[image: image151.emf]Encoded Link

Data Type

ValidRange

Check

Calibration

Check

Host Data

Type

Alarm Check

DataEncoding

-Integer

-Float

-String

-Binary

ParamterType

-String

-Enumerated

-Binary

-Integer

-Float

-Boolean

-Absolute/

RelativeTime

-Array

-Aggregate

Report Concerning Space Data System Standards

	XML Telemetric and Command Exchange (XTCE)—Element Description

Informational Report
CCSDS 660.1-G-2
Green Book
October 2019
AUTHORITY

	

	
	Issue:
	Informational Report, Issue 2
	

	
	Date:
	June 2019
	

	
	Location:
	Washington, DC, USA
	

	

This document has been approved for publication by the Management Council of the Consultative Committee for Space Data Systems (CCSDS) and reflects the consensus of technical panel experts from CCSDS Member Agencies. The procedure for review and authorization of CCSDS Reports is detailed in Organization and Processes for the Consultative Committee for Space Data Systems (CCSDS A02.1-Y-3).
This document is published and maintained by:

CCSDS Secretariat

Space Communications and Navigation Office, 7L70

Space Operations Mission Directorate

NASA Headquarters

Washington, DC 20546-0001, USA

FOREWORD

Through the process of normal evolution, it is expected that expansion, deletion, or modification of this document may occur. This Report is therefore subject to CCSDS document management and change control procedures, which are defined in Organization and Processes for the Consultative Committee for Space Data Systems (CCSDS A02.1-Y-3). Current versions of CCSDS documents are maintained at the CCSDS Web site:

http://www.ccsds.org/

Questions relating to the contents or status of this document should be addressed to the CCSDS Secretariat at the address indicated on page i.

At time of publication, the active Member and Observer Agencies of the CCSDS were:

Member Agencies
· Agenzia Spaziale Italiana (ASI)/Italy.

· Canadian Space Agency (CSA)/Canada.

· Centre National d’Etudes Spatiales (CNES)/France.

· China National Space Administration (CNSA)/People’s Republic of China.

· Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)/Germany.

· European Space Agency (ESA)/Europe.

· Federal Space Agency (FSA)/Russian Federation.
· Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.

· Japan Aerospace Exploration Agency (JAXA)/Japan.

· National Aeronautics and Space Administration (NASA)/USA.

· UK Space Agency/United Kingdom.

Observer Agencies
· Austrian Space Agency (ASA)/Austria.

· Belgian Federal Science Policy Office (BFSPO)/Belgium.

· Central Research Institute of Machine Building (TsNIIMash)/Russian Federation.

· China Satellite Launch and Tracking Control General, Beijing Institute of Tracking and Telecommunications Technology (CLTC/BITTT)/China.

· Chinese Academy of Sciences (CAS)/China.

· Chinese Academy of Space Technology (CAST)/China.

· Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia.

· CSIR Satellite Applications Centre (CSIR)/Republic of South Africa.

· Danish National Space Center (DNSC)/Denmark.
· Departamento de Ciência e Tecnologia Aeroespacial (DCTA)/Brazil.

· European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)/Europe.

· European Telecommunications Satellite Organization (EUTELSAT)/Europe.

· Geo-Informatics and Space Technology Development Agency (GISTDA)/Thailand.

· Hellenic National Space Committee (HNSC)/Greece.

· Indian Space Research Organization (ISRO)/India.

· Institute of Space Research (IKI)/Russian Federation.

· KFKI Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.

· Korea Aerospace Research Institute (KARI)/Korea.

· Ministry of Communications (MOC)/Israel.

· National Institute of Information and Communications Technology (NICT)/Japan.
· National Oceanic and Atmospheric Administration (NOAA)/USA.

· National Space Agency of the Republic of Kazakhstan (NSARK)/Kazakhstan.

· National Space Organization (NSPO)/Chinese Taipei.

· Naval Center for Space Technology (NCST)/USA.

· Scientific and Technological Research Council of Turkey (TUBITAK)/Turkey.

· Space and Upper Atmosphere Research Commission (SUPARCO)/Pakistan.

· Swedish Space Corporation (SSC)/Sweden.

· United States Geological Survey (USGS)/USA.

DOCUMENT CONTROL

	Document
	Title
	Date
	Status

	CCSDS 660.1-G-1
	XML Telemetric and Command Exchange (XTCE)—Element Description, Informational Report, Issue 1
	May 2012
	Initial issue

	CCSDS 660.1-G-2
	XML Telemetric and Command Exchange (XTCE)—Element Description, Informational Report, Issue 2
	October 2019
	XTCE1.2 Revision

	
	
	
	

CONTENTS

Section
Page

1-11
Introduction

1-11.1
Purpose

1-11.2
Scope

1-11.3
Document Structure

1-21.4
Definitions

1-31.5
References

2-12
Overview

2-12.1
General

2-12.2
What is XTCE?

2-22.3
XTCE Versions

3-13
XTCE Core Concepts and Common Elements

3-13.1
Overview

3-13.2
Overall Structure

3-13.3
NameReferences

3-33.4
Common XTCE Elements

3-233.5
Modified CommandMetaData Schema Types

3-253.6
New and Modified Schema TypeS

4-14
XTCE Elements and Attributes

4-14.1
Overview

4-14.2
The SpaceSystem Element

4-84.3
TelemetryMetaData—Telemetry

4-1604.4
CommandMetaData—Commanding

4-1854.5
ServiceSet Element — Services

5-15
Advanced Topics

5-15.1
Overview

5-15.2
Abstract, Concrete, AND PLAIN Containers

5-25.3
Modifying an Entry

5-105.4
Using Abstract, Plain and Concrete Containers to Build Packaging Definitions

