPtrType has two attributes:

1. ID: an XML ID for this element; and

2. dataObjectID: an IDREF to a dataObject element.

</xsd:documentation>

</xsd:annotation>

<xsd:attribute name = "ID" type = "xsd:ID"/>

<xsd:attribute name = "dataObjectID" use = "required" type = "xsd:IDREF"/>

</xsd:complexType>

[image: image8.jpg]feontentType

GHE
binData

+ xmiDat:

«mIDataType

+ #wildCard

Figure 6 fcontentType/binData/xmlData
Schema Diagram

<xsd:complexType name = "fcontentType">

<xsd:annotation>

<xsd:documentation>

fContentType encapsulates and aggregates a type that can have a choice of either

binary or xml data

</xsd:documentation>

</xsd:annotation>

<xsd:choice>

<xsd:element ref = "binData" minOccurs = "0"/>

<xsd:element ref = "xmlData" minOccurs = "0"/>

</xsd:choice>

<xsd:attribute name = "ID" type = "xsd:ID"/>

</xsd:complexType>

<xsd:element name = "binData" type = "xsd:base64Binary">

<xsd:annotation>

<xsd:documentation>A wrapper to contain Base64 encoded metadata.</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name = "xmlData">

<xsd:annotation>

<xsd:documentation>A wrapper to contain XML-based metadata.</xsd:documentation>

</xsd:annotation>

<xsd:complexType>

<xsd:sequence>

<xsd:any namespace = "##any" processContents = "strict" maxOccurs = "unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>
5 Package Header Type

5.1 Overview

The Package Header is an XML Complex Type for administrative and technical requirements metadata that apply to the containing XFDU package. The package header section consists of three optional sections:

· Environment Information (environmentInfo): specification of the hardware and software platform which created this package and other administrative data such as creator and modification authority which applies to the whole instance of the XFDU

· Behavior Information (behaviorInfo): specification of the behavior mechanism related metadata including the mechanism type, general description, namespace and any other metadata required to specify the behavior. Used for versioning issues.

· Transformation Information (transformInfo): specification of the names, classifications, parameter names/types and any other information needed to reverse transformations used in the XFDU). Both transformInfo and behaviorInfo have an optional mustUnderstand attribute that declares if the reader of this package must understand described transformation, or behavior mechanisms in order to process content of the package. The use of “mustUnderstand” allows tools to notify a user, without having to do unnecessary parsing, that additional software, for example, is required. mustUnderstand is based on the SOAP[REF 10] mustUnderstand attribute. For all namespaces where the mustUnderstand attribute is set to “true”, the receiving application must have software to process the element to access the Content of this XFDU instance.

The Package Header should be a self-contained entity (containing both its schema and data) so it may be processed independently from the main body of the XFDU.

5.2 XML Schema packageHeader Type
[image: image9.jpg]# environmentinfo + xmiData, + #wildCard
i)
@ O muslUnderslznd% @ O des(rlpllnn% O me(hznlsmType% O nzmespz(e%
bosle string string string
#+ behaviorinfog | ®¢meDzlz QO#WIIdCzrd
packageHeaderTyp: g xmlDataType
0 des(rlpllnn% O zlgnrllthzme% @ O muslUnderslznd% @ O nzmespz(e%
’7 string string boslean string
transforminfogl | (5% xmiData, [® #wildCard
& xmlDataType

Figure 7: packageHeaderType Schema Diagram

<xsd:complexType name = "packageHeaderType">

<xsd:annotation>

<xsd:documentation>packageHeaderType: Complex Type for metadata about the

mapping of the logical packages to the physical structures. The

package header section consists of three possible subsidiary

sections: environmentInfo (specification of the hardware and software

platform which created this package), behaviorInfo (behavior mechanism

related metadata), and transformInfo (the names, classifications, parameter

names/types and any other information needed to reverse

transformations used in the XFDU). Both transformInfo and behaviorInfo have an optional

mustUnderstand attribute that declares if the reader of this package must

understand described transformation, behavior mechanisms in order to

process content of the package. packageHeaderType has a single

attribute, ID: an XML ID.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name = "environmentInfo" minOccurs = "0" maxOccurs = "unbounded">

<xsd:annotation>

<xsd:documentation>environmentInfo: technical metadata. The environmentInfo element

provides a wrapper around a generic metadata section that

should contain technical metadata regarding a dataObject or dataObjects. It

has an attribute, specVersion, which specifies the version of the XFDU Recommendation

 to which this XFDU package complies.

Also, dataObject elements can use implicit XML ID attribute to reference the

 technical metadata that applies to them.

environmentInfo has an optional xmlData element to include any additional controlled vocabularies

</xsd:documentation>

</xsd:annotation>

<xsd:complexType>

<xsd:sequence>

<xsd:element name = "xmlData" type = "xmlDataType" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>

<xsd:attribute name = "specVersion" type = "xsd:string" use = "required"/>

</xsd:complexType>

</xsd:element>

<xsd:element name = "behaviorInfo" minOccurs = "0" maxOccurs = "unbounded">

<xsd:annotation>

<xsd:documentation>

behaviorInfo contains:

mustUnderstand - indicates if this mechanism must be understood by processor

description - general description

mechanismType - type of behavior mechanism (e.g. WS,JAVA) (should be made into enumeration most likely)

namespace - namespace of the specified technology if any

behaviorInfo has an optional xmlData element to include any additional metadata if needed

</xsd:documentation>

</xsd:annotation>

<xsd:complexType>

<xsd:sequence>

<xsd:element name = "xmlData" type = "xmlDataType" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>

<xsd:attribute ref = "mustUnderstand"/>

<xsd:attribute name = "description" type = "xsd:string"/>

<xsd:attribute name = "mechanismType" type = "xsd:string"/>

<xsd:attribute ref = "namespace"/>

</xsd:complexType>

</xsd:element>

<xsd:element name = "transformInfo" minOccurs = "0" maxOccurs = "unbounded">

<xsd:annotation>

<xsd:documentation>transformInfo (the names, classifications, parameter

names/types and any other information needed to reverse

transformations used in the XFDU)

transformInfo contains:

mustUnderstand - indicates if this transformation technology must be understood by processor

description - general description

algorithmName -name of transformation algorithm

namespace - namespace of the specified technology if any

transformInfo has optional xmlData element to include any additional metadata if needed

</xsd:documentation>

</xsd:annotation>

<xsd:complexType>

<xsd:sequence>

<xsd:element name = "xmlData" type = "xmlDataType" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>

<xsd:attribute name = "description" type = "xsd:string"/>

<xsd:attribute name = "algorithmName" type = "xsd:string"/>

<xsd:attribute ref = "mustUnderstand"/>

<xsd:attribute ref = "namespace"/>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

<xsd:attribute name = "ID" type = "xsd:ID"/>

</xsd:complexType>

5.3 Examples

5.3.1 Package Header Using mustUnderstand attribute

In the following example at least some important Data Objects have been encrypted using the blowfish algorithm. The data producer has set the mustUnderstand attribute on the transformationInfo element for “blowfish” to true to indicate that the data consumer needs to be able to decrypt blowfish encrypted data to use this XFDU.

<packageHeader>

 <environmentInfo specVersion= « 1.0 »>

<xmlData>

<platform>Linux2.4.22-1.2129.nptl</platform>

</xmlData>

 </environmentInfo>

 <transformInfo algorithmName="blowfish" mustUnderstand="true" description="encryption"/>

 </packageHeader>
5.4 Semantics and issues

1. Currently environmentInfo is a list of XML element and attributes specified by the XFDU producer. In the final version of this Recommendation this may become am controlled vocabulary

6 Content Unit

6.1 Overview

 A Content Unit (contentUnit) is the basic structural unit of the XFDU. A Content Unit may contain:

· 0 or more Content Units and pointers which reference:

· 0 or more complete XFDUs which must not be contained within the XFDU Package

· 0 or more Data Objects which reference or contain the bytestreams and pointers to the metadata that together form the information objects that comprise the content unit as a portion of the whole package. The content unit element has the following attributes:

The Content unit attributes that point to metadata objects provide the XFDU producer the ability to classify his metadata objects using the OAIS Information Model

6.2 XML Schema for contentunittype
[image: image10.jpg]@om% @.nrder% .unllType% .lextlnfn%
D string string string
* replD, * dmdiD D pdl|D% O zndeID%
ofgard offasitd ofgpits g
@.m% aolexﬂnfn% OIn(Type% .nlhean(Type%
D string

#string string
+ XFDUptr O lype% O href% O rnle% O zr(rnle%
@ titleg @ showg @ actuateg
+ dataObjectPtr] @ O m% ‘. dmommm%
dataObjectPirType o IDREF

+ abstractContentUnit |
T

Figure 8: contentUnitType XML Schema

<xsd: complexType name = "contentUnitType">

<xsd:annotation>

<xsd:documentation>ContentUnit Complex Type The XFDU standard

represents a data package structurally as a series of nested

content units, that is, as a hierarchy (e.g., a data product,

which is composed of datasets, which are composed of time

series, which are composed of records). Every content node in

the structural map hierarchy may be connected (via subsidiary

XFDUptr or dataObjectPtr elements) to information objects which

represent that unit as a portion of the whole package. The contentUnit element has the following attributes:

1.ID (an XML ID);

2.order: a numeric string (e.g., 1.1, 1.2.1, 3,) representation

of this unit's order among its siblings (e.g., its sequence);

3.textInfo: a string label to describe this contentUnit to an end

user viewing the document, as per a table of contents entry

4.repID: a set of IDREFs to representation information sections

within this XFDU document applicable to this contentUnit.

5.dmdID: a set of IDREFS to descriptive information sections

within this XFDU document applicable to this contentUnit.

6.pdiID: a set of IDREFS to preservation description information

sections within this XFDU document applicable to this

contentUnit

7.anyMdID: a set of IDREFS to any other metadata sections that do not fit

rep, dmd or pdi metadata related to this contentUnit

88.unitType: a type of content unit (e.g., Application

Data Unit, Data Description Unit, Software Installation Unit, etc.).

contentUnitType is declared as a base type for concrete implementations of contentUnit.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name = "XFDUptr" type = "referenceType" minOccurs = "0" maxOccurs = "unbounded">

<xsd:annotation>

<xsd:documentation>XFDUptr: XFDU Pointer. The XFDUptr element allows a

content unit to be associated with a separate XFDU containing

the content corresponding with that contentUnit, rather than

pointing to one or more internal dataObjects. A typical instance of

this would be the case of a thematic data product that collects

data products from several instruments observe an event of

interest. The content units for each instrument datasets might

point to separate XFDUs, rather than having dataObjects and dataObject

groups for every dataset encoded in one package. The XFDUptr

element may have the following attributes: ID: an XML ID for

this element locType: the type of locator contained in the

xlink:href attribute; otherLocType: a string to indicate an

alternative locType if the locType attribute itself has a value

of "OTHER." xlink:href: see XLink standard

(http://www.w3.org/TR/xlink) xlink:role: "" xlink:arcrole: ""

xlink:title: "" xlink:show: "" xlink:actuate: "" NOTE: XFDUptr

is an empty element. The location of the resource pointed to

MUST be stored in the xlink:href element.

</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name = "dataObjectPtr" type = "dataObjectPtrType" minOccurs = "0" maxOccurs = "unbounded"/>

<xsd:element ref = "abstractContentUnit" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>

<xsd:attribute name = "ID" type = "xsd:ID"/>

<xsd:attribute name = "order" type = "xsd:string"/>

<xsd:attribute name = "unitType" type = "xsd:string"/>

<xsd:attribute name = "textInfo" type = "xsd:string"/>

<xsd:attribute name = "repID" type = "xsd:IDREFS"/>

<xsd:attribute name = "dmdID" type = "xsd:IDREFS"/>

<xsd:attribute name = "pdiID" type = "xsd:IDREFS"/>

<xsd:attribute name = "anyMdID" type = "xsd:IDREFS"/>

</xsd:complexType>

<xsd:element name = "abstractContentUnit" type = "contentUnitType" abstract = "true">

<xsd:annotation>

<xsd:documentation>abstractContentUnit is abstract implementation of

contentUnitType. It cannot be instantiated in the instance

document. Instead, concrete implementations would have to be

used which are declared part of the contentUnit substitutionGroup

</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name = "contentUnit" type = "contentUnitType" substitutionGroup = "abstractContentUnit">

<xsd:annotation>

<xsd:documentation>contentUnit is basic concrete

implementation of abstract contentUnit. Its instance can be used

in the instance document in the place where contentUnit declared

to be present.

</xsd:documentation>

</xsd:annotation>

</xsd:element>

6.3 examples

6.3.1 Simple content unit

In the following example, the content unit points to several types of metadata:

· representation metadata with XML ID 'atdMD'; this metadata is categorized as representation metadata; thus, it is referred to by placing its XML ID as value of repID attribute

· preservation metadata with XML ID 'provenance', this metadata is categorized as preservation metadata; thus, it is referred to by placing its XML ID as value of pdiID attribute

· description metadata with XML ID ECSDMD, this metadata is categorized as descriptive metadata; thus, it is referred to by placing its XML ID as value of pdiID attribute

<contentUnit repID = "atdMD" pdiID = "provenance" dmdID = "ECSDMD">

<dataObjectPtr dataObjectID = "mpeg21"/>

</contentUnit>
6.4 Semantics and issue

6.4.1 Issues

1. Content unit as the result of a behavior

2. Attributes vs. elements in content unit

6.4.2 Content Unit Types (proposed)

In this version of the recommendation, the unitType attribute of the Content Unit is allowed to be free text with the suggested values and the semantics for each unit type being listed below. It is anticipated that in the final Recommendation this list will become an enumerated type. In future versions of this specification the semantics of each Content Unit type may be enforced by Schematron like mechanisms

Exchange Data Unit (EDU)

The Exchange Data Unit is a set of objects that has been packaged for a reason. It is assumed that all the objects are related though the exact relationship is not one of the predefined types defined by the units below

Application Data Unit (ADU)

An Application Data Unit is a package type where all the objects are related to one or more primary content objects of interest

Description Data Unit (DDU)

A Description Data Unit is a package type where all the content objects are metadata objects intended to update the metadata repository of the consumer

Process Description Unit (PDU)

A Process Description Unit can range from an automated scripting language to an English language description of the steps a person /intelligent agent. The formal languages/schema used to define the PDU will be part of a future version

Software Installation Unit (SIU)

Based on Globus [REF17] Grid Package an SIU holds all of the information that the XFDU processor needs in order to create a software instance on a particular system

7 Information Package Map

7.1 Overview

The Information Package Map (informationPackageMapType) outlines a hierarchical structure for the original object being encoded, by a series of nested contentUnit elements. There may be multiple Information Package Maps in a single XFDU to represent alternate views of the information contained in the XFDU. The semantics of multiple Information Package Maps in an XFDU are not constrained by this version of XFDU specification. These semantics. However, future versions of this specification may define these semantics so implementers are advised to use care.