5-155.5
Dynamic Container Matching

5-205.6
MetaCommand Inheritance

5-285.7
Referencing that Crosses Sides

5-285.8
Reference Scope

5-305.9
Array Parameters

5-305.10
Defining Session Variables

5-305.11
Defining Pseudo-Parameters

6-16
Telemetry Container Patterns

6-16.1
Overview

6-16.2
Telemetry Packet Patterns

7-17
Commands and Command Container Patterns

7-17.1
General

7-17.2
Command Patterns

8-18
Suggestions for Creating and Parsing XTCE documents

8-18.1
General

8-18.2
JAXB Case Study

8-78.3
A Basic Roundtrip Conversion Process

9-19
Complete Example

9-19.1
Overview

9-19.2
Telemetry Packet Example

9-59.3
Command Example

 TOC \o "8-8" \h * MERGEFORMAT

A-1ANNEX A FULL EXAMPLE

B-1ANNEX B KEYS

C-1ANNEX C ACRONYMS AND TERMINOLOGY

Figure
3-43-1
NameDescription

3-73-2
Comparison Element

3-103-3
ComparisonList

3-123-4
BooleanExpression

3-133-5
Condition

3-163-6
InputAlgorithm

3-163-7
MatchCriteria

3-173-8
ContextMatch

3-183-9
ParameterInstanceRef

3-193-10
IntegerValueType

3-203-11
DynamicValue

3-223-12
DiscreteLookup

4-34-1
SpaceSystem Root Element

4-64-2
Header

4-74-3
SpaceSystem Tree Diagram

4-94-4
TelemetryMetaData

4-124-5
ParameterTypes

4-144-6
FloatParameter

4-174-7
Relationship of ParameterType Elements

4-234-8
UnitSet

4-254-9
ErrorDetectCorrect Element

4-284-10
StringDataEncodingType

4-334-11
IntegerDataEncoding

4-364-12
FloatDataEncoding Element

4-364-13
DefaultCalibrator

4-374-14
BinaryDataEncoding

4-384-15
Optional Choice for Encodings

4-394-16
Spline Calibrator Graph

4-414-17
SplineCalibrator

4-434-18
PolynomialCalibrator

4-464-19
DefaultAlarm

4-554-20
EnumerationAlarm

4-564-21
AlarmConditions

4-584-22
StaticAlarmRanges

4-584-23
Visual Depiction of Alarm Range Bands

4-624-24
ChangeAlarmRanges

4-684-25
StringParameterType

4-714-26
StringDataEncoding

4-754-27
StringAlarm Element

4-774-28
EnumeratedParameterType

4-844-29
IntegerParameterType

4-914-30
BinaryParameterType

4-944-31
FloatParameterType

4-994-32
BooleanParameterType

4-1014-33
RelativeTimeParameterType

4-1054-34
AbsoluteTimeParameterType

4-1084-35
ArrayParameterType

4-1104-36
AggregateParameterType

4-1244-37
ParameterSet—Parameters

4-1294-38
ParameterProperties

4-1314-39
PhysicalAddress

4-1324-40
TimeAssociation

4-1354-41
The SequenceContainer Element

4-1374-42
DefaultRateInStream

4-1384-43
RateInStreamSet Element

4-1414-44
EntryList Element

4-1434-45
Inside of ParameterRefEntries

4-1464-46
StreamSegmentEntry

4-1494-47
The LocationInContainerInBits Element

4-1504-48
RepeatEntry Element

4-1514-49
IncludeCondition Element

4-1524-50
BaseContainer Element

4-1524-51
Extending SequenceContainers

4-1564-52
UML Representation of Example Containers

4-1574-53
MessageSet

4-1584-54
StreamSet

4-1594-55
AlgorithmSet Element

4-1604-56
CommandMetaData Element

4-1624-57
Relationship of CommandMetaData ParameterType Elements (and ArgumentType)