The Information Package Map is the highest level Content Unit of the nested Content Units in XFDU. The order and the nesting of the contained Content Units provide the Information Model for the XFDU and should provide an access path to all the data and metadata objects within the XFDU.

The Information Package Map provides attributes for identifying, classifying, and describing itself.

7.2 XML SCHEMA informationPackageMapType

[image: image11.jpg]* 1D @ packageType
{52 ofaks

3

@ textinfo,
stting

5

T,

+ abstractContentUnit,
CoRteHURRT e

Figure 9: InformationPackageMapType

<xsd:complexType name = "informationPackageMapType">

<xsd:annotation>

<xsd:documentation>informationPackageMapType Complex Type The Information Package Map

outlines a hierarchical structure for the

original object being encoded, using a series of nested

contentUnit elements. An element of informationPackageMapType has the following

attributes: ID: an XML ID for the element; TYPE: the type of

Information Product provided. Typical values will be"AIP" for a

map which describes a complete AIP obeying all constrainsts and

cardinalities in the OAIS reference model "SIP" for a map which

describes a Submission Information Package textInfo: a string to

describe the informationPackageMap to users.

 packageType: a type for the object, e.g., book, journal, stereograph, etc.;

Concrete implementation of contentUnit (defaultContentUnit, behavioralContentUnit,

etc) have to be used in the instance document.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element ref = "abstractContentUnit" maxOccurs = "unbounded"/>

</xsd:sequence>

<xsd:attribute name = "ID" type = "xsd:ID"/>

<xsd:attribute name = "packageType" type = "xsd:string"/>

<xsd:attribute name = "textInfo" type = "xsd:string"/>

</xsd:complexType>

7.3 Examples

7.3.1 an Information Package Map

<informationPackageMap>

<contentUnit repID = "atdMD" pdiID = "provenance" dmdID = "ECSDMD">

<dataObjectPtr dataObjectID = "mpeg21"/>

<contentUnit order = "1" textInfo = "Root content unit for HDF data">

<contentUnit order = "1.1" pdiID = "provenance" textInfo = "content unit for hdfFile0" dmdID = "ECSDMD">

<dataObjectPtr dataObjectID = "hdfFile0"/>

</contentUnit>

<contentUnit order = "1.2" pdiID = "provenance" textInfo = "content unit for hdfFile1" dmdID = "ECSDMD">

<dataObjectPtr dataObjectID = "hdfFile1"/>

</contentUnit>

<contentUnit order = "1.3" pdiID = "provenance" textInfo = "content unit for hdfFile2" dmdID = "ECSDMD">

<dataObjectPtr dataObjectID = "hdfFile2"/>

</contentUnit>

</contentUnit>

<contentUnit textInfo = "content unit for orbit data">

<dataObjectPtr dataObjectID = "orbitalData"/>

</contentUnit>

</contentUnit>

<contentUnit textInfo = "content unit ATD metadata">

<dataObjectPtr dataObjectID = "ATDMD"/>

</contentUnit>

</InformationPackageMap>

7.4 Issues and semantics

The semantics of multiple Information Package Maps in an XFDU are not constrained by this version of XFDU specification. These semantics. However, future versions of this specification may define these semantics so implementers are advised to use care.

8 Data Object Section

8.1 Overview

A Data Object Section (dataObjectSection) contains one or more Data Object elements(dataObject). Each Data Object contains one Byte Stream(byteStream) element that references or contains the current digital object content and any number of optional Transformation Objects(transformObject) that contain required information (e.g., algorithms and parameters) to reverse any transformations to the digital content and restore them to the original binary data object described by the original designated community.

The dataObject element
provides access to the current content files for a XFDU document. The infoObjEntry must contain exactly 1 data object element
that may contain 0 or more FLocat elements, which provides pointer(s) to content file(s), and/or an FContent element, which wraps an encoded version of the file. The infoObjEntry may contain one or more transformation elements that contain all of the
information required to reverse each transformation applied to the data object and return the original binary data object.

8.2 XML Schema for data Object Type

[image: image12.jpg]1D, * replD, .mlmeType% .slzeq
ofgnd oftetnd ol Tl

@ checksum @ checksumTyp
oliaptemd clntensmtes

1D, .mlmeType% .slzeq @ checksum
[e O o EEEC I O

* checksumTypeg)
alegsiamiee

* D, * textinfo
CHE R

O In(Type% O nlhean(Type%

dataObjectsectionType

+ dataObject,
dataObjecrType

gstring string
#Flocat O lype% @ O href% @ O rnle% O zr(rnle%
referenceType string anyLRI string string
etitled (5[sho * actuat
olig=g
 byteStreampl
byteStreanType QE
+
o TN
FConten aseb4Binar

fconteniType 15[xmiDatag + #wildCard
smiDataType
* 1D @ order,
?fgd oftag

0 lrznsfnrmType% ‘

ojsting
+ algorithm,
+ transformObject —
—O—C garctarmonjetinyot
u lectTyp + abstractKeyderivation] name, * salt @ iterationCount,
KeyerntionType string sfstring tong

Figure 10: dataObjectType Schema Diagram

<xsd:complexType name = "keyderivationType">

<xsd:annotation>

<xsd:documentation>key derivation type contains the information

that was used to derive the encryption key for this dataObject.

Key derivation type contains:

 name - name of algorithm used

salt - 16-byte random seed used for that algorithm initialization

iterationCount - number of iterations used by the algorithm to derive the key

</xsd:documentation>

</xsd:annotation>

<xsd:attribute name = "name" use = "required" type = "xsd:string"/>

<xsd:attribute name = "salt" use = "required">

<xsd:simpleType>

<xsd:restriction base = "xsd:string">

<xsd:length value = "16"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

<xsd:attribute name = "iterationCount" use = "required" type = "xsd:long"/>

</xsd:complexType>

<xsd:element name = "abstractKeyderivation" type = "keyderivationType" abstract = "true">

<xsd:annotation>

<xsd:documentation>

abstractKeyderivation is declared abstract so that it can be used for element substitution

in cases when default key derivation is not sufficient. In order for creating more specific

key derivation constructs, one would have to extend from keyderivationType to a concrete type,

and then create an element of that new type. Finally, in an instance of XML governed by this

schema, the reference to key derivation in an instance of transformObject element would

point not to instance of keyderivation element, but rather instance of the

custom element. In other words, keyderivation would be SUBSTITUTED with a concrete key

derivation element.
In cases where default functionality is sufficient, the provided defaultKeyDerivation

 element can be used for the substitution.

</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name = "keyderivation" type = "keyderivationType" substitutionGroup = "abstractKeyderivation">

<xsd:annotation>

<xsd:documentation>

Default implementation of key derivation type.

</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:complexType name = "transformObjectType">

<xsd:annotation>

<xsd:documentation>transformObjectType: An element

of transformObjectType contains all of the information required to reverse the

transformations applied to the original contents of the dataObject. It

has two possible subsidiary elements: The algorithm element

contains information about the algorithm used to encrypt the

data. The key-derivation element contains the information that

was used to derive the encryption key for this dataObject It has three

attributes: 1. ID: an XML ID 2. transformType: one of n predefined

transformations types. Current valid types are compression,

encryption, and authentication. 3. order: If there is more than one

transformation elements in a dataObject this integer indicates

the order in which the reversal transformations should be applied.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name = "algorithm" type = "xsd:string">

<xsd:annotation>

<xsd:documentation>algorithm element contains information

about the algorithm used to encrypt the data.

</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element ref = "abstractKeyderivation" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>

<xsd:attribute name = "ID" type = "xsd:ID"/>

<xsd:attribute name = "order" type = "xsd:string"/>

<xsd:attribute name = "transformType" use = "required">

<xsd:simpleType>

<xsd:restriction base = "xsd:string">

<xsd:enumeration value = "COMPRESSION"/>

<xsd:enumeration value = "AUTHENTICATION"/>

<xsd:enumeration value = "ENCRYPTION"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:complexType>
<xsd:complexType name = "dataObjectType">

<xsd:annotation>

<xsd:documentation>dataObjectType : An element of dataObjectType

contains current byteStream content and any required data to restore

them to the form intended for the original designated community.

It has two possible subsidiary elements: The byteStream element

provides access to the current content dataObjects for an XFDU

document. An element of dataObjectType must contain exactly 1 byteStream element

that may contain an FLocat element, which provides a pointer to

a content byteStream, and/or an FContent element, which wraps an

encoded version of the dataObject. An element of dataObjectType may contain one or

more transformation elements that contain all of the

information required to reverse each transformation applied to

the dataObject and return the original binary data object

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name = "byteStream" type = "byteStreamType"/>

<xsd:sequence>

<xsd:element name = "transformObject" type = "transformObjectType" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>

</xsd:sequence>

<xsd:attribute name = "ID" type = "xsd:ID"/>

<xsd:attribute name = "repID" type = "xsd:IDREFS"/>

<xsd:attribute name = "mimeType" type = "mimeType"/>

<xsd:attribute name = "size" type = "xsd:long"/>

<xsd:attribute name = "checksum" type = "xsd:string"/>

<xsd:attribute name = "checksumType" type="checksumType">

</xsd:attribute>

</xsd:complexType

<xsd:complexType name = "byteStreamType">

<xsd:annotation>

<xsd:documentation>byteStreamType: An element of byteStreamType

provides access to the current content of dataObjects for a XFDU

document. The byteStreamType: has the following four attributes: ID (an XML ID);

mimeType: the MIME type for the dataObject; size: the size of the dataObject

in bytes; checksum: a checksum for dataObject; checksumType: type of checksum algorithms

used to compute checksum The data contained in these attributes is relevant to final state of data object after all possible transformations of the original data.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name = "FLocat" type = "referenceType" minOccurs = "0" maxOccurs = "unbounded"/>

<xsd:element name = "FContent" type = "fcontentType" minOccurs = "0"/>

</xsd:sequence>

<xsd:attribute name = "ID" use = "required" type = "xsd:ID"/>

<xsd:attribute name = "mimeType" type = "mimeType"/>

<xsd:attribute name = "size" type = "xsd:long"/>

<xsd:attribute name = "checksum" type = "xsd:string"/>

<xsd:attribute name = "checksumType" type="checksumType">

</xsd:attribute>

</xsd:complexType>

<xsd:complexType name = "dataObjectSecType">

<xsd:annotation>

<xsd:documentation>dataObjectSecType : a container for one or more elements of dataObjectType

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name = "dataObject" type = "dataObjectType" maxOccurs = "unbounded"/>

</xsd:sequence>

</xsd:complexType>

8.3 Examples

8.3.1 Verify the checksum of the file

Reader of the document can verify checksum of animation file by comparing its checksum with checksum value specified in checksum attribute of dataObject element.

<dataObjectSection>

<dataObject repID = "mathMLAlgRepMD" ID = "mpeg21">

<byteStream mimeType = "video/mpeg" checksum = "b3eb4b34" ID = "mpeg21AnimData" checksumType = "CRC32" size = "414131">

<FLocat locType = "URL" ns2:href = "file:packagesamples/scenario1/mpeg21.mpg" xmlns:ns2 = "http://www.w3.org/TR/xlink"/>

</byteStream>

</dataObject>

 </dataObjectSection>

8.3.2 Specification of Mimetype and checksum with transformations

Mime type and checksum are specified at two levels. The values of mimeType and checksum attributes of the Data Object specify the mime type and checksum of the original data object, that is the bytestream before any transformations were applied. The values of the mimeType and checksum attributes of the byteString object are those of the current data object before and transformations are reversed.

 <dataObject size = "151672" checksumType = "CRC32" checksum = "6d0e30ea" mimeType = "application/pdf" ID = "ATDMD">

<byteStream mimeType = "application/octetstream" checksum = "ad78ad5d" ID = "atdMDbs" checksumType = "CRC32" size = "110874">

<FLocat locType = "URL" ns3:href = "file:packagesamples/scenario1/atd.pdf" xmlns:ns3 = "http://www.w3.org/TR/xlink"/>

</byteStream>

<transformObject transformType = "ENCRYPTION">

<algorithm>blowfish</algorithm>

</transformObject>

</dataObject>
8.3.3 Referencing and inclusion of data content

The data that existed at the moment of packaging base64 encoded within binData. Also, FLocat element points to HTTP GET URL where the latest version of data can be obtained.

<dataObject mimeType = "application/octetstream" ID = "orbitalData">

<byteStream checksum = "b3eb4b34" ID = "orbitData" checksumType = "CRC32">

<FLocat locType = "URL" ns7:href = "http://coin.gsfc.nasa.gov:8080/ims-bin/3.0.1/nph-ims.cgi?msubmit=yes&lastmode=SRCHFORM" xmlns:ns7 = "http://www.w3.org/TR/xlink"/>

<Fcontent><binData>UEsDBBQACAAIAKqMBC8AAAAAAAAAAAAAAAAPAAAAeGZkdS8uY2xhc3NwYXRot

ZXfS8MwEMff/StK35OugqCwH4hO0I.</binData>

</FContent>

</byteStream>

</dataObject>

8.4 Semantics and issues

These are proposed semantics for the existence of multiple flocat or fcontent element in a byteStream:

1. One fContent and one fLocat means the fContent should serve as backup if the fLocat is not accessable

2. One flocat referencing a object in the XFDU and One fLocat accessing an Object outside the XFDU means the object located within the package should serve as backup if the remote fLocat is not

3. Multiple fLocats indicate the referenced objects must be concatenated to form the original data object. The content unit metadata is correct for the concatenated object

9 Metadata Section Type and Metadata Objects

9.1 Overview

The Metadata Section (metadataSec) contains or references 0 or more Metadata Objects (metadataObjects) that record all of the metadata for all items in the XFDU package. Multiple metadata objects are allowed so that the metadata can be recorded for each separate item within the XFDU object. The metadata schema allows the package designer to define any metadata model by providing attributes for both metadata categories and a classification scheme for finer definition within categories.) The XFDU Manifest Schema also provides predefined metadata categories and classes via enumerated attributes that follow the OAIS information model as follows:

· Descriptive Information, intended for the use of Finding Aids such as Catalogs or Search Engines, may be categorized as ‘DMD’ and further classified as ‘DESCRIPTION’ or ‘OTHER’.