4-1644-58
The 1st Part of MetaCommand

4-1654-59
BaseMetaCommand

4-1694-60
MetaCommand/CommandContainer EntryList

4-1704-61
The Base Element from CommandContainer

4-1714-62
Extending MetaCommand/CommandContainers

4-1724-63
Argument Element

4-1734-64
The 2nd Part of MetaCommand

4-1744-65
TransmissionConstraintList Element

4-1754-66
DefaultSignificance Element

4-1764-67
ContextSignificance Element

4-1764-68
Interlock

4-1784-69
Verifiers

4-1794-70
CommandVerifiers

4-1814-71
ParameterToSet Element

4-1824-72
ParametersToSuspendAlarmsOnSet Element

4-1834-73
MetaCommandSet Element

4-1834-74
BlockMetaCommand

4-1854-75
Extending CommandContainers

4-1864-76
Services

5-35-1
EntryList Addressing

5-185-2
Using IncludeConditions

5-185-3
Using Dynamic Container Matching

5-205-4
Dynamic Container Match Example

5-295-5
NameReferences Should Not ‘Move’ Inadvertently through Processing

5-295-6
Definitions Are Sticky

6-16-1
Basic Container Inheritance Pattern

6-26-2
Including a Secondary Header

6-26-3
Common Telemetry Root Container

6-36-4
Dynamic Container Matching of Secondary Headers

7-17-1
Simple Command Pattern

7-17-2
Basic Command Inheritance Pattern

7-27-3
Mission MetaCommand

Table
1-31-1
Guide to XTCE Diagrams

4-184-1
Common ParameterType Inheritance Rules

4-194-2
Specific ParameterType Inheritance Rules

4-444-3
Exponent and Coefficient Table

4-1124-4
Settings for Uncalibrated StringParameterType

4-1134-5
Settings for Uncalibrated Unsigned IntegerParameterType

4-1144-6
Settings for Uncalibrated Unsigned IntegerParameterType

4-1144-7
Settings for Uncalibrated BCD IntegerParameterType

4-1154-8
Settings for Uncalibrated FloatParameterType

4-1154-9
Settings for Uncalibrated EnumeratedParameterType

4-1164-10
Settings for Uncalibrated BinaryParameterType

4-1164-11
Settings for Uncalibrated BooleanParameterType

4-1164-12
Settings for Uncalibrated Relative and AbsoluteParameterTypes

4-1174-13
Settings for Alternative Uncalibrated ParameterTypes

4-1184-14
Settings for Calibrated Unsigned IntegerParameterType

4-1194-15
Settings for Calibrated Signed IntegerParameterTypes

4-1194-16
Settings for Calibrated BCD IntegerParameterType

4-1204-17
Settings for Calibrated FloatParameterType

4-1214-18
Settings for Calibrated FloatParameterType from Integer

4-1544-19
Container Inheritance Rules

4-1674-20
MetaCommand Inheritance Rules

5-45-1
PrevEntry Example

5-55-2
ContainerStart Example

5-55-3
ContainerEnd Example

5-65-4
NextEntry Example

5-75-5
ContainerAbsolute (SizeInBits = 144)

5-75-6
Container (SizeInBits = 160)

5-75-7
Container: Resolved (SizeInBits = 160)

5-105-8
Plain Container

9-19-1
Telemetry Packet Example

9-59-2
Command and Command Packet Example

1 Introduction

1.1 Purpose

This Informational Report provides information for using Extensible Markup Language (XML) Telemetric and Command Exchange (XTCE) 1.2. This document expands upon the annotation and intended usage official XTCE 1.2 specification. XTCE is an XML Schema for describing telemetry and telecommand database items for spacecraft monitoring and control.

XTCE is used to facilitate the exchange of spacecraft telemetry and command databases between different organizations and systems during any mission phase. It is a nonproprietary format that avoids the need for customized import/export tools.
This document is a revision of an earlier version for XTCE 1.1. Further it is a companion to the high-level introduction to contained in the report CCSDS 660.2-G-2.
1.2 Scope

The scope of this document is limited to the exchange of satellite telemetry and commanding databases during development through operation phases of a mission. It addresses general XTCE concepts and terminology. Finally, it all the major elements and attributes, many minor ones to explain all the various aspects of the XTCE Schema and how they interact to make a complete database description.
1.3 Document Structure
This Report is organized as follows:

a) Section 1 specifies the purpose and scope.
b) Section 2 provides a general description of XTCE.
c) Section 3 specifies core XTCE concepts.
d) Section 4 describes XTCE elements and attributes.
e) Section 5 describes advanced concepts and complete examples.

f) Section 6 describes a telemetry packet.

g) Section 7 describes a command packet.

h) Section 8 discusses programming and XTCE.

i) Section 9 presents a detailed example.
j) Annex A contains a full XML example.

k) Annex B contains XTCE 1.1 schema keys that have been fixed.

l) Annex C contains a list of acronyms used in the document.

1.4 Definitions
1.4.1 Terms

XTCE is an XML Schema using the World Wide Web Consortium (W3C) Schema language, which is a standard for constructing the rules for a particular XML. From the user’s standpoint, XTCE looks like a series of elements and attributes with specific names oriented towards spacecraft telemetry and telecommand. The XTCE Schema itself is a collection of both schema types and derived schema types using the XML Schema language. The following terminology is used in this document:

XML Schema language: A W3C standard for building specific rules for XML.

XTCE Schema: The rules for any XTCE XML file.

XTCE file or XTCE instance document: An XML file that validates against the XTCE Schema using an XML parser.

XML parser: A program that reads in XML Schemas and then validates specific XML files against it.

XML Schema types: The base types used to form the XML Schema language.

Derived XML Schema types: New schema types created for a specific XML Schema such as XTCE.

XTCE Schema types: The created types that form the XTCE Schema.

Element or tag: In XML, items formed using angle brackets; the terms element and tag are interchangeable, e.g., <Element>Content</Element>.
NOTE
–
In this document, the location of elements and attributes in XTCE Schema may be described using a path-like designation such as:

/topElement/middleElement/endElement

This helps orient its location within the schema for the reader.

Attribute: In XML, a qualifier within a specific element, such as:

<Element attribute="myAttributeContent">Content</Element>

In textual descriptions, attributes will often be preceded by an ‘@’ such as:
‘@attribute’ or ‘Element/@attribute’
Annotation: Descriptive information within XTCE Schema itself.

NOTES

1 The XTCE annotation is considered canon; however, it is also terse. This document expands it but does not knowingly contradict it.

2 In some cases a special ‘appinfo’ annotation is included whenever it is necessary to perform an additional validity check that is not describable in the W3C schema language.

1.4.2 Conventions

This document uses diagrams generated from the commercial application XMLSpy from Altova Ltd, which shows the XTCE schema visually instead of in code format. Table 1‑1 provides a brief guide to these diagrams:

Table 1‑11 TC \f T "-1
Guide to XTCE Diagrams"
: Guide to XTCE Diagrams

	XMLSpy Image
	Description
	Graphical Symbol Meaning

	[image: image2.png]Space System B3

	Solid Box
	Required XML element in document

	[image: image3.png]

	Box with Dashed lines
	Optional XML element in document

	[image: image4.png]

	Sequence Box
	Ordered set of elements (qualifier for number often present)

	[image: image5.png]

	Choice Box
	Choice from child elements presented (qualifiers present)

	[image: image6.png]

	Attributes Box
	Attributes within an element name, such as <element attribute="myAttributeContent">

1.5 References
The following Web sites contain important and interesting resources related to XML and XTCE:
· OMG XTCE Web site—http://www.omg.org/space/xtce;
· OMG Issues Page—http://www.omg.org/technology/agreement.htm;
· OMG Space Domain Task Force—http://www.omg.org/space;
· XML Tutorial—http://www.w3schools.com/xml/default.asp;
· XML Schema Tutorial—http://www.w3schools.com/schema/default.asp;
2 Overview

2.1 General

This document presents a nonproprietary format (XTCE) to describe a telemetry and telecommand mission operations database. A mission operations database is typically the ground format description file ingested by a tool that uses the information to configure itself so that it may decommutate mission telemetry values and build correct mission commands. Additional information typically associated with these “mission ops database” files are alarms (limits), units, calibration, algorithm and descriptive information.

2.2 What is XTCE?

XTCE is an XML Schema (XSD) for describing telemetry and commands needed by space missions to decommutate telemetry and build commands on the ground. XTCE contains rules for element names, element order, attributes, and their content. These rules are used to construct XTCE XML files.
An XTCE document describes a space system. The space system is divided into two sections: one file for telemetry metadata, and another for command metadata (where ‘meta’ means ‘information about’). An XTCE space system may be hierarchical, with each space system containing sub-space systems.

Telemetry items are described using the Parameter element and the associated elements called ParameterTypes. ParameterTypes describe attributes of individual telemetry items such as link encoding, alarms, and calibration information.

Telemetry parameter descriptions are formed into descriptive blocks called containers. The containers describe packaging of the mission telemetry and use inheritance to complete each package description. They are used for marking identified areas and their expected values within packets or minor frames.

Commands share many of the same basic elements with telemetry. Like telemetry, there are command parameters and ParameterTypes. In addition, commands have arguments, which have an ArgumentType. Each mission will decide which command items are needed.

One command may extend another to produce a new command description by inheriting functionality. Command descriptions also use inheritance.
Once XTCE files are constructed, they can be used to exchange telemetry and command descriptions with other users. For new missions, XTCE could be used as a native format for the telemetry and command processing system. XTCE is a broad specification; most users will use a subset of the capabilities.
Many of the XTCE Schema types are reused to create the various elements. This gives the files a repetitive look.
2.3 XTCE Versions
There are several versions of XTCE that have been published over the years. The first version was XTCE 1.0 published in 2006. Shortly thereafter version XTCE 1.1 was published in 2006 after adjustments following a CCSDS review. Finally XTCE 1.2 was published in 2019 after years of accumulated knowledge by end users and deliberations on their findings by the standards community.

This documents generally pertains to all of them, but specifically version 1.2.

2.3.1 Changes From XTCE 1.1 to XTCE 1.2

XTCE 1.2 has many important changes to it but is largely backwards compatible syntactically with XTCE 1.1. Even so, some syntax has changed slightly.

A change of note relates to how arrays are defined in XTCE 1.1 that many uses felt was awkard, or just insufficient – in that version only the number of dimensions is defined in ArrayParameterType, and the size of each dimesions is specified when it’s used within a container.
However In XTCE 1.2 this has been revised. Now the array dimensions and their sizes are specified directly in the ArrayParameterType.

There are more changes, one that is invisible to the end user but the programmer will notice it occurs with the underlying schema types. In XTCE 1.2. these have been cleaned up to produce a better programmatic mapping when using tools like JAXB (Java XML Binding) to generate a class representation from the schema.
A list of major changes are as follows:

· The SpaceSystem namespace is updated
· Various enumerated strings values have been normalized

· Byte order can be specified in several ways
· Exponents are integers

· Specifying string length is updated

· Float encoding sizes are modified

· Epoch time/date data type updated

· Argument area supports both an argumentRef and parameterRef

· Arrays are updated so that their dimension sizes can be specified locally

· Various annotations updated and expanded
· Numerous schema types improved or modified

· The schema keys have been fixed or expanded

· There’s a new alarm for numerics

· There’s an inside/outside flag for some alarms

· Xinclude is supported

· Time association has moved to the container entry area

· Ancillary data and short description appear in even more locations

· The command side schema types have been optimised somewhat
· Parameter instance references in arguments has been expanded to include arguments instance references
· Numerious small bug fixes and typos have been addressed
3 XTCE Core Concepts and Common Elements

3.1 Overview

This section introduces several core XTCE concepts. Many of these concepts reappear throughout the schema, they are introduced here to reduce repetition.

3.2 Overall Structure

XTCE consists of the following top-level XML structure:
<xtce:SpaceSystem> <!-- the root element in XTCE -->
<xtce:TelemetryMetaData/> <!-- telemetry description section -->
<xtce:CommandMetaData/> <!-- command description section -->
<xtce:SpaceSystem/> <!-- optional child sub-SpaceSystems (recursive) -->

</xtce:SpaceSystem>
Each of these top-level elements has many child elements and attributes. For example, TelemetryMetaData has the following child element (in abbreviated form):

<xtce:TelemetryMetaData> <!-- telemetry description section -->
<xtce:ParameterTypeSet/> <!-- user types, calibration curves, limits, link info, etc. -->
<xtce:Parameter/> <!-- user telemetry items: name, links to ParameterType -->
<xtce:ContainerSet/> <!-- user packaging for telemetry items, packets or minor frames -->

</xtce:TelemetryMetaData>

The following is a CommandMetaData child example.
<xtce:CommandMetaData> <!-- command description section -->

<xtce:ParameterTypeSet/> <!-- parameter type area for commands -->

<xtce:ArgumentTypeSet/> <!-- argument types, similar to above -->

<xtce:MetaCommandSet/> <!-- cmd description area, arguments, packets etc… -->

<xtce:CommandContainerSet/> <!-- common items referenced above -->

</xtce:CommandMetaData>

Each of these elements has child elements. Some are required; most are optional. In addition, most elements have attributes, and many of the attributes have default values.

3.3 NameReferences

3.3.1 General

XTCE uses a string pointer called NameReference to reference items in other parts of an XTCE file. The reference consists of the name of the item of interest and an optional path to its location in the XTCE file. The path portion is formed by SpaceSystem names and has the same general format as directory names in Unix/Linux systems. In XTCE the name of the item of interest is held in the attribute ‘@name’ which occurs in many elements. The final path item is the item of interest in a NameReference. For example, using a NameReference, a parameter defined in ParameterSet refers to a ParameterType in ParameterTypeSet. The NameReference in this case consists of the user-supplied name in the attribute @name of the ParameterType.