· Representation Information may be categorized as ‘REP’ and then further classified as ‘SYNTAX’, data entity dictionary (‘DED’), or ‘OTHER’

· Preservation Description Information may be categorized as ‘PDI’ and then further classified as ‘REFERENCE’, ‘CONTEXT’, ‘PROVENANCE’, ‘FIXITY’ or ‘OTHER’.
In addition to the elements needed to contain Metadata Objects within the XFDU Manifest and pointers to reference Metadata from the XFDU Package or from external resources, the XFDU Manifest schema allows metadata objects to be referenced using as data objects using the dataObjectPtr. This enables direct mapping to the OAIS representation network where each metadata object is an information object containing both a byte stream and representation information.

9.2 XML SCHEMA for Metadata Objects

[image: image13.jpg]‘.m% @.(Izsslfl(a{mn% .(zlegnry% aonlherclzss%
o #fstring wstring string
0 In(Type% O nlhean(Type%

@ otherCatego:
i
#siring string

. 1D, textinfo,
g olmnd
0 lype% . href% @ O rnle% O zr(rnle%
+ mdRef string anylRI string string
@ eerrype
0 lllle% . shnw% @ O z(luz(e% O vu(ahluzrdeType%

string #string #string #string

0 0 n(heerTyp a . mleeTyp
string mimeType

@olﬂ% aomlmeType% Olextlnfn%
o mimeType string

O vn(ahluzrdeType%

#siring

- hlnDzlz%
Y guseispina

(3] ¢ mawrapg]

m + metadataObject
T ML @2 otherMdType

mdWrapType # xmlData, Gl + #wildCard
2 xmliDataType
+ dataObjectPtr, 1D, O dmommm%

Figure 11: mdSecType and metadataSectionType Schema Diagram

<xsd:complexType name = "mdSecType">

<xsd:annotation>

<xsd:documentation>mdSecType (metadata section) Complex Type A generic

framework for pointing to/including metadata within a XFDU

document, a la Warwick Framework. An mdSec element may have the

following attributes:

1. ID: an XML ID for this element.

2. classification - concrete type of metadata represented by this element of mdSecType

3. category - type of metadata class to which this metadata belongs (e.g. DMD.REP, etc.)

4. otherClass - type of metadata in case classification contains value of "OTHER"

4. otherCategory - type of metadata class in case category contains value of "OTHER"

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name = "mdRef" type = "mdRefType" minOccurs = "0"/>

<xsd:element name = "mdWrap" type = "mdWrapType" minOccurs = "0"/>

<xsd:element name = "dataObjectPtr" type = "dataObjectPtrType" minOccurs = "0"/>

</xsd:sequence>

<xsd:attribute name = "ID" use = "required" type = "xsd:ID"/>

<xsd:attribute name = "classification">

<xsd:simpleType>

<xsd:restriction base = "xsd:string">

<xsd:enumeration value = "DED"/>

<xsd:enumeration value = "SYNTAX"/>

<xsd:enumeration value = "FIXITY"/>

<xsd:enumeration value = "PROVENANCE"/>

<xsd:enumeration value = "CONTEXT"/>

<xsd:enumeration value = "REFERENCE"/>

<xsd:enumeration value = "DESCRIPTION"/>

<xsd:enumeration value = "OTHER"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

<xsd:attribute name = "category">

<xsd:simpleType>

<xsd:restriction base = "xsd:string">

<xsd:enumeration value = "REP"/>

<xsd:enumeration value = "PDI"/>

<xsd:enumeration value = "DMD"/>

<xsd:enumeration value = "OTHER"/>

<xsd:enumeration value = "ANY"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

<xsd:attribute name = "otherClass" type = "xsd:string"/>

<xsd:attribute name = "otherCategory" type = "xsd:string"/>

</xsd:complexType>

<xsd:complexType name = "metadataSectionType">

<xsd:sequence>

<xsd:element name = "metadataObject" type = "mdSecType" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>

9.3 Examples

9.3.1 Metadata section using OAIS Information Model

In this example, several metadata objects are presented that show usage of different categories and classes:

· Metadata object with XML ID ' ECSDMD' is categorized as descriptive metadata of class OTHER; thus, its category attribute has a value of DMD and classification attribute has a value of OTHER

· Metadata object with XML ID ' provenance' is categorized as preservation metadata of class PROVENANCE; thus, its category attribute has a value of PDI and classification attribute has a value of PROVENANCE

· Metadata object with XML ID ' atdMD' is categorized as representation metadata of class OTHER; thus, its category attribute has a value of REP and classification attribute has a value of OTHER

<metadataSection>

<metadataObject ID = "ECSDMD" classification = "OTHER" category = "DMD">

<mdRef vocabluaryMdType = "OTHER" mimeType = "text/xml" textInfo = "spacecraft description" locType = "URL" ns1:href = "file:packagesamples/scenario1/ecsdmd.xml" xmlns:ns1 = "http://www.w3.org/TR/xlink"/>

</metadataObject>

<metadataObject ID = "provenance" classification = "PROVENANCE" category = "PDI">

<mdRef vocabluaryMdType = "OTHER" mimeType = "text/xml" textInfo = "processing history XML file" locType = "URL" ns1:href = "file:packagesamples/scenario1/pdi.xml" xmlns:ns1 = "http://www.w3.org/TR/xlink"/>

</metadataObject>

<metadataObject ID = "atdMD" classification = "OTHER" category = "REP">

<dataObjectPtr dataObjectID = "ATDMD"/>

</metadataObject>

<metadataSection>

10 Behavior Section and Behavior Objects

10.1 overview

A Behavior Section (behaviorSection) contains one or more Behavior Objects (behaviorObject) that associate executable behaviors with content in the XFDU object. A behavior Object contains an Interface Definition (interfaceDef) that represents an abstract
definition of the set of behaviors represented by a particular Behavior Object. A Behavior Object also may contain a
Mechanism that is a module of executable code that implements and runs the behaviors defined abstractly by the interface definition. In the schema a Mechanism is represented by the element abstractMechanism. An abstract element cannot be instantiated in the instance document. Instead, concrete implementations based on techniques such as JAVA, WSDL or Ant would be declared part of mechanism substitution group and be used. Behavior Objects may be nested to indicate chaining of execution.

The ability to specify Interfaces Definitions and implementation dependant mechanisms is a powerful tool. However, the full potential of these feature will be realized when the value of the content unit can be the result of the application of Behaviors to data in the content unit. The ability to monitor and control the application of behaviors to data objects is a major goal of the XFDU Version 2 Recommendations

10.2 XML Schema for Behavior Objects
[image: image14.jpg]1D, @ structlD, O hehzvlanype% * created
[Prr e e O gty
. lextlnfn . grnupID

* 1D textinfo
T I I
.lype% .href% @.rnle% .zr(rnle%
string anyURI string string

ol o oG

0 In(Type% O nlhean(Type%

#string string

dataObjectl
IDREF

+ dataObjectPtr, O m%
) @l

dataObjectPirType.

o33 cfimtinty

5[* interfaceDe

+ inputParameter g
interfaceDerType &

0 In(Type% O nlhean(Type%

#fstring string
behaviorObject # abstractMechanism, @ type o href, @ role, @ arcrole
behaviorSectionType behaviorObjectType mechanismType string T string string

| ® behaviorObject
behaviorObjectType E

Figure 12: behaviorObjectType Schema Diagram

<xsd:complexType name = "interfaceDefType">

<xsd:annotation>

<xsd:documentation>interfaceDefType: interface definition object. The

interface definition type contains a pointer an abstract

definition of a set of related behaviors. These abstract

behaviors can be associated with the content of a XFDU object.

The interface definition element will be a pointer to another

object (an interface definition object). An interface definition

object could be another XFDU object, or some other entity (e.g.,

a WSDL source). Ideally, an interface definition object should

contain metadata that describes a set of behaviors or methods.

It may also contain files that describe the intended usage of

the behaviors, and possibly files that represent different

expressions of the interface definition. An element of interfaceDefType

is optional to allow for cases where an interface

definition can be obtained from a behavior mechanism object (see

the mechanism element of the behaviorSec).

interfaceDef extends from referenceType and adds ability of specifying inputParameter

that can be either just a string value or pointer to the content in this package

</xsd:documentation>

</xsd:annotation>

<xsd:complexContent>

<xsd:extension base = "referenceType">

<xsd:sequence>

<xsd:element name = "inputParameter" minOccurs = "0" maxOccurs = "unbounded">

<xsd:complexType mixed = "true">

<xsd:sequence>

<xsd:element name = "dataObjectPtr" type = "dataObjectPtrType" minOccurs = "0"/>

</xsd:sequence>

<xsd:attribute name = "name" use = "required" type = "xsd:string"/>

<xsd:attribute name = "value" type = "xsd:string"/>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name = "behaviorObjectType">

<xsd:annotation>

<xsd:documentation>behaviorObjectType: Complex Type for Behaviors. A

behavior Object can be used to associate executable behaviors

with content in the XFDU object. A behavior object has an

interface definition element that represents an abstract

definition of the set of behaviors represented by a particular

behavior object. A behavior object also has an behavior

mechanism which is a module of executable code that implements

and runs the behaviors defined abstractly by the interface

definition. An behavior Object may have the following

attributes: 1. ID: an XML ID for the element 2. structID: IDREFS

 to contentUnit sections within a contentUnit in the XFDU

document. The content that the structID attribute points to is

considered "input" to the behavior mechanism (executable)

defined for the behaviorSec. 3. behaviorType: a behavior type

identifier for a given set of related behaviors. 4. created:

date this behavior section of the XFDU object was created. 5.

textInfo: a description of the type of behaviors this section

represents. 6. groupID: an identifier that establishes a

correspondence between this behavior section and behavior

sections. Typically, this will be used to facilitate versioning

of behavior sections. behavior object may also include another behavior object for chaining of behaviors

Concrete implementation of mechanism (wsdlMechanism, antMechanism ,javaMechanism, etc)

must be used in the instance document.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name = "interfaceDef" type = "interfaceDefType" minOccurs = "0"/>

<xsd:element ref = "abstractMechanism"/>

<xsd:element name = "behaviorObject" type = "behaviorObjectType" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>

<xsd:attribute name = "ID" use = "required" type = "xsd:ID"/>

<xsd:attribute name = "structID" use = "required" type = "xsd:IDREFS"/>

<xsd:attribute name = "behaviorType" type = "xsd:string"/>

<xsd:attribute name = "created" type = "xsd:dateTime"/>

<xsd:attribute name = "textInfo" type = "xsd:string"/>

<xsd:attribute name = "groupID" type = "xsd:string"/>

</xsd:complexType>

<xsd:element name = "abstractMechanism" type = "mechanismType" abstract = "true">

<xsd:annotation>

<xsd:documentation>abstractMechanism is abstract implementation of

mechanismType. It cannot be instantiated in the instance

document. Instead, concrete implementations would have to be

used which are declared part of mechanism substitutionGroup

</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:complexType name = "mechanismType">

<xsd:annotation>

<xsd:documentation>mechanismType: executable mechanism. An element of mechanismType

contains a pointer to an executable code module that

implements a set of behaviors defined by an interface

definition. The mechanism element will be a pointer to another

object (a mechanism object). A mechanism object could be another

XFDU object, or some other entity (e.g., a WSDL source). A

mechanism object should contain executable code, pointers to

executable code, or specifications for binding to network

services (e.g., web services).

mechanismType is declared as base type for concrete implementations of mechanism

</xsd:documentation>

</xsd:annotation>

<xsd:complexContent>

<xsd:extension base = "referenceType"/>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name = "behaviorSectionType">

<xsd:sequence>

<xsd:element name = "behaviorObject" type = "behaviorObjectType" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:complexType>
10.3 Examples

Abstract element mechanism cannot be instantiated in XFDU XML document. The following examples show how abstract mechanism specified in the schema can be extended with concrete mechanism definitions via substitutionGroup technique. The concrete mechanisms can be then used in XFDU XML documents.

10.3.1 Web-service-based mechanism

A wsMechanism element is of type mechanismType and is part of mechanism substitution group. A wsMechanism defines web-service-based mechanism. This means that access point or WSDL document of the web service that implements this mechanism should be specified via linking. This mechanism can used as a concrete mechanism inside of the behaviorSec.

<xsd:element name = "wsMechanism" type = "mechanismType" substitutionGroup = "abstractMechanism">

<xsd:annotation>

<xsd:documentation>wsMechanism is concrete implementation of

abstract mechanism which implements mechanism based on Web

service. Its instance can be used in the instance document in the

place where mechanism declared to be present.

</xsd:documentation>

</xsd:annotation>

</xsd:element>
10.3.2 Java-based mechanism

A javaMechanism element is of type mechanismType and is part of mechanism substitution group. A javaMechanism defines java-based mechanism. This mechanism would specify location of JAR file where executable JAVA code resided and fully qualified name of the main class. This mechanism can used as a concrete mechanism inside of the behaviorSec.

<xsd:element name = "javaMechanism" substitutionGroup = "abstractMechanism">

<xsd:annotation>

<xsd:documentation>javaMechanism is concrete implementation of

abstract mechanism which implements Java-based mechanism.

xlink:href element points to fully qualified name of the Java

class that implements the mechanism. FLocat element specifies

location of the jar file where that class is packaged. File can

be local to this XFDU package, or located on the remote server,

or somewhere on the local file system. An instance of

javaMechanism can be used in the instance document in the place

where mechanism declared to be present.

</xsd:documentation>

</xsd:annotation>

<xsd:complexType>

<xsd:complexContent>

<xsd:extension base = "mechanismType">

<xsd:sequence>

<xsd:element name = "FLocat" type = "referenceType"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

</xsd:element>
10.3.3 ANT based mechanism

antMechanism element is of type mechanismType and is part of mechanism substitution group. antMechanism defines mechanism that is based on Apache Foundation’s ANT tool. One or several ANT-specific XML scripts can be included via xmlData element. At runtime this scripts would have to be interpreted by ANT to execute appropriate software. Software can be included either in the package or reside on the file system. It can be portable, like JAVA code, or operating system specific. This mechanism can used as a concrete mechanism inside of the behaviorSec.

<xsd:element name = "antMechanism" substitutionGroup = "abstractMechanism">

<xsd:annotation>

<xsd:documentation>antMechanism is concrete implementation of

abstract mechanism which implements ANT-based mechanism.

xlink:href element points to a location of ANT script to be

executed. Also, xmlData element can contain ANT specific XML. An

instance of antMechanism can be used in the instance document in

the place where mechanism declared to be present

</xsd:documentation>

</xsd:annotation>

<xsd:complexType>

<xsd:complexContent>

<xsd:extension base = "mechanismType">

<xsd:sequence>

<xsd:element name = "xmlData" type = "xmlDataType" minOccurs = "0"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

</xsd:element>

10.3.4 Example of Behavior content unit

This example hypothesizes a specialization of Content Unit that could be the result of behaviors execution .

XML Schema of substitutionGroup Usage

<xsd:element name = "contentUnit" type = "contentUnitType" substitutionGroup = "abstractContentUnit">

<xsd:annotation>

<xsd:documentation>contentUnit is basic concrete

implementation of abstract contentUnit. Its instance can be used

in the instance document in the place where contentUnit declared

to be present.

</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name = "behavioralContentUnit" substitutionGroup = "contentUnit">

<xsd:annotation>

<xsd:documentation>defaultContentUnit is concrete implementation of

abstract contentUnit that also allows attachment of process

specification to it. Its instance can be used in the instance

document in the place where contentUnit declared to be present.

</xsd:documentation>

</xsd:annotation>

<xsd:complexType>

<xsd:complexContent>

<xsd:extension base = "contentUnitType">

<xsd:sequence>

<xsd:element name = "process">

<xsd:complexType>

<xsd:sequence>

<xsd:element name = "parameter" minOccurs = "0" maxOccurs = "unbounded">

<xsd:complexType>

<xsd:simpleContent>

<xsd:extension base = "xsd:string">

<xsd:attribute name = "name" use = "required" type = "xsd:string"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

<xsd:attribute name = "textInfo" type = "xsd:string"/>

<xsd:attribute name = "behaviorID" type = "xsd:string"/>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

</xsd:element>

Sample instance of behavior content unit

<informationPackageMap>

<behavioralContentUnit id="productFile">

<textInfo>This file contains the result of the YYY experience relative to the Earth Exploration Mission of May 1912...</textInfo>

<dataObjectPtr>ExperienceFile</dataObjectPtr>

<process textInfo="Process EAST CHECK" behaviorID="EAST">

<!-- call the corresponding behavior -->

<param name="EASTFile">eastDDR</param>

<!-- no value for param means local contentUnit -->

<param name="DATAFIle"/>

</process>

</ContentUnit>

</informationPackageMap>

10.4 Sematics and issues

These semantics will be defined during the implementation activities and included prior to the final version of this Recommendation

11 Full XML Schema –Normative/Ruling

[image: image15.jpg]+XFDU
XEDUType

obj

siting

523 ¢

1D, @ textinfo,

string

3 Clamenes

@ version
string

5|

* envi nnmenllnfn%
strin

@bwmk:"slunderslznd% @

@ description
string

@ mechanismType
string

@ namespace,
siring

s s)

+ packageHeader
packageHeaderType

+ behaviorinfo]

)

+ #wildCard

+ xmiDat: &

smiDataType

0 des(rlpllnn% O zlgnrllthzme% @ O muslUnderslznd% @ O nzmespz(e%
string string boslean string
transforminfog | (/% xmiData, + #wildCard
saamise S)
@olﬂ% @.pz(kzgeType% .lextlnfn%
D string string
@olﬂ% @.nrder% 'unllType% '(extlnfn%
i string string string

@ 0 replD%
IDREFS

® dmdiD * pdilD, OzndeID%
Obening clnbind e

+ XFDUptr
referenceTy paE

@ textinfo,
siring

 otherLocType
string

@ locType
#siring

2

3 2|

—{efPs o

+ dataObjectPtr]

dataObjectPirType

@olﬂ% ‘dmommm%
D IDREF

informationPackageMapT;

+ informationPackageMap]

gl

pe contentUnitType

+ abstractContentUnit,

+ metadataSection,
metadatasectionType

+ metadataObject
misecType

+ dataObjectSectio
dataObjectsectionType

+ dataObject,
dataObjectType

n

+ behaviorSection,
behaviorSectionType

+ behaviorObject]
behaviorobjectType

@ textinfo,
string

@ order,
string

@ unitType,
string

Olomd s g El
(o CTEIEF [, TR B Crer I P

—|ols2 alaigte 5

@ textinfo,
string

@ locType
#siring

@ otherLocType

+ XFDUptr]
string

referenceType

]

+ abstractContentUnit,
contentUnitType

+ dataObjectPtr]
dataObjectPirType

el

‘. dmommm%
IDREF

m%

+ abstractContentUnit gl
contentUnitTyge

g ¢

@ otherClass
string

classification
#string

@ category,
#siring

(628 ¢ g 5

@ size,
long

@ mimeType,

* 1D @ replD,
& T i O e T
@ checksumTypeg|

DGR

[® checksum
string

+ bytestrear
bytedtreanType

@ otherCategory,
srin
@o m% aolexﬂnfn% In(Type% O nlhean(Type%
+ marefy] D string #fstring string
O pe. O vn(ahluzrdeType% O nlheerType% O mlmeType%
#fztring string mimeType
@. m% @. mlmeType% .lextlnfn% 'vn(xhluzrdeType%
o mimeType string wstring
@2 otherMdTyp
al® hsztz%
[* mdWrang basegaBina
meWrapType + xmiData + #wildCard
@ il
+ dataObjectPtr, O m% O dmommm%

gl

interfaceDerType dataObjectPirType.

@o ID% @o nrder% .lrznsfnrmType%
i string string
+ transformObject g
transformObjectType
+ abstractKeyderivation] Spamed [saag [Ehermioncomng
ey derhvationType string #fstring tong
‘. m% ‘. slru(lID% @ O hehz\/lanype% @ ® created
D IDREES string dateTime
0 0
@olﬂ% @Olex{lnfn% .In(Type% Onlhean(Type%
i string #string string
+ interfaceDe! inputParametergl | {9 dataObjectPtr, ataObjectl

afgrs

REF

@ textinfo,
siring

@ locType

+ abstractMechanismg]
vfsiring

mechanismType

3

 otherLocType
string

g 5|

—{afPs

+ behaviorObjectg|
BRI BIEEaaE

Figure 13 Full XFDU Schema Diagram

<?xml version = "1.0" encoding = "UTF-8"?>

<!--Generated by Turbo XML 2.4.1.100. Conforms to w3c http://www.w3.org/2001/XMLSchema-->

<xsd:schema xmlns:xlink = "http://www.w3.org/TR/xlink" xmlns:xsd = "http://www.w3.org/2001/XMLSchema"

 elementFormDefault = "qualified">

<xsd:import namespace = "http://www.w3.org/TR/xlink" schemaLocation = "http://www.loc.gov/standards/mets/xlink.xsd"/>

<xsd:attributeGroup name = "METADATA">

<xsd:annotation>

<xsd:documentation>

This attribute group aggregates attributes that can be used for specifying metadata type

This group includes following attributes:

vocabluaryMdType specifies location type (e.g. MARC.DDI)

otherMdType specifies location type in case mdType has value of OTHER

</xsd:documentation>

</xsd:annotation>

<xsd:attribute name = "vocabluaryMdType" use = "required">

<xsd:simpleType>

<xsd:restriction base = "xsd:string">

<xsd:enumeration value = "MARC"/>

<xsd:enumeration value = "EAD"/>

<xsd:enumeration value = "DC"/>

<xsd:enumeration value = "NISOIMG"/>

<xsd:enumeration value = "LC-AV"/>

<xsd:enumeration value = "VRA"/>

<xsd:enumeration value = "TEIHDR"/>

<xsd:enumeration value = "DDI"/>

<xsd:enumeration value = "FGDC"/>

<xsd:enumeration value = "EAST"/>

<xsd:enumeration value = "OTHER"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

<xsd:attribute name = "otherMdType" type = "xsd:string"/>

</xsd:attributeGroup>

<xsd:attributeGroup name = "LOCATION">

<xsd:annotation>

<xsd:documentation>

This attribute group aggregates attributes that can be used for specifiying type of location

This group includes following attributes:

locType specifies location type (e.g. URN,URL)

otherLocType specifies location type in case locType has value of OTHER

</xsd:documentation>

</xsd:annotation>

<xsd:attribute name = "locType" use = "required">

<xsd:simpleType>

<xsd:restriction base = "xsd:string">

<xsd:enumeration value = "URN"/>

<xsd:enumeration value = "URL"/>

<xsd:enumeration value = "PURL"/>

<xsd:enumeration value = "HANDLE"/>

<xsd:enumeration value = "DOI"/>

<xsd:enumeration value = "OTHER"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

<xsd:attribute name = "otherLocType" type = "xsd:string"/>

</xsd:attributeGroup>

<xsd:simpleType name = "mimeType">

<xsd:restriction base = "xsd:string">

<xsd:enumeration value = "image/gif"/>

<xsd:enumeration value = "image/jpeg"/>

<xsd:enumeration value = "image/jpeg2000"/>

<xsd:enumeration value = "image/png"/>

<xsd:enumeration value = "image/tiff"/>

<xsd:enumeration value = "image/geo-tiff"/>

<xsd:enumeration value = "application/octetstream"/>

<xsd:enumeration value = "application/pdf"/>

<xsd:enumeration value = "application/x-hdf"/>

<xsd:enumeration value = "application/hdf-eos"/>

<xsd:enumeration value = "application/fits"/>

<xsd:enumeration value = "application/eas"/>

<xsd:enumeration value = "application/pds"/>

<xsd:enumeration value = "application/xfdu"/>

<xsd:enumeration value = "application/cdf"/>

<xsd:enumeration value = "application/net-cdf"/>

<xsd:enumeration value = "text/xml"/>

<xsd:enumeration value = "text/html"/>

<xsd:enumeration value = "text/plain"/>

<xsd:enumeration value = "application/doc"/>

<xsd:enumeration value = "application/rtf"/>

<xsd:enumeration value = "xml/ded"/>

<xsd:enumeration value = "xml/votable"/>

<xsd:enumeration value = "video/mpeg"/>

<xsd:enumeration value = "video/mpeg-7"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name = "checksumType">

<xsd:restriction base = "xsd:string">

<xsd:enumeration value = "HAVAL"/>

<xsd:enumeration value = "MD5"/>

<xsd:enumeration value = "SHA-1"/>

<xsd:enumeration value = "SHA-256"/>

<xsd:enumeration value = "SHA-384"/>

<xsd:enumeration value = "SHA-512"/>

<xsd:enumeration value = "TIGER"/>

<xsd:enumeration value = "WHIRLPOOL"/>

<xsd:enumeration value = "CRC32"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:attribute name = "mustUnderstand" type = "xsd:boolean"/>

<xsd:attribute name = "namespace" type = "xsd:string"/>

<xsd:complexType name = "referenceType">

<xsd:attribute name = "ID" type = "xsd:ID"/>

<xsd:attribute name = "textInfo" type = "xsd:string"/>

<xsd:attributeGroup ref = "LOCATION"/>

<xsd:attributeGroup ref = "xlink:simpleLink"/>

</xsd:complexType>

<xsd:complexType name = "mdSecType">

<xsd:annotation>

<xsd:documentation>mdSecType (metadata section) Complex Type A generic

framework for pointing to/including metadata within a XFDU

document, a la Warwick Framework. An mdSec element may have the

following attributes:

1. ID: an XML ID for this element.

2. classification - concrete type of metadata represented by this element of mdSecType

3. category - type of metadata class to which this metadata belongs (e.g. DMD.REP, etc.)

4. otherClass - type of metadata in case classification contains valud of "OTHER"

4. otherCategory - type of metadata class in case category contains value of "OTHER"

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name = "mdRef" type = "mdRefType" minOccurs = "0"/>

<xsd:element name = "mdWrap" type = "mdWrapType" minOccurs = "0"/>

<xsd:element name = "dataObjectPtr" type = "dataObjectPtrType" minOccurs = "0"/>

</xsd:sequence>

<xsd:attribute name = "ID" use = "required" type = "xsd:ID"/>

<xsd:attribute name = "classification">

<xsd:simpleType>

<xsd:restriction base = "xsd:string">

<xsd:enumeration value = "DED"/>

<xsd:enumeration value = "SYNTAX"/>

<xsd:enumeration value = "FIXITY"/>

<xsd:enumeration value = "PROVENANCE"/>

<xsd:enumeration value = "CONTEXT"/>

<xsd:enumeration value = "REFERENCE"/>

<xsd:enumeration value = "DESCRIPTION"/>

<xsd:enumeration value = "OTHER"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

<xsd:attribute name = "category">

<xsd:simpleType>

<xsd:restriction base = "xsd:string">

<xsd:enumeration value = "REP"/>

<xsd:enumeration value = "PDI"/>

<xsd:enumeration value = "DMD"/>

<xsd:enumeration value = "OTHER"/>

<xsd:enumeration value = "ANY"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

<xsd:attribute name = "otherClass" type = "xsd:string"/>

<xsd:attribute name = "otherCategory" type = "xsd:string"/>

</xsd:complexType>

<xsd:complexType name = "packageHeaderType">

<xsd:annotation>

<xsd:documentation>packageHeaderType: Complex Type for metadata about the

mapping of the logical packages to the physical structures. The

package header section consists of three possible subsidiary

sections: environmentInfo (specification of the hardware and software

platform which created this package), behaviorInfo (behavior mechanism

related metadata), and transformInfo (the names, classifications, parameter

names/types and any other information needed to reverse

transformations used in the XFDU). Both transformInfo and behaviorInfo have an optional

mustUnderstand attribute that declares if the reader of this package must

understand described transformation, behavior mechanisms in order to

process content of the package. packageHeaderType has a single

attribute, ID: an XML ID.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name = "environmentInfo" minOccurs = "0" maxOccurs = "unbounded">

<xsd:annotation>

<xsd:documentation>environmentInfo: technical metadata. The environmentInfo element

provides a wrapper around a generic metadata section that

should contain technical metadata regarding a dataObject or dataObjects. It

has a single attribute, ID, which dataObject/dataObjectGrp elements can use

to reference the technical metadata that applies to them.