The rules governing NameReferences are as follows and differ in some aspects to file paths:

a) If a NameReference is only the name of the item being referenced it is an unqualified NameReference. Unqualified NameReferences refer first to an item in the local SpaceSystem. If the name does not exist, then all SpaceSystems in the SpaceSystem tree above it will be searched to find a match.

b) If a NameReference consists of the name of the item and a path, it is a qualified NameReference; a qualified NameReference refers to an item specifically pointed to by the path. The path is formed using SpaceSystem names and some optional reserved special characters. The path form may be relative or absolute.

c) Using unqualified or relative qualified NameReferences is the recommended practice.

For qualified NameReferences, the path portion is formed using a Unix-like directory construct separated by ‘/’ and allowing ‘.’ and ‘..’ special characters. The items between the separators are formed by using SpaceSystem names (from the @name of SpaceSystem). Per SpaceSystem, many NameReferences share a common namespace that is enforced by the ‘keys’ at the top level of the XTCE Schema. The keys are used to check for name uniqueness in certain major elements within a SpaceSystem. (See annex B for proper ‘keys’ enforced by the XTCE1.1 standard.)
3.3.2 Shared NameReference Namespaces

The XTCE 1.2 schema defines keys to enforce uniqueness in certain area of the schema. In a sense these are namespace. Generall speakinging there are certain elements in XTCE that have a name attribute that is shared between CommandMetaData and TelemetryMetaData. The following share namespaces:

· TelemetryMetaData/ParameterSet and CommandMetaData/ParameterSet;
· TelemetryMetaData/ParameterTypeSet and CommandMetaData/ParameterTypeSet;
· TelemetryMetaData/ContainerSet and CommandMetaData/CommandContainerSet;
· TelemetryMetaData/ContainerSet, CommandMetaData/CommandContainerSet, and MetaCommand/CommandContainer.
3.3.3 Syntax for NameReferences

3.3.3.1 General

NameReferences in XTCE are strings that adhere to the following syntax:

Directory style ‘NameType’ is used, where ‘NameType’ is a restricted string with the pattern of "[^./:\[\]]+"
· All name references use a Unix-like name referencing mechanism across the SpaceSystem tree where the ‘/’, ‘.’, and ‘..’ are used to navigate through the hierarchy.

· The Name of the item of interest is restricted and follows the directory path.

· SpaceSystem names are governed by NameTypes.

3.3.3.2 ParameterInstanceReference Syntax Rules

ParameterInstanceReferences add the following two special syntax variations to NameReferences: field in an AggregrateType, and a cell in an Array:

{Optional Path}Name{Optional Field Reference or Optional Array Cell Reference}

· The Optional Field References is Aggregate Name followed by dot (‘.’) and then the aggregate field name.

· The Array Cell Reference is typical array square bracket (‘[]’) notation.

For ArrayInstanceReferences, the size of the dimension of an array parameter is set in the container. The array parameter should be used in several containers, with each container having the correct size for the dimensions.

3.4 Common XTCE Elements

3.4.1 Overview

This subsection will be referenced in other sections in this document as these XTCE elements and attributes reappear throughout the XTCE file, again this is done to reduce repetition in other parts of this report.

3.4.2 Elements of the NameDescriptionType
3.4.2.1 General

The elements and attributes associated with the NameDescriptionType are identified in figure 3‑1. The NameDescription schema type is the root type of many XTCE Schema types.
[image: image7.png]Defines a base schema
type definition used by
many other schema types
throughout schema. Use
it to describe a name with
optional descriptions,
aliases, and ancillary
data. See NameType,
LongDescriptionType,
ShortDescriptionType,
AliasSetType and
AndllaryDataSetType.

onType (extension)

Hlattributes

description to be
used for explanation
of this item. Ttis
recommended that
the short description
be kept under 80

characters in length.

[
|
|
|
| | "Optional short
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
Opional long form |
description to be used |
for explanatory
descriptions of ths tem |
and may include HTML |
markup using COATA.
Long Descrptions are of |
unbounded length. |
|
|
|
|
|
|
|
|
|
|
|
]

Used to contain an
alias (alternate)
name or D for this
item. See
AliasSetType for
additional
explanation.

Use for any non-standard
data associated with this
named item. See
AndillaryDataSetType for
addtional explanation.

Blattributes

L{ The name of this
defined item. See
NameType for
restriction
information.

Figure 3‑13 TC \f G "-1
NameDescription"
: NameDescription

3.4.2.2 name Attribute

The name attribute is mandatory or exception in the OptionalNamDescriptionType variation where it is optional. If there is a name attribute, then that item will be referenced using a NameReference. For certain elements (such as calibrators) the name is optional.
<xtce:Parameter name="BatVolt1" parameterTypeRef="VoltageType"/>
3.4.2.3 shortDescription Attribute

The shortDescription attribute is a summary description up to 80 characters long. This is not enforced.
<xtce:Parameter name="BatVolt1" parameterTypeRef="VoltageType" shortDescription="Battery Voltage"/>
3.4.2.4 LongDescription Element

The LongDescription element is used to provide for a more complete description of the item. HTML encapsulated in CDATA is allowed within the LongDescription element.
<xtce:Parameter name="BatVolt1" parameterTypeRef="VoltageType" shortDescription="Battery Voltage">
<xtce:LongDescription>Battery Voltage from EPS-Subsystem, EPSA_BAT_S7</xtce:LongDescription>

</xtce:Parameter>

3.4.2.5 AliasSet Element

Organizations may have more than one name for a given item: an official name, and another that is in common use, i.e., an alias. Use of the optional AliasSet element allows definition of aliases.