</xsd:documentation>

</xsd:annotation>

<xsd:complexType>

<xsd:simpleContent>

<xsd:extension base = "xsd:string">

<xsd:attribute name = "ID" use = "required" type = "xsd:ID"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

</xsd:element>

<xsd:element name = "behaviorInfo" minOccurs = "0" maxOccurs = "unbounded">

<xsd:annotation>

<xsd:documentation>

behaviorInfo contains:

mustUnderstand - indicates if this mechanism must be understood by processor

description - general description

mechanismType - type of behavior mechanism (e.g. WS,ANT,JAVA) (should be made into

 enumeration most likely)

namespace - namespace of the specified technology if any

behaviorInfo has an optional xmlData element to include any additional metadata if neede

</xsd:documentation>

</xsd:annotation>

<xsd:complexType>

<xsd:sequence>

<xsd:element name = "xmlData" type = "xmlDataType" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>

<xsd:attribute ref = "mustUnderstand"/>

<xsd:attribute name = "description" type = "xsd:string"/>

<xsd:attribute name = "mechanismType" type = "xsd:string"/>

<xsd:attribute ref = "namespace"/>

</xsd:complexType>

</xsd:element>

<xsd:element name = "transformInfo" minOccurs = "0" maxOccurs = "unbounded">

<xsd:annotation>

<xsd:documentation>transformInfo (the names, classifications, parameter

names/types and any other information needed to reverse

transformations used in the XFDU)

transformInfo contains:

mustUnderstand - indicates if this transformation technology must be understood by processor

description - gneral description

algorithmName -name of transformation algorithm

namespace - namespace of the specified technology if any

transformInfo has optional xmlData element to include any additional metadata if neede

</xsd:documentation>

</xsd:annotation>

<xsd:complexType>

<xsd:sequence>

<xsd:element name = "xmlData" type = "xmlDataType" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>

<xsd:attribute name = "description" type = "xsd:string"/>

<xsd:attribute name = "algorithmName" type = "xsd:string"/>

<xsd:attribute ref = "mustUnderstand"/>

<xsd:attribute ref = "namespace"/>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

<xsd:attribute name = "ID" type = "xsd:ID"/>

</xsd:complexType>

<xsd:complexType name = "mdRefType">

<xsd:annotation>

<xsd:documentation>mdRefType: metadata reference. An element of mdRefType is a

generic element used throughout the XFDU schema to provide a

pointer to metadata which resides outside the XFDU document. mdRefType

has the following attributes: 1. ID: an XML ID; 2. locType: the

type of locator contained in the body of the element; 3.

otherLocType: a string indicating an alternative locType when

the locType attribute value is set to "OTHER."; 4. xlink:href:

see XLink standard (http://www.w3.org/TR/xlink) 5. xlink:role:

"" 6. xlink:arcrole: "" 7. xlink:title: "" 8. xlink:show: "" 9.

xlink:actuate: "" 10. mimeType: the MIME type for the metadata

being pointed at; 11. vocabluaryMdType: the type of metadata being pointed

at (e.g., MARC, EAD, etc.); 12. textInfo: a label to display to the viewer of the

XFDU document identifying the metadata; and NB: mdRef is an empty element. The location of the

metadata must be recorded in the xlink:href attribute,

supplemented by the XPTR attribute as needed.

</xsd:documentation>

</xsd:annotation>

<xsd:complexContent>

<xsd:extension base = "referenceType">

<xsd:attributeGroup ref = "METADATA"/>

<xsd:attribute name = "mimeType" type = "mimeType"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name = "xmlDataType">

<xsd:annotation>

<xsd:documentation>A wrapper to contain arbitrary XML content.</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:any namespace = "##any" processContents = "strict" maxOccurs = "unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name = "fcontentType">

<xsd:annotation>

<xsd:documentation>

fContentType encapsulates and agregates a type that can have a choice of either

binary or xml data

</xsd:documentation>

</xsd:annotation>

<xsd:choice>

<xsd:element name = "binData" type = "xsd:base64Binary" minOccurs = "0">

<xsd:annotation>

<xsd:documentation>A wrapper to contain Base64 encoded metadata.</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name = "xmlData" type = "xmlDataType" minOccurs = "0"/>

</xsd:choice>

<xsd:attribute name = "ID" type = "xsd:ID"/>

</xsd:complexType>

<xsd:complexType name = "mdWrapType">

<xsd:annotation>

<xsd:documentation>mdWrapType: metadata wrapper. An element of mdWrapType is a

generic element used throughout the XFDU schema to allow the

encoder to place arbitrary metadata conforming to other

standards/schema within a XFDU document. The mdWrapType

can have the following attributes: 1. ID: an XML ID for

this element; 2. mimeType: the MIME type for the metadata

contained in the element; 3. vocabluaryMdType: the type of metadata

contained (e.g., MARC, EAD, etc.); 4. textInfo: a label to display to the viewer

of the XFDU document identifying the metadata.

</xsd:documentation>

</xsd:annotation>

<xsd:complexContent>

<xsd:extension base = "fcontentType">

<xsd:attribute name = "mimeType" type = "mimeType"/>

<xsd:attribute name = "textInfo" type = "xsd:string"/>

<xsd:attributeGroup ref = "METADATA"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name = "dataObjectPtrType">

<xsd:annotation>

<xsd:documentation>

The dataObjectPtrType is a type that can be used to refernce dataObjects by dataObjectID.

The dataObjectPtrType has two attributes:

1. ID: an XML ID for this element; and

2. dataObjectID: an IDREF to a dataObject element

</xsd:documentation>

</xsd:annotation>

<xsd:attribute name = "ID" type = "xsd:ID"/>

<xsd:attribute name = "dataObjectID" use = "required" type = "xsd:IDREF"/>

</xsd:complexType>

<xsd:complexType name = "keyderivationType">

<xsd:annotation>

<xsd:documentation>key derivation type contains the information

that was used to derive the encryption key for this dataObject.

Key derivation type contains:

 name - name of algorithm used

salt - 16-byte random seed used for that algorithm initialization

iterationCount - number of iterations used by the algorithm to derive the key

</xsd:documentation>

</xsd:annotation>

<xsd:attribute name = "name" use = "required" type = "xsd:string"/>

<xsd:attribute name = "salt" use = "required">

<xsd:simpleType>

<xsd:restriction base = "xsd:string">

<xsd:length value = "16"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

<xsd:attribute name = "iterationCount" use = "required" type = "xsd:long"/>

</xsd:complexType>

<xsd:element name = "abstractKeyderivation" type = "keyderivationType" abstract = "true">

<xsd:annotation>

<xsd:documentation>

abstractKeyderivation is declared abstract

so that it can be used for element substitution in cases when default key derivation is not

sufficient. In order for creating more specific key derivation constructs, one would have to

extend from keyderivationType to a concrete type, and then create an element of that new type. Finally,

in an instance of XML governed by this schema, the reference to key derivation in an instance of

transformObject element would point not to instance of keyderivation element, but rather instance of the

custom element. In other words, keyderivation would be SUBSTITUTED with a concrete key derivation

element In cases where default functionality is sufficient, the provided keyDerivation element can be used for the concrete element.

</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name = "keyderivation" type = "keyderivationType" substitutionGroup = "abstractKeyderivation">

<xsd:annotation>

<xsd:documentation>

Default implementation of key derivation type.

</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:complexType name = "transformObjectType">

<xsd:annotation>

<xsd:documentation>transformObjectType: transformation information An element

of transformObjectType contains all of the information required to reverse the

transformations applied to the original contents of the dataObject. It

has two possible subsidiary elements: The algorithm element

contains information about the algorithm used to encrypt the

data. The key-derivation element contains the information that

was used to derive the encryption key for this dataObject It has three

attributes: 1. ID: an XML ID 2. transformType: one of n predefined

transformations types. Current valid types are compression,

encryption, authentication. 3. order: If there are more than one

transformation elements in an dataObject this integer indicates

the order in which the reversal transformations should be applied.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name = "algorithm" type = "xsd:string">

<xsd:annotation>

<xsd:documentation>algorithm element contains information

about the algorithm used to encrypt the data.

</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element ref = "abstractKeyderivation" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>

<xsd:attribute name = "ID" type = "xsd:ID"/>

<xsd:attribute name = "order" type = "xsd:string"/>

<xsd:attribute name = "transformType" use = "required">

<xsd:simpleType>

<xsd:restriction base = "xsd:string">

<xsd:enumeration value = "COMPRESSION"/>

<xsd:enumeration value = "AUTHENTICATION"/>

<xsd:enumeration value = "ENCRYPTION"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:complexType>

<xsd:complexType name = "byteStreamType">

<xsd:annotation>

<xsd:documentation>byteStreamType: An element of byteStreamType

provides access to the current content of dataObjects for a XFDU

document. The byteStreamType: has the following four attributes: ID (an XML ID);

mimeType: the MIME type for the dataObject; size: the size of the dataObject

in bytes; checksum: a checksum for dataObject; checksumType: type of checksum algorithms used to compute checksum

The data contained in these attributes is relevant to final state of data object after all possible transformations of the original data.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name = "FLocat" type = "referenceType" minOccurs = "0" maxOccurs = "unbounded"/>

<xsd:element name = "FContent" type = "fcontentType" minOccurs = "0"/>

</xsd:sequence>

<xsd:attribute name = "ID" use = "required" type = "xsd:ID"/>

<xsd:attribute name = "mimeType" type = "mimeType"/>

<xsd:attribute name = "size" type = "xsd:long"/>

<xsd:attribute name = "checksum" type = "xsd:string"/>

<xsd:attribute name = "checksumType" type="checksumType">

</xsd:attribute>

</xsd:complexType>

<xsd:complexType name = "dataObjectType">

<xsd:annotation>

<xsd:documentation>dataObjectType : An element of dataObjectType

contains current byteStream content and any required data to restore

them to the form intended for the original designated community.

It has two possible subsidiary elements: The byteStream element

provides access to the current content dataObjects for an XFDU

document. An element of dataObjectType must contain exactly 1 byteStream element

that may contain an FLocat element, which provides a pointer to

a content byteStream, and/or an FContent element, which wraps an

encoded version of the dataObject. An element of dataObjectType may contain one or

more transformation elements that contain all of the

information required to reverse each transformation applied to

the dataObject and return the original binary data object.

The infoObjEntry has the following five attributes: 1. ID: an XML ID

2, mimeType: the MIME type for the dataObject 3. size: the size of the dataObject

in bytes 4. checksum: a checksum for dataObject 5. checksumType: type of checksum algorithms used to

compute checksum 6. repID list of representation metadata IDREFs. The size, checksum, checksumtype and

mime type are related to the original data before any transformations occured.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name = "byteStream" type = "byteStreamType"/>

<xsd:sequence>

<xsd:element name = "transformObject" type = "transformObjectType" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>

</xsd:sequence>

<xsd:attribute name = "ID" type = "xsd:ID"/>

<xsd:attribute name = "repID" type = "xsd:IDREFS"/>

<xsd:attribute name = "mimeType" type = "mimeType"/>

<xsd:attribute name = "size" type = "xsd:long"/>

<xsd:attribute name = "checksum" type = "xsd:string"/>

<xsd:attribute name = "checksumType" type="checksumType">

</xsd:attribute>

</xsd:complexType>

<xsd:complexType name = "dataObjectSectionType">

<xsd:annotation>

<xsd:documentation>dataObjectSectionType : a container for one or more elements of dataObjectType

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name = "dataObject" type = "dataObjectType" maxOccurs = "unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name = "contentUnitType">

<xsd:annotation>

<xsd:documentation>ContentUnit Complex Type The XFDU standard

represents a data package structurally as a series of nested

content units, that is, as a hierarchy (e.g., a data product,

which is composed of datasets, which are composed of time

series, which are composed of records). Every content node in

the structural map hierarchy may be connected (via subsidiary

XFDUptr or dataObjectPtr elements) to information objects which

represent that unit as a portion of the whole package. The content

units element has the following attributes:

1.ID (an XML ID);

2.order: an numeric string (e.g., 1.1, 1.2.1, 3,) representation

of this unit's order among its siblings (e.g., its sequence);

3.textInfo: a string label to describe this contentUnit to an end

user viewing the document, as per a table of contents entry

4.repID: a set of IDREFs to representation information sections

within this XFDU document applicable to this contentUnit.

5.dmdID: a set of IDREFS to descriptive information sections

within this XFDU document applicable to this contentUnit.

6.pdiID: a set of IDREFS to preservation description information

sections within this XFDU document applicable to this

contentUnit

7.anyMdID: a set of IDREFS to any other metadata sections that do not fit

rep,dmd or pdi metdata related to this contentUnit

88.unitType: a type of content unit (e.g., Application

Data Unit, Data Description Unit, Software Installation Unit, etc.).

contentUnitType is declared as a base type for concrete implementations of contentUnit.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name = "XFDUptr" type = "referenceType" minOccurs = "0" maxOccurs = "unbounded">

<xsd:annotation>

<xsd:documentation>XFDUptr:XFDU Pointer. The XFDUptr element allows a

content unit to be associated with a separate XFDU containing

the content corresponding with that contentUnit, rather than

pointing to one or more internal dataObjects. A typical instance of

this would be the case of a thematic data product that collects

data products from several instruments observe an event of

interest. The content units for each instrument datasets might

point to separate XFDUs, rather than having dataObjects and dataObject

groups for every dataset encoded in one package. The XFDUptr

element may have the following attributes: ID: an XML ID for

this element locType: the type of locator contained in the

xlink:href attribute; otherLocType: a string to indicate an

alternative locType if the locType attribute itself has a value

of "OTHER." xlink:href: see XLink standard

(http://www.w3.org/TR/xlink) xlink:role: "" xlink:arcrole: ""

xlink:title: "" xlink:show: "" xlink:actuate: "" NOTE: XFDUptr

is an empty element. The location of the resource pointed to

MUST be stored in the xlink:href element.

</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name = "dataObjectPtr" type = "dataObjectPtrType" minOccurs = "0" maxOccurs = "unbounded"/>

<xsd:element ref = "abstractContentUnit" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>

<xsd:attribute name = "ID" type = "xsd:ID"/>

<xsd:attribute name = "order" type = "xsd:string"/>

<xsd:attribute name = "unitType" type = "xsd:string"/>

<xsd:attribute name = "textInfo" type = "xsd:string"/>

<xsd:attribute name = "repID" type = "xsd:IDREFS"/>

<xsd:attribute name = "dmdID" type = "xsd:IDREFS"/>

<xsd:attribute name = "pdiID" type = "xsd:IDREFS"/>

<xsd:attribute name = "anyMdID" type = "xsd:IDREFS"/>

</xsd:complexType>

<xsd:element name = "abstractContentUnit" type = "contentUnitType" abstract = "true">

<xsd:annotation>

<xsd:documentation>abstractContentUnit is abstract implementation of

contentUnitType. It cannot be instantiated in the instance

document. Instead, concrete implementations would have to be

used which are declared part ofcontentUnit substitutionGroup

</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name = "contentUnit" type = "contentUnitType" substitutionGroup = "abstractContentUnit">

<xsd:annotation>

<xsd:documentation>contentUnit is basic concrete

implementation of abstract conentUnit. Its instace can be used

in the instance document in the place where contentUnit declared

to be present.

</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:complexType name = "informationPackageMapType">

<xsd:annotation>

<xsd:documentation>informationPackageMapType Complex Type The Information Package Map

outlines a hierarchical structure for the

original object being encoded, using a series of nested

contentUnit elements. An element of informationPackageMapType has the following

attributes: ID: an XML ID for the element; TYPE: the type of

Information Product provided. Typical values will be"AIP" for a

map which describes a complete AIP obeying all constrainsts and

cardinalitiies in the OAIS reference model "SIP" for a map which

describes a Submission Information Package textInfo: a string to

describe the informationPackageMap to users. packageType: a type for the object,

 e.g., book, journal, stereograph, etc. Concrete implementation of abstractContentUnit

 (ContentUnit, behavioralContentUnit, etc) have to be used in the instance document.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element ref = "abstractContentUnit" maxOccurs = "unbounded"/>

</xsd:sequence>

<xsd:attribute name = "ID" type = "xsd:ID"/>

<xsd:attribute name = "packageType" type = "xsd:string"/>

<xsd:attribute name = "textInfo" type = "xsd:string"/>

</xsd:complexType>

<xsd:complexType name = "interfaceDefType">

<xsd:annotation>

<xsd:documentation>interfaceDefType: interface definition object. The

interface definition type contains a pointer an abstract

definition of a set of related behaviors. These abstract

behaviors can be associated with the content of a XFDU object.

The interface definition element will be a pointer to another

object (an interface definition object). An interface definition

object could be another XFDU object, or some other entity (e.g.,

a WSDL source). Ideally, an interface definition object should

contain metadata that describes a set of behaviors or methods.

It may also contain files that describe the intended usage of

the behaviors, and possibly files that represent different

expressions of the interface definition. An element of interfaceDefType

is optional to allow for cases where an interface

definition can be obtained from a behavior mechanism object (see

the mechanism element of the behaviorSec).

interfaceDef extends from referenceType and adds ability of specifying inputParameter

that can be either just a string value or pointer to the content in this package

</xsd:documentation>

</xsd:annotation>

<xsd:complexContent>

<xsd:extension base = "referenceType">

<xsd:sequence>

<xsd:element name = "inputParameter" minOccurs = "0" maxOccurs = "unbounded">

<xsd:complexType mixed = "true">

<xsd:sequence>

<xsd:element name = "dataObjectPtr" type = "dataObjectPtrType" minOccurs = "0"/>

</xsd:sequence>

<xsd:attribute name = "name" use = "required" type = "xsd:string"/>

<xsd:attribute name = "value" type = "xsd:string"/>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name = "behaviorObjectType">

<xsd:annotation>

<xsd:documentation>behaviorObjectType: Complex Type for Behaviors. A

behavior section can be used to associate executable behaviors

with content in the XFDU object. A behavior object has an

interface definition element that represents an abstract

definition of the set of behaviors represented by a particular

behavior object. A behavior object also has an behavior

mechanism which is a module of executable code that implements

and runs the behaviors defined abstractly by the interface

definition. An behavior section may have the following

attributes: 1. ID: an XML ID for the element 2. structID: IDREFS

to contentUnit sections or divs within a contentUnit in the XFDU

document. The content that the structID attribute points to is

considered "input" to the behavior mechanism (executable)

defined for the behaviorSec. 3. behaviorType: a behavior type

identifier for a given set of related behaviors. 4. created:

date this behavior section of the XFDU object was created. 5.

textInfo: a description of the type of behaviors this section

represents. 6. groupID: an identifier that establishes a

correspondence between this behavior section and behavior

sections. Typically, this will be used to facilitate versioning

of behavior sections. A behavior object may also include another behavior object for chaining of behavior. Concrete implementation of mechanism (wsdlMechanism,antMechanism,javaMechanism,etc) must be used in the instance document.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name = "interfaceDef" type = "interfaceDefType" minOccurs = "0"/>

<xsd:element ref = "abstractMechanism"/>

<xsd:element name = "behaviorObject" type = "behaviorObjectType" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>

<xsd:attribute name = "ID" use = "required" type = "xsd:ID"/>

<xsd:attribute name = "structID" use = "required" type = "xsd:IDREFS"/>

<xsd:attribute name = "behaviorType" type = "xsd:string"/>

<xsd:attribute name = "created" type = "xsd:dateTime"/>

<xsd:attribute name = "textInfo" type = "xsd:string"/>

<xsd:attribute name = "groupID" type = "xsd:string"/>

</xsd:complexType>

<xsd:element name = "abstractMechanism" type = "mechanismType" abstract = "true">

<xsd:annotation>

<xsd:documentation>abstractMechanism is abstract implementation of

mechanismType. It cannot be instanciated in the instance

document. Instead, concrete implementations would have to be

used which are declared part of mechanism substitutionGroup

</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:complexType name = "mechanismType">

<xsd:annotation>

<xsd:documentation>mechanismType: executable mechanism. An element of mechanismType

contains a pointer to an executable code module that

implements a set of behaviors defined by an interface

definition. The mechanism element will be a pointer to another

object (a mechanism object). A mechanism object could be another

XFDU object, or some other entity (e.g., a WSDL source). A

mechanism object should contain executable code, pointers to

executable code, or specifications for binding to network

services (e.g., web services).

mechanismType is declared as base type for concrete implementations of mechanism

</xsd:documentation>

</xsd:annotation>

<xsd:complexContent>

<xsd:extension base = "referenceType"/>

</xsd:complexContent>

</xsd:complexType>

<xsd:element name = "wsMechanism" type = "mechanismType" substitutionGroup = "abstractMechanism">

<xsd:annotation>

<xsd:documentation>wsMechanism is concrete implementation of

abstract mechanism which implements mechanism based on Web

service. Its instace can be used in the instance document in the

place where mechanism declared to be present.

</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name = "javaMechanism" substitutionGroup = "abstractMechanism">

<xsd:annotation>

<xsd:documentation>javaMechanism is concrete implementation of

abstract mechanism which implements Java-based mechanism.

xlink:href element points to fully qualified name of the Java

class that implements the mechanism. FLocate element specifies

location of the jar file where that class is packaged. File can

be local to this XFDU package, or located on the remote server,

or somewhere on the local file system.An instace of

javaMechanism can be used in the instance document in the place

where mechanism declared to be present.

</xsd:documentation>

</xsd:annotation>

<xsd:complexType>

<xsd:complexContent>

<xsd:extension base = "mechanismType">

<xsd:sequence>

<xsd:element name = "FLocat" type = "referenceType"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

</xsd:element>

<xsd:element name = "antMechanism" substitutionGroup = "abstractMechanism">

<xsd:annotation>

<xsd:documentation>antMechanism is concrete implementation of

abstract mechanism which implements ANT-based mechanism.

xlink:href element points to a location of ANT script to be

executed. Also, xmlData element can contain ANT specific XML. An

instace of antMechanism can be used in the instance document in

the place where mechanism declared to be present.

</xsd:documentation>

</xsd:annotation>

<xsd:complexType>

<xsd:complexContent>

<xsd:extension base = "mechanismType">

<xsd:sequence>

<xsd:element name = "xmlData" type = "xmlDataType" minOccurs = "0"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

</xsd:element>

<xsd:complexType name = "metadataSectionType">

<xsd:sequence>

<xsd:element name = "metadataObject" type = "mdSecType" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name = "behaviorSectionType">

<xsd:sequence>

<xsd:element name = "behaviorObject" type = "behaviorObjectType" minOccurs = "0" maxOccurs = "unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name = "XFDUType">

<xsd:annotation>

<xsd:documentation>

XFDUType Complex Type.

A XFDU document consists of five possible subsidiary sections:

packHdr (XFDU document header), dmdMD (descriptive metadata

section), repMD (representation metadata section), pdiMD (preservation information section),

infoObjEntrSec (data object section),ipMapSec (content unit section), behaviorSec (behavior section).

It also has possible attributes:

1. ID (an XML ID);

2. objID: a primary identifier assigned to the original source
document;

3. textInfo: a title/text string identifying the document for
users;

5. version: version to which this XFDU document conforms

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name = "packageHeader" type = "packageHeaderType" minOccurs = "0"/>

<xsd:element name = "informationPackageMap" type = "informationPackageMapType" maxOccurs = "unbounded"/>

<xsd:element name = "metadataSection" type = "metadataSectionType" minOccurs = "0"/>

<xsd:element name = "dataObjectSection" type = "dataObjectSectionType" minOccurs = "0"/>

<xsd:element name = "behaviorSection" type = "behaviorSectionType" minOccurs = "0"/>

</xsd:sequence>

<xsd:attribute name = "ID" type = "xsd:ID"/>

<xsd:attribute name = "objID" type = "xsd:string"/>

<xsd:attribute name = "textInfo" type = "xsd:string"/>

<xsd:attribute name = "version" type = "xsd:string"/>

</xsd:complexType>

<xsd:element name = "XFDU" type = "XFDUType"/>

</xsd:schema>

ANNEX Sections

A1 Example XFDU

<?xml version = "1.0" encoding = "UTF-8"?>

<XFDU xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation = "file:/xfdu.xsd">

<packageHeader>

 <environmentInfo specVersion=¬†¬´¬†1.0¬†¬ª>

<xmlData>

<platform>Linux2.4.22-1.2129.nptl</platform>

</xmlData>

 </environmentInfo>

<transformInfo algorithmName = "blowfish" mustUnderstand = "true" description = "encryption"/>

</packageHeader>

<informationPackageMap>

<!--Top level Content Unit describing mpeg21 data object by pointing to:-->

<!--representation metadata with XML ID atdMD; this metadata is classified as OTHER-->

<!--preservation metadata with XML ID provenance, this metadata is classified as PROVENANCE-->

<!--description metadata with XML ID ECSDMD, this metadata is classified as OTHER-->

<!--lower level content units desribe HDF data objects included in the package via poiting to ECSDMD metadata-->

<contentUnit repID = "atdMD" pdiID = "provenance" dmdID = "ECSDMD">

<dataObjectPtr dataObjectID = "mpeg21"/>

<contentUnit order = "1" textInfo = "Root content unit for HDF data">

<contentUnit order = "1.1" pdiID = "provenance" textInfo = "content unit for hdfFile0" dmdID = "ECSDMD">

<dataObjectPtr dataObjectID = "hdfFile0"/>

</contentUnit>

<contentUnit order = "1.2" pdiID = "provenance" textInfo = "content unit for hdfFile1" dmdID = "ECSDMD">

<dataObjectPtr dataObjectID = "hdfFile1"/>

</contentUnit>

<contentUnit order = "1.3" pdiID = "provenance" textInfo = "content unit for hdfFile2" dmdID = "ECSDMD">

<dataObjectPtr dataObjectID = "hdfFile2"/>

</contentUnit>

</contentUnit>

<contentUnit textInfo = "content unit for orbit data">

<dataObjectPtr dataObjectID = "orbitalData"/>

</contentUnit>

</contentUnit>

<contentUnit textInfo = "content unit ATD metadata">

<dataObjectPtr dataObjectID = "ATDMD"/>

</contentUnit>

</informationPackageMap>

<metadataSection>

<!--This metadata is categorized as DMD (descriptive) and classified as OTHER-->

<metadataObject ID = "ECSDMD" classification = "OTHER" category = "DMD">

<mdRef vocabluaryMdType = "OTHER" mimeType = "text/xml" textInfo = "spacecraft descritpion" locType = "URL" ns1:href = "file:packagesamples/scenario1/ecsdmd.xml" xmlns:ns1 = "http://www.w3.org/TR/xlink"/>

</metadataObject>

<!--This metadata is categorized as PDI (preservation) and classified as PROVENANCE-->

<metadataObject ID = "provenance" classification = "PROVENANCE" category = "PDI">

<mdRef vocabluaryMdType = "OTHER" mimeType = "text/xml" textInfo = "processing history XML file" locType = "URL" ns1:href = "file:packagesamples/scenario1/pdi.xml" xmlns:ns1 = "http://www.w3.org/TR/xlink"/>

</metadataObject>

<!--This metadata is categorized as REP (representation) and classified as OTHER-->

<metadataObject ID = "atdMD" classification = "OTHER" category = "REP">

<dataObjectPtr dataObjectID = "ATDMD"/>

</metadataObject>

<!--This metadata is categorized as REP (representation) and classified as OTHER-->

<metadataObject ID = "mathMLAlgRepMD" classification = "OTHER" category = "REP">

<mdWrap vocabluaryMdType = "OTHER" textInfo = "mathML encoding of the algorithm">

<xmlData>

<math>

<mrow>

<mo>det</mo>

<mo symmetric = "false" rspace = "0" lspace = "0">|</mo>

<mfrac linethickness = "0">

<mi>a</mi>

<mi>c</mi>

</mfrac>

<mfrac linethickness = "0">

<mi>b</mi>

<mi>d</mi>

</mfrac>

<mo symmetric = "false" rspace = "0" lspace = "0">|</mo>

<mo>=</mo>

<mi>a</mi>

<mi>d</mi>

<mo>-</mo>

<mi>b</mi>

<mi>c</mi>

<mo>,</mo>

</mrow>

</math>

</xmlData>

</mdWrap>

</metadataObject>

</metadataSection>

<dataObjectSection>

<dataObject repID = "mathMLAlgRepMD" ID = "mpeg21">

<byteStream mimeType = "video/mpeg" checksum = "b3eb4b34" ID = "mpeg21AnimData" checksumType = "CRC32" size = "414131">