<xtce:Parameter name="BatVolt1" parameterTypeRef="VoltageType" shortDescription="Battery Voltage">
<xtce:LongDescription>Battery Voltage from EPS-Subsystem, subsystem 7</xtce:LongDescription>
<xtce:AliasSet>
<xtce:Alias nameSpace="Display" alias="EABVS7_1"/>
</xtce:AliasSet>

</xtce:Parameter>

The example above is representative of the shorthand naming conventions often used in mission operations. Here, an alias is created with an unreadable naming convention.
NOTE
–
Aliases are not visible to NameReferences.
3.4.2.6 AncillaryDataSet Element

AncillaryData is used to define tag/value associations for user-defined and interpreted items.
<xtce:Parameter name="BatVolt1" parameterTypeRef="VoltageType" shortDescription="Battery Voltage">
<xtce:LongDescription>Battery Voltage from EPS-Subsystem, subsystem 7</xtce:LongDescription>
<xtce:AliasSet>
<xtce:Alias nameSpace=" Display" alias=" EABVS7_1"/>
</xtce:AliasSet>
<xtce:AncillaryDataSet>
<xtce:AncillaryData name="LRVSTK">true, max: 3</xtce:AncillaryData>
</xtce:AncillaryDataSet>

</xtce:Parameter>

In this example, a system-dependent flag is set to a value that makes sense only for that implementation. AncillaryData can have a MIME type associated with it.

AncillaryData is useful for defining specialty flags or items that are not well represented in XTCE. Since they are not in the schema, care should be taken in defining their intended meaning.

3.4.3 Comparison Elements of ComparisonType

3.4.3.1 General

XTCE’s comparison (expression) elements include Comparison, ComparisonList, Boolean Expression, and Custom Algorithm. These elements are used in alarms (limits) calibrators and RestrictionCriteria. They are also used in other locations that require the evaluation of an expression formed by ParameterInstanceRefs and a value.
3.4.3.2 Comparison Element

3.4.3.2.1 General

The Comparison element compares a single parameter instance against a supplied value using a comparison operator. Figure 3‑2 shows the Comparison element.
[image: image8.png]A simple comparison
check involving a
single test of a
parameter value.

Operator to use for the
‘comparison with the
‘common equality
operator as the default.

‘Specify value as a
string compliant with
the XML schema (xs)
type specified for
‘each XTCE type:
integer=xs;integer;
float=xs:double;
string=xs:string;
boolean=xs:boolean

binary=xs:hexginary
; enum=xs:string
from

EnumerationList;
relative tim:
xs:duration;
absolute
time=xs:dateTime.
Supplied value must
be within the
ValidRange specified
for the type.

Figure 3‑23 TC \f G "-2
Comparison Element"
: Comparison Element

3.4.3.2.2 parameterRef Attribute

The parameterRef attribute refers to the parameter’s description in ParameterSet. If the comparison is a container area, it refers to the container entries first.
3.4.3.2.3 instance Attribute

The instance attribute may be specified. The instance defaults to zero or the last value. The most recent instance is referred to as the Last Reported Value (LRV).
3.4.3.2.4 useCalibratedValue Attribute
The useCalibratedValue attribute determines if a calibrated value is used in the comparison. The useCalibratedValue defaults to ‘true’.

3.4.3.2.5 comparisonOperator Attribute

The comparisonOperator attribute is a list of standard operators: ==, <, <=, >, >=, and !=. The default comparisonOperator is ==.

· The following example uses the defaults:

<xtce:Comparison parameterRef="Simple" value="100"/>
· The following is a more complex version that specifies all values:

<xtce:Comparison parameterRef="Complicated" value="99.9919" comparisonOperator=">=" instance="1" useCalibratedValue="false"/>

3.4.3.2.6 value Attribute

The value attribute is a string. The comparison may be against a ParameterType that represents a different data type (such as an integer). Depending on the scenario, the string may need to be converted to a different data type in order to process the comparison:

a) For telemetry parameters:

1) If the useCalibratedValue is ‘false’, then the value should be converted to the ParameterType’s DataEncoding data type: string, integer, float, or Boolean.
2) If the flag is ‘true’, then the ParameterType’s data type should be used.

b) For command parameters:
1) If the useCalibratedValue is ‘false’, then the data type represented by the ParameterType is used.
2) Otherwise, the data type represented by the DataEncoding is used.

Listing the value’s legal formats will help make exchanging with other formats easier. The following are recommendations:

a) Numerical integer values use xsd:integer, xtce:HexadecimalType, xtce:OctalType, and xtce:BinaryType rules.
· For BinaryType, ‘0x’ and ‘0o’ and ‘0b’ are placed before the value.
· For FloatParameterType, xsd:float or xsd:double is used, depending on the precision.

b) For Boolean, xsd:boolean is used, and for enumerations one of the valid labels for the ParameterType is specified.

· In the case of RelativeTimeParameterType and AbsoluteTimeParameterType values, xsd:duration and xsd:dateTime are used. Specifying the time zone is recommended.

3.4.3.3 ComparisonList Element

ComparisonList is simply a list of Comparison elements. All Comparisons in the ComparisonList must be ‘true’ in order for ComparisonList to be ‘true’.
[image: image9.png]r xtce:ComparisonListType |

Battributes

Operator to use for the
comparison vith the
common equality
operator as the defautt.

|
|
|
|
|
|
|
|
|
|
|
|
Specify value as a |
sinng complant with ||
|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
| |
{xtce:ComparisonList B—(==—H xtce-Comparison g+ <1 177)
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
|

A series of simple each XTCE type:
comparison checks with integer=xs;integer;
an implict 'and" in that float=xs:double;
they all must be true for string=xs:string;
the overall condition to boolean=xs:boolean
be true. ;

T
List of Comparison
elements must all be
true for the
comparison to
evaluate to true.

binary=xs:hexinary
; enum=xs:string
from
EnumerationList;
relative time=
xs:duration;
absolute
time=xs:dateTime.
Supplied value must
be within the
ValidRange specified
for the type.