<FLocat locType = "URL" ns2:href = "file:packagesamples/scenario1/mpeg21.mpg" xmlns:ns2 = "http://www.w3.org/TR/xlink"/>

</byteStream>

</dataObject>

<dataObject size = "0" checksumType = "CRC32" checksum = "6d0e30ea" mimeType = "application/pdf" ID = "ATDMD">

<byteStream mimeType = "application/octetstream" checksum = "ad78ad5d" ID = "atdMDbs" checksumType = "CRC32" size = "110874">

<FLocat locType = "URL" ns3:href = "file:packagesamples/scenario1/atd.pdf" xmlns:ns3 = "http://www.w3.org/TR/xlink"/>

</byteStream>

<transformObject transformType = "ENCRYPTION">

<algorithm>blowfish</algorithm>

</transformObject>

</dataObject>

<dataObject repID = "atdMD" ID = "hdfFile0">

<byteStream mimeType = "application/x-hdf" checksum = "acab6535" ID = "hdfFile0bs" checksumType = "CRC32" size = "10455471">

<FLocat locType = "URL" ns4:href = "file:packagesamples/scenario1/mod1.hdf" xmlns:ns4 = "http://www.w3.org/TR/xlink"/>

</byteStream>

</dataObject>

<dataObject repID = "atdMD" ID = "hdfFile1">

<byteStream mimeType = "application/x-hdf" checksum = "acab6535" ID = "hdfFile1bs" checksumType = "CRC32" size = "10455471">

<FLocat locType = "URL" ns5:href = "file:packagesamples/scenario1/mod2.hdf" xmlns:ns5 = "http://www.w3.org/TR/xlink"/>

</byteStream>

</dataObject>

<dataObject repID = "atdMD" ID = "hdfFile2">

<byteStream mimeType = "application/x-hdf" checksum = "acab6535" ID = "hdfFile2bs" checksumType = "CRC32" size = "10455471">

<FLocat locType = "URL" ns6:href = "file:packagesamples/scenario1/mod3.hdf" xmlns:ns6 = "http://www.w3.org/TR/xlink"/>

</byteStream>

</dataObject>

<dataObject mimeType = "application/octetstream" ID = "orbitalData">

<byteStream checksum = "b3eb4b34" ID = "orbitData" checksumType = "CRC32">

<FLocat locType = "URL" ns7:href = "http://coin.gsfc.nasa.gov:8080/ims-bin/3.0.1/nph-ims.cgi?msubmit=yes&lastmode=SRCHFORM" xmlns:ns7 = "http://www.w3.org/TR/xlink"/>

<FContent>

<binData>UEsDBBQACAAIAKqMBC8AAAAAAAAAAAAAAAAPAAAAeGZkdS8uY2xhc3NwYXRotZXfS8MwEMff/StK35OugqCwH4hO0I...</binData>

</FContent>

</byteStream>

</dataObject>

</dataObjectSection>

</XFDU>

 Annex 2 UML for XFDU – Needs to be updated

A1.1 OLd UML

[image: image16.png]

A1.2 XML Schema fully expanded

[image: image17.jpg]+XFDU
XEDUType

obj

siting

523 ¢

1D, @ textinfo,

string

3 Clamenes

@ version
string

5|

* envi nnmenllnfn%
strin

@bwmk:"slunderslznd% @

@ description
string

@ mechanismType
string

@ namespace,
siring

s s)

+ packageHeader
packageHeaderType

+ behaviorinfo]

)

+ #wildCard

+ xmiDat: &

smiDataType

0 des(rlpllnn% O zlgnrllthzme% @ O muslUnderslznd% @ O nzmespz(e%
string string boslean string
transforminfog | (/% xmiData, + #wildCard
saamise S)
@olﬂ% @.pz(kzgeType% .lextlnfn%
D string string
@olﬂ% @.nrder% 'unllType% '(extlnfn%
i string string string

@ 0 replD%
IDREFS

® dmdiD * pdilD, OzndeID%
Obening clnbind e

+ XFDUptr
referenceTy paE

@ textinfo,
siring

 otherLocType
string

@ locType
#siring

2

3 2|

—{efPs o

+ dataObjectPtr]

dataObjectPirType

@olﬂ% ‘dmommm%
D IDREF

informationPackageMapT;

+ informationPackageMap]

gl

pe contentUnitType

+ abstractContentUnit,

+ metadataSection,
metadatasectionType

+ metadataObject
misecType

+ dataObjectSectio
dataObjectsectionType

+ dataObject,
dataObjectType

n

+ behaviorSection,
behaviorSectionType

+ behaviorObject]
behaviorobjectType

@ textinfo,
string

@ order,
string

@ unitType,
string

Olomd s g El
(o CTEIEF [, TR B Crer I P

—|ols2 alaigte 5

@ textinfo,
string

@ locType
#siring

@ otherLocType

+ XFDUptr]
string

referenceType

]

+ abstractContentUnit,
contentUnitType

+ dataObjectPtr]
dataObjectPirType

el

‘. dmommm%
IDREF

m%

+ abstractContentUnit gl
contentUnitTyge

g ¢

@ otherClass
string

classification
#string

@ category,
#siring

(628 ¢ g 5

@ size,
long

@ mimeType,

* 1D @ replD,
& T i O e T
@ checksumTypeg|

DGR

[® checksum
string

+ bytestrear
bytedtreanType

@ otherCategory,
srin
@o m% aolexﬂnfn% In(Type% O nlhean(Type%
+ marefy] D string #fstring string
O pe. O vn(ahluzrdeType% O nlheerType% O mlmeType%
#fztring string mimeType
@. m% @. mlmeType% .lextlnfn% 'vn(xhluzrdeType%
o mimeType string wstring
@2 otherMdTyp
al® hsztz%
[* mdWrang basegaBina
meWrapType + xmiData + #wildCard
@ il
+ dataObjectPtr, O m% O dmommm%

gl

interfaceDerType dataObjectPirType.

@o ID% @o nrder% .lrznsfnrmType%
i string string
+ transformObject g
transformObjectType
+ abstractKeyderivation] Spamed [saag [Ehermioncomng
ey derhvationType string #fstring tong
‘. m% ‘. slru(lID% @ O hehz\/lanype% @ ® created
D IDREES string dateTime
0 0
@olﬂ% @Olex{lnfn% .In(Type% Onlhean(Type%
i string #string string
+ interfaceDe! inputParametergl | {9 dataObjectPtr, ataObjectl

afgrs

REF

@ textinfo,
siring

@ locType

+ abstractMechanismg]
vfsiring

mechanismType

3

 otherLocType
string

g 5|

—{afPs

+ behaviorObjectg|
BRI BIEEaaE

Annex 3 Relationship to Other Efforts

A2 Overview

A primary goal of this effort was to reuse concepts and constructs from other efforts (commercial, academic, and standards) to define methods to package multiple types (e.g., binary, text, audio, video, etc) of data and metadata for both archival and transmission. There were several efforts identified. These efforts varied significantly in many aspects including maturity, existing implementations and intended scope of designated community. None of the products adequately met the requirements defined in the Annex 2 to allow adoption of the existing specifications. The following is a brief summary of the efforts that had a major influence on this recommendation and an overview of the areas of this recommendation that were adapted from each effort. More detailed discussions of design tradeoffs may be found or referred to in the appropriate section of this recommendation.

A2.1 XML PACKAGING TF –W3C

In August 1999 W3C released a report from a task force on XML packaging that had been commissioned but discontinued due to member priorities. This report provides an excellent overview of the area and divides the problem into two basic efforts:

1. the design of a manifest, an XML structure to describe the associations among resources and metadata and the locations of those resources and

2. the underlying packaging mechanism that groups the various resources and metadata into a single unit

The W3C Packaging Committee makes these comments on use of XML as the packaging technique:

XML is an obvious mechanism to consider when considering a packaging mechanism. XML is simple. It should not take to long to design a mechanism that uses XML. It allows us to use a standard tool to do much of the work. Many have suggested XML as a packaging mechanism. Problems with XML:

· Would have to extend XML to allow true binary data.

· XML has far less field experience than either MIME or ZIP, especially in the area of embedding binary data.

· XML is ill-suited for random access. White space handling, entity expansion, and the intrinsic expectation that XML is serially scanned from beginning to end work against random access. Canonicalization can help some of these problems, but this may be too great a burden for implementors.

· XML is not the most concise representation.
The W3C Packaging Committee makes these comments on use of File/Directory Compression Techniques:
ZIP is a highly used format for packaging information for transmission on the web. Other packaging formats are based on ZIP, such as JAR, Java Archive, and CAB, Cabinet files. The following paragraphs contains information on ZIP, some of which is the ZIP file format specification, and another part being the source code for zip and unzip: ftp://ftp.uu.net/pub/archiving/zip

It is understood that as long as InfoZIP's copyright is left in place, the working group can do more or less as it pleases. It is also believed that nobody else has credible intellectual property claims to either the code or the algorithms that are used by ZIP. A quote from ftp://ftp.uu.net/pub/archiving/zip/doc/COPYING says: "In other words, use it with our blessings, but it's still our [InfoZIP's] code. Thank you!"

At least one publisher has implemented the Zip packaging technology for electronic distribution of book files. They have used a proprietary encryption scheme for component files, while leaving the Zip structure in the clear to get around the direct access to component files problem. Problems with ZIP:

· File name character encoding limitations (not Unicode)

· Not a true hierarchy, faked with slashes in file names.

· Mandatory index (comes last, though).

· Inefficient for on-disk editing.

A2.2 METS --DLF

METS is the result of a Digital Library Federation initiative, and attempts to provide an XML document format for encoding metadata necessary for both management of digital library objects within a repository and exchange of such objects between repositories (or between repositories and their users). Depending on its use, a METS document could be used in the role of a Submission Information Package (SIP), Archival Information Package (AIP), or Dissemination Information Package (DIP) within the Open Archival Information System (OAIS) Reference Model. The METS schema provides a flexible mechanism for encoding descriptive, administrative, and structural metadata for a digital library object, and for expressing the complex links between these various forms of metadata

Given the close working relationship between the digital library community and CCSDS Panel 2 on the OAISReference Modeland the fact that the METS Information model was based on OAIS concepts it was suggested that the METS schema be inherited as the basis for this effort

METS is a very flexible structure that has been developed by the Digital Library with some attention to the OAIS RM. The metadata and file association methods are very flexible and allow nearly direct translation of SFDU labels and ADIDs .for identifying, locating and making a Repository Service Request for a detached data description in EAST or XDF. However, METS is more of a conceptual model and the Representation Data mapping is questionable. The proposed XFDU Data Model should maps directly to the OAIS Information Model Classes.
A2.3 XPACK – ESA/ANITE

The XPack XML Schema was developed by Anite for ESA as a portion of a study on the use of XML as a packaging technology in the ESA Data Distribution System. This prototype included the design of an XML Schema describing a vocabulary that can be used to package arbitrary data (plain text, XML, binary, etc.) and metadata and establish relationships between the data and the metadata through the use of SFDU classes. This schema focused on using a single XML document as the package but did allow in line content to be replaced by Xlink hrefs. The vocabulary also supports services that are commonly required in association to data packaging, including compression, encryption, authentication, fragmentation, and validation.

A2.4 OPEN OFFICE XML FILE FORMAT– SUN

The newest major release of OpenOffice/StarOffice from SUN et al uses XML as its native format and a packaging technique based on ZIP with a well-documented manifest file. This packaging methodology is based on very well proven XML standards but includes support of a complex encryption technique. Though this application does not require the complex metadata linkage required by space related data or long-term preservation, it is significant in that they are a large commercial project using an XML/ZIP packaging techniques with encryption and binary files on many platforms

A2.5 XPACKAGE -OPEN EBOOK

The OeBF Publication Structure Working Group is defining an XML Package format (XPackage) to be the basis in part of the OeB Publication Structure 2.0. for defining packages, or collections of resources and their associations. It specifies a framework for describing the resources which are included in such packages, the properties of those resources, their method of inclusion, and their relationships between each another. XPackage use cases include specifying the stylesheets used by an HTML document, declaring the images shared by multiple documents, indicating the author and other metadata of a document, describing how namespaces are used by XML resources, illustrating fallback sequences for varying levels of multimedia support, and providing a manifest for bundling resources into a single archive file. The XPackage framework is based upon XML, RDF, and XLink, and provides two RDF ontologies: one for general packaging descriptions and another for describing XML-based resources.

XPackage represents a leading edge use of W3C standards to find a conceptual solution to the description of the relationships among element of a package.

A2.6 GLOBUS PACKAGING TOOLKIT

The Grid Packaging Tool (GPT) uses XML to describe all the information that is needed for an installation. These XML files hold all of the information that the GPT will need in order to create a Grid instance on a particular system. The intent of this XML is to construct a framework and a set of Grid packages that can be used to create tailored Grid to meet individual needs. This will allow for the distribution and release of individual Grid components, rather then a single monolithic release. This concept will allow organizations to construct both source and binary distributions of packages they are interested in rather then being forced to build and configure components that are of no interest.

Given the importance of software as representation data, the cooperation or the GRID, the Space Science community, the XML based approach used by the GPT and the experience being gained in the releases of the Globus Service Toolkit, any software distribution unit in the XFDU should be exactly GPT if possible. The GPT DTD and element descriptions appear as chapter 15.

Annex 4 Design Analysis

A3 Overview

A3.1 Physical Packaging Techniques

The XFDU package is a container that contains an XFDU document and a set of data objects. There are three common types of container object that could be supported:

· Archive formats (such as zip, jar or tar), which are already widely deployed, may be used as container.

· Message formats (such as Soap with Attachments[REF10] and Direct Internet Message Encapsulation (DIME)[REF11]) which are a major focus of XML protocol and eBusiness efforts.

· XML document format The XFDU document can be considered as both the manifest and a container for ASCII/XML files or binary data encoded using XML Schema approved techniques.

A3.1.1 File/Directory Compression Techniques
A packaging technique that has been successfully used by commercial efforts is the consolidation of the entire directory structure, including all files, into a single file. The current implementations use ZIP, but others such as CAB, JAR, and TAR can also be used. A well-known “manifest”file with a specific name in a specific directory provides the locations and associations of the package resources.
A3.1.2 Single XML Document

This technique is the simplest of the techniques. It simply uses an encoding scheme to encode any binary data into valid XML characters and store all content inline. This solution does not seem to be optimal for applications or domains with large binary content but does enable the use of standard XML tools.

A3.1.3 XML web service message techniques

The emergence of XML Web Services and eBusiness has created a requirement for a single XML message to encapsulate multiple business object types including binary objects such as spreadsheets and documents created on word processors.In the HTML and email domains this problem is solved using Multipurpose Internet Mail Extensions (MIME) One of the primary uses of MIME types is to determine the “helper application” should process the contents of the files.There are MIME types for most major formats, formats, both binary and textuall There are also MIME types to define the format of the messages that encapsulate the attachments.For example modern email software use standard MIME types to Attach multiple files to a single email.The Soap with Attachments efforts are based on adapting the MIME types to the SOAP XML envirnment. Specifically, he specification combines specific usage of the Multipart/Related MIME media type RFC 2387 and the URI schemes discussed in RFC 2111 and RFC2557 for referencing MIME parts.

A3.2 XFDU Information Model

A3.2.1 Relation to OAIS Information Model and METS Schema

METS (Metadata Encoding and Transmission Standard) is a very flexible structure that has been developed by the Digital Library Foundation with some attention to the OAIS RM. METS incorporates many useful mechanisms that have served as starting points in the development of this schema; however, METS is more of a conceptual model I don’t know what you mean by ‘conceptual model’ here. I don’t usually think of METS as a conceptual model – only as a schema, which is an implementation of sorts, and I’m used to opposing ‘implementation’ to ‘conceptual model’ – so I assume you mean it in some other way, but I don’t know what that way is. and the metadata classification especially Representation Data mapping is questionable. The proposed XFDU Data Model should map directly to the OAIS Information Model Classes.

A3.2.2 Mandatory Manifest/Table of Contents

XPACK emphasized the single document, pure XML approach, with binary data encoded as base 64 within the document. Using this approach, a table of contents was optional. However, W3C Packaging Task Force Recommendation, the OpenOffice implementation, and the METS schema all separate the manifest from the data objects. The decision for Release 1 of the XFDU is to have a mandatory XML encoded map of the information package and metadata to enable a common schema for all packaging forms.

A3.2.3 Flexible linkage of Manifest to Data and Metadata
The XFDU Manifest must contain flexible methods to reference/include the data objects and metadata about those objects. The METS standard offers very flexible metadata/data linkage and referencing methods. We have adopted the METS mechanisms that enable:

· Data Objects that are contained in the manifest are to be encoded in base64 or XML

· Data Objects that are included by reference from the manifest are to exist as files in the XFDU package or as files with known URIs either in a repository or in a location accessable via URL

· Metadata objects that are contained in the manifest are to be encoded in base64 or XML

· Metadata objects that are included by reference from the manifest are to exist as files in the XFDU package or as files with known URIs either in a repository or in a location accessable via URL

· Information Objects can reference applicable Metadata objects by ID where the name of the referencing attribute is used to classify the Metadata and the schema enables identification of the source of the metadata

In addition to the METS capabilities detailed above, the XFDU structure allows metadata objects to be treated as data objects. This enables direct mapping to the OAIS representation network where each metadata object is an information object containing both a data object and representation information.

A3.2.4 Relationship Description

A major component of information packaging is the description of the relationships among the various metadata and data objects in both human readable and machine interpretable forms. The “Semantic Web” efforts have led to several XML notations for expressing relationships and rules among resources. The two main efforts reviewed in this area were Resource Description Format (RDF) and Web Ontology Language (OWL). RDF has been a World Wide Web Consortium (W3C) Recommendation for several years but software support and automated applications have lagged the recommendation considerably. OWL has recently been promoted to a W3C Candidate Recommendation. Based on experience with other complex W3C Recommendations, this means that a final recommendation is expected in 1-2 years. However, OWL is derived from several existing ontology languages, so there is significant legacy software that can quickly be modified to the OWL syntax.

Due to the lack of mature XML software products in this area, the initial version of this recommendation will not use a formal XML grammer to express the range of potential relationships. Instead, the XFDU schema uses the OAIS information model to classify information objects and content unit types to define the overall structure and semantics of contained objects. Alsothe complete Xlink schema is included in the XFDU referencing mechanisms to allow the use of complex Xlink attribues to model resource relationships.

It is anticipated that Future versions of this recommendation will use an XML based language such as OWL to improve description and enable software services for generic relationships.

A3.2.5 Extensibility mechanisms
In order to allow an orderly evolution of the XFDU schema and to allow the development of specialized versions of complex elements to enable additional functionality or alternative implementations during prototyping
There are a number of XML Schema mechanisms that can be used to achieve the goal:

1. Use of an abstract element and element substitution using substitutionGroup

2. Use of abstract type and type substitution using xsi:type

3. Use of a <choice> element

4. Use of a dangling type

The use of dangling types is theoretically the most flexible solution, but is not supported by most XML parsers. The use of choice is the least attractive solution because it does not support the use of complex elements and creates rigid schemas.

Type substitution is slightly superior to element substitution from a schema design viewpoint; however, there are two factors that inform the decision to use element substitution for this version. The first is the visibility of xsi:type in every XML instance. This has proven unpopular with users of other standard schemas. The second factor is that some early experimentation with inputting XML Schema to JAVA tools revealed that element substitution was partially supported while type substitution was not supported.

Annex 5 Use Cases

A4 CCSDS XML Workshop
The XML workshop held at GSFC in the summer of 2001 defined two use cases to illustrate the anticipated usage and functionality of the next generation of CCSDS Packaging mechanisms.

A4.1 Use Cases Defined At CCSDS XML 2000 Workshop

A4.1.1 Simple ASCII DATA Transfer

· has simple ASCII product (XML file) – orbit file for 1 month

· data description is available as XML schema

· Data Dictionary available

· Wants to ship to archive (negotiations completed)

· Uses CCSDS XML Package

· Send single document

Data Provider

1. Gets CCSDS Package schema in order to make instance

2. Uses some XML editor to fill out required fields in XML file including

· Copies in Data Dictionary into XML document

· [Could point to external dictionary using XPOINTER]

· Copies Orbit file data (already XML) into XML document

· Copies data description schema into XML document

· [Could just point to it if held somewhere external]

· Creates metadata based on metadata schema agreed with archive

· Schema is registered and held somewhere

· E.g. Satellite name in some standard/agreed way

· Start and Stop times

· Orbit number(s)

· Etc etc

3. Send as single XML file

Archive:

· receives XML file from producer

· verifies safe receipt e.g. checksum, signing (??)

· may also authenticate the source of the data if needed

· Parse and Validate XML against schema.

· checks whether or not the file is self-contained or refers to external files

· gather any external files needed

· Repackages all the information together ready to archive

· Could use XSLT to repackage and also to separate descriptive information to go into catalogues etc

A4.1.2 SENDING LARGE BINARY FILES (e.g. telemetry)

- large binary file (200MB)

· data description is available as EAST description

· Data Dictionary available

· Wants to ship to archive (negotiations completed)

· Uses CCSDS XML Package

PRODUCER:

1 Gets CCSDS Package schema in order to make instance

2 Uses some XML editor to fill out required fields in XML file including

· Copies in Data Dictionary into XML document

· [Could point to external dictionary using XPOINTER
· Add pointer (relative URI - local file name) for data into XML document

· Add pointer to EAST description which is held in Metadata registry

· Creates metadata based on metadata schema agreed with archive

· Schema is registered and held somewhere

· E.g. Satellite name in some standard/agreed way

· Start and Stop times

· Orbit number(s)

· Unique ID

· List of files (Manifest?)

· Etc etc

3 Zips up all the files (XML and Binary files)

4 Sends to archive

ARCHIVE:

1. receives (ZIP) file from producer

2. Recognise that it is a ZIP file

3. verifies safe receipt e.g checksum, signing (??)

4. may also authenticate the source of the data if needed

5. UNZIP

6. Find STANDARD NAMED file as root e.g “QWERTY.XML”

7. Parse the QWERTY.XML
· Parse and Validate XML against schema.

· checks whether or not the file is self-contained or refers to external files

· gather any external files/packages needed (e.g. EAST description)

· Repackages all the information together ready to archive

· Could use XSLT to repackage and also to separate descriptive information to go into catalogues etc

8. Archive wants to extract number from binary file

· Needs to recognise that EAST interpreter is needed

· Starts EAST interpreter

· Gives data file

· Gives EAST description

· Matches name of item wanted to Data Dictionary e.g. ALIAS

· Matches Data Dictionary name to EAST description

· Use EAST interpreter to extract number

· DONE

8. DONE

Annex 6 Requirements

A4.2 User Requirements

A4.2.1 Major capabilities

1. The Package is a container which can contain a single object or a collection of objects which may be organised as a Hierarchical structure of objects (HSO)

2. A package may contain other packages

a) outer package (the file interchanged) is identified as a package by external means

b) may be problem with uniqueness of outer “manifest”

c) The outer package MAY be e.g. ZIP or pure XML or encrypted etc

3. Each object and grouping of objects should be accompanied by appropriate metadata including:

a) EITHER the description (Representation Information) OR an identification of the description of the object

b) Identification of the type of the objects

4. Objects may be character or binary or both

5. An object is ……..(a document - NO)

6. An object or package may be contained in a single file or multiple files

a) Need to distinguish between packages which are logically self-contained and those which are physically self-contained i.e. single files

b) Allow some of the objects to be separate files on the same medium (e.g. spans files) or may be distributed at different sites on a network

7. Each object may be assigned an identifier which is unique within the package

8. Need the ability to have universally (within some explicitly agreed domain??) unique identifier

a) Version of the Identifier (TBC)

A4.2.2 Additional capabilities

9. A mechanism to contain relationship information and identify the objects involved

a) these relationships may be among objects within the same package, and between/among those outside and inside of a package.

b) also a 'table of contents' of the package, which requires the ability to point to individual objects at various levels of nesting within containers - MANIFEST mechanism

c) allow lists and alternate views

10. A mechanism to identify that, in addition to the description of the object or package, there may a number of uniquely identified decodings that should be applied in a particular sequence to reverse the encodings that have been applied. Example: a object has been encoded and then compressed, or that a set of objects has been tarred and then compressed.

a) Allow encodings to be combined without having to register each combination. This will allow encodings to be readily changed during processing of the package, without having to re-do registrations of descriptions.

b) Some mechanism needed to specify process/application to process the description/encoding information

c) Provide a mechanism to hold a description of the encodings

d) Some mechanism needed to be able to specify encoding of the package as a whole

· There must be the ability to identify the start of the package or object

11. The package should be easily usable within applications – i.e. at least one well-defined API/Interface should be defined.

12. Need mechanism(s) to allow one to verify integrity & authenticity of the whole or parts of the package where required

13. Need to be able to do “lite” packaging i.e. not too many mandatory items.

14. Be able to support use of multiple (i.e. some) registries

15. May wish to have the ability to begin processing a single package BEFORE it is all received.

A4.3 Further Issues

· Relationships

· What types of pre-defined relationships should we support?

· High level packaging

· Encoding information

· Pointer mechanisms

· implied

· Explicit identification of pointer mechanisms

· OASIS protocol interface – implications on packaging

· Packaging of binary objects

· Internal

· External

· Performance

· Mixing binary with text in same object

· Description “technology” specification

A4.4 XPack Functional Requirements

SR1 Description: The XPack document type will support the packaging of files.

Source: UR1

Importance: High

SR2 Description: The XPack document type will provide a mechanism for embedding files directly into an XPack document.

Source: UR1

Importance: High

SR3 Description: The XPack document type will provide a mechanism for referring to external files which make up part of a package.

Source: UR1

Importance: High

SR4 Description: The XPack document type will support the packaging of raw data.

Source: UR1

Importance: High

SR5 Description: The XPack document type will directly support or allow external document model extensions which support the notion of content datatype specification.

Source: UR1

Importance: High

SR6 Description: The XPack document type will provide elements which can be repeated to allow multiple objects to be contained within the document.

Source: UR4

Importance: High

SR7 Description: The XPack document type will provide elements or attributes which indicate that the package represented by the document is distributed across one or more files.

Source: UR5

Importance: High

SR8 Description: The XPack document type will allow its root element to be nested.

Source: UR6

Importance: High

SR9 Description: The XPack document type will provide elements or attributes which allow metadata about the package to be defined.
Source: UR7

Importance: High

SR10 Description: The XPack document type will provide elements or attributes which will allow the definition of references to metadata registries which contain metadata describing the objects stored in a package.

Source: UR8

Importance: High

SR11 Description: The XPack document type will provide elements or attributes which enable lists of files to be defined and referenced.

Source: UR9

Importance: High

SR12 Description: The XPack document type will provide elements which can be nested to define a hierarchical structure of packaged objects.

Source: UR10

Importance: High

SR13 Description: It will be possible to associate the XPack elements and attributes which support metadata definition and referencing to each packaged object in an XPack document.

Source: UR11

Importance: High

SR14 Description: The XPack document type will provide elements or attributes which enable the definition of object labels describing the class, type, and version of an object.

Source: UR12

Importance: Medium

SR15 Description: The XPack document type will provide elements or attributes which allow an object label to be associated with an object in an XPack document.

Source: UR12

Importance: Medium

SR16 Description: The XPack document type will provide an element for packaging character data.

Source: UR13

Importance: High

SR17 Description: The XPack document type will provide an element for packaging binary data in a character encoded format.

Source: UR13

Importance: High

SR18 Description: The XPack document type will provide an attribute which allows each object contained in a package to have a globally unique identifier assigned to it.

Source: UR14

Importance: Medium

SR19 Description: The XPack document type will recommend an algorithm that should be used for generating globally unique identifiers.

Source: UR14

Importance: Medium

SR20 Description: The XPack document type will provide elements or attributes which may be used to specify relationship information about the relationships between objects contained in a package.

Source: UR20
Importance: High

� #wildcard is used by XML Authority schema diagrams to indicate open content and is the diagrammatic form of ##any in XML Schema l