Figure 3‑33 TC \f G "-3
ComparisonList"
: ComparisonList

3.4.3.4 Boolean Expression Element

3.4.3.4.1 General

BooleanExpression is used to construct complex ‘and/or’ Boolean expressions.
[image: image10.png]| xtce:BooleanExpressionType

xice:Condition

Condition elements
describe a test
similar to the
Comparison element
except that the
parameters used
have addtional
flexibilty.

|
|
|
|
|
|
|
|
|
|
|
|
|
| xtce:ANDedC
| “This element describes
tests similar to the
ComparisonList element
except that the parameters
used are more flexible.

xtce:BooleanExpression E

An arbitrarily complex
boolean expression that has
addtional flexibility on the
terms beyond the
Comparison and
ComparisonList elements.

T element descrves |
tests similar to the |
Comparisontis element
except that the. |
parameters used are |
more flexible. |
|
|
|
|

————

|
|
Condition elements |
describe a test |
similar to the
Comparison element |
except that the |
parameters used
have additional |
flexiilty for the |
compare. |
|
|
|
|
|
|

“This element describes
tests similar to the
ComparisonList element
except that the
parameters used are
more flexible and the
and/or for multiple checks
can be specified.

Condition elements
describe a test
similar to the
Comparison element
except that the
parameters used
have addtional
flexibiliy for the
compare.

“This element describes
tests similar to the
ComparisonList element
except that the parameters
used are more flexible and
the and/or for multiple
checks can be specified.

Figure 3‑43 TC \f G "-4
BooleanExpression"
: BooleanExpression

The Condition element here is similar to the Comparison element. Values or other parameters may be used on both sides of the comparison operator. Example of a BooleanExpression:

(ParameterAndValue == 100) AND (ParameterAndParameter >= TheOtherParameter) AND ((P2 <= P3) OR (P4 != 99))

<xtce:BooleanExpression>
<xtce:ANDedConditions>
<xtce:Condition>
<xtce:ParameterInstanceRef parameterRef="ParameterAndValue"/>
<xtce:ComparisonOperator>==</xtce:ComparisonOperator>
<xtce:Value>100</xtce:Value>
</xtce:Condition>
<xtce:Condition>
<xtce:ParameterInstanceRef parameterRef="ParameterAndParameter"/>
<xtce:ComparisonOperator>>=</xtce:ComparisonOperator>
<xtce:ParameterInstanceRef parameterRef="TheOtherParameter"/>
</xtce:Condition>
<xtce:ORedConditions>
<xtce:Condition>
<xtce:ParameterInstanceRef parameterRef="P2"/>
<xtce:ComparisonOperator><=</xtce:ComparisonOperator>
<xtce:ParameterInstanceRef parameterRef="P3"/>
</xtce:Condition>
<xtce:Condition>
<xtce:ParameterInstanceRef parameterRef="P4"/>
<xtce:ComparisonOperator>!=</xtce:ComparisonOperator>
<xtce:Value>99</xtce:Value>
</xtce:Condition>
</xtce:ORedConditions>
</xtce:ANDedConditions>

</xtce:BooleanExpression>
3.4.3.4.2 Condition Element

Condition is a child element of BooleanExpression. Condition is similar to Comparison, but differs in that it allows one to provide two parameter instances or a value. Condition’s ComparisonOperator element must be explicitly set since there is no default value for it.
[image: image11.png]Left hand side parameter
instance.

Condition elements
describe a test

similar to the
Comparison element mg‘m handps\de parometer
except that the instance. Parameter is assumec

to be of the same type as the

parameters used
comparison Parameter.

have addtional
flexibilty.

|
|
|
|
|
|
‘ |
‘ |
‘ |
‘ |
‘ |
‘ |
} Right hand side |
value. Speciy as: |
| integer data type
| using ss:integer, |
float data type using |
| xs:double, string
| data type using |
ss:strng, boolean |
| data type using |
xsiboolean, binary
| boolean, b
‘ et pe sing |
sshexBinary, enum
| data type using label |
‘ name, reltive time |
data type using
| xs:duration, absolute |
time data type using |
| xs:dateTime. |
Values must not
I exceed the |
| characteristics for |
the data type or this
I isa validaion eror. |
| Takes precedence
| over an inital value |
given n the data |
| type. Values are
| Galbrated unless |
‘ there is an option to |
override .
|

Figure 3‑53 TC \f G "-5
Condition"
: Condition

3.4.3.5 CustomAlgorithm Element

CustomAlgorithm allows for the specification of an algorithm that can be processed to produce a result. This element is used in a number of locations throughout XTCE. It is often specified in a construct along with Comparison, ComparisonList, or BooleanExpression. It is used to represent processing that cannot be done with those elements.
This item starts as a NameDescription and includes a list of parameters and constants. There is an optional sub-element that allows the algorithm code to be transferred as text. CustomAlgorithm is an InputAlgorithmType and related to AlgorithmSet.
Note: It appears annotation was lost from XTCE 1.1, however that annotation still applies to this element in XTCE 1.2.
[image: image12.png]xtce:CustomAlgorithm E}

An escape to an externally
defined algorithm.

Hlattributes

Optional short
description to be
used for explanation
of this tem. Ttis
recommended that
the short description
be kept under 80
characters in length.

The name of this
defined ftem. See
NameType for
restriction
information.

Optional long form
description to be used
for explanatory
descriptions of this item
and may include HTML
markup using COATA.
Long Descriptions are of
unbounded length.

Used to contain an
alas (akternate)
name or D for this
item. See
AliasSetType for
additional
explanation.

Use for any non-standard
data associated with this
named item. See
AndillaryDataSetType for
addtional explanation.

' stcerAlgorithmTextrype |

Hlattributes

language |

" stce:ExtemalAlgorithmsetType
|
|
|
|

mSet

.l
:ExternalAlgorithmType

Battributes

Xt

| T

xtce:InputParameterlnstanceRef E}

1=

The InputsSet
describes the list of
parameters that
should be made

arguments to the
algorithm.

l‘

algorithmLocation

L=

| xtce:nputParameterinstanceRefType

| [Rattributes
}

|
|
|
available asinput |
|
|
|

"

Figure 3‑63 TC \f G "-6
InputAlgorithm"
: CustomAlgorithm Element
The following is a simple example of the type of information that could be held in CustomAlgorithm. Various options allow for additional flexibility.

<xtce:ContextMatch>
<xtce:CustomAlgorithm name="SimpleRemoteAlgorithm">
<xtce:ExternalAlgorithmSet>
<xtce:ExternalAlgorithm algorithmLocation=http://MyMission/Algorithms/CalcOrbit
 implementationName="Java"/>
</xtce:ExternalAlgorithmSet>
</xtce:CustomAlgorithm>

</xtce:ContextMatch>

3.4.3.6 MatchCriteriaType Element

MatchCriteria is an XTCE Schema type that groups expression elements. This schema type is used in many locations in XTCE.
[image: image13.png]MatchCriteriaType EJ

Contains either a
simple Comparison, a
ComparisonList, an
arbitrarily complex
BooleanExpression or
an escape to an
externally defined
algorithm

xtce:Comparison

A simple comparison
checkinvolving a
single test of a
parameter value.

xtce:ComparisonList B

A series of simple
comparison checks with
an implict 'and" in that
they all must be true for
the overall condition to
be true.

xtce:BooleanExpression

An arbitrarily complex
boolean expression that has
addtional flexibility on the
terms beyond the
Comparison and
ComparisonList elements.

xtce:CustomAlgorithm

An escape to an externally
defined algorithm.

Figure 3‑73 TC \f G "-7
MatchCriteria"
: MatchCriteria

3.4.3.7 ContextMatch Element

Contexts are user defined and describe when alarms or calibrations are active. A context may be used by missions to enable or disable certain functionality based on the evaluation of an expression. Specific contexts for missions are used by ContextAlarms and ContextCalibrators. The context is defined in a ContextMatch element.

[image: image14.png]A simple comparison
checkinvolving a
single test of a
parameter value.

xtce:ComparisonList

A series of simple
comparison checks with
an implict 'and in that
they all must be true for
the overall condition to
be true.

xtce:BooleanExpression

An arbitrarily complex
boolean expression that has
addiional flexibility on the
terms beyond the
Comparison and
ComparisonList elements.

xtce:CustomAlgorithm

An escape to an externally
defined algorithm.

Figure 3‑83 TC \f G "-8
ContextMatch"
: ContextMatch

Contexts could be defined for mission phases. One approach would be to create a session variable of enumerated mission phases and then use these as comparisons in the contexts of interest.

3.4.4 ParameterInstanceReferences

A ParameterInstanceRef is a NameReference to the named parameter’s value during command and telemetry processing. It is also a reference to its definition in the XTCE document.
[image: image15.png]xtce:Space SystemType

-
xtce:TelemetryletaDataType

xtce:ParameterType SetType

=
xtce: StringDataType (exiension)

)

xtce:StringAlarmType

=

o8 e gt v e

xtce:AlarmConditionsType

xtce:MatchCriteriaType

A simple com

———

I'stce:BooleanExpressionType

I

xtce:ComparisonCheckType

xtce:CommandMetaDataType

xtce:ParameterType SetType

)

xtce:StringAlarmType

xtce:MatchCriteriaType

I'stce:BooleanExpre

I

xtce:ComparisonCheckType

Figure 3‑93 TC \f G "-9
ParameterInstanceRef"
: ParameterInstanceRef

The value may be defined in a conceptual value table or in a container. The container takes precedence if the ParameterInstanceRef is defined in that area.

· The parameterRef attribute refers to its description in the XTCE document.
· The instance is the version of the decommutated value to use. An instance of zero means the last decommutated value of the named Parameter (Last Recorded Value). Negative instances reference recorded values in the past (back in time). The default value of instance is zero.

· The useCalibratedValue attribute specifies whether the raw or calibrated value is to be used. The default value of useCalibratedValue is ‘true’.

Positive instances can be specified (representing recorded values forward in time), but this is not recommended.

3.4.5 Size-Related Elements

3.4.5.1 General

Several elements, such as the SizeInBits element, are used throughout the schema when a size needs to be specified. The elements related to size are in the XTCE Schema type called IntegerValueType.

[image: image16.png]Use a fixed integer
value.

xtce:DynamicValue

Determine the value by
interrogating an
instance of a
parameter.

xtce:DiscreteL ookupList

Determine the value by
interrogating an instance of a
parameter and selecting a
specified value based on
tests of the value of that
parameter.

IntegerValueType E}

Contains an Integer
value; value may be
provided directly or
via the value in a
parameter.

Figure 3‑103 TC \f G "-10
IntegerValueType"
: IntegerValueType
Note: There is a similar type used on the CommandMetaData side of XTCE called ArgumentIntegerValueType. The principle difference is that it supports both ParameterInstanceRef and ArgumentInstanceRef, this is shown below.
3.4.5.2 FixedValue Element

The FixedValue element specifies the exact size as an integer.

<xtce:SizeInBits>
<xtce:FixedValue>11</xtce:FixedValue>

</xtce:SizeInBits>
3.4.5.3 DynamicValue Element

The DynamicValue element uses a ParameterInstanceRef to look up the size in the named parameter value table. The value may be adjusted using the slope and intercept of a line. Its instance and calibrated designation may also be specified (defaults are provided).
[image: image17.png]xtce:DynamicValue G}

Determine the value by
interrogating an
instance of a
parameter.

|
‘ Blattributes
|

parameterRef

Retrieve the value by referencing
the value of a Parameter.

lafiributes |

' sope and mercept may |
be applied to scale or shift

the value selected from the - — — — — I
argument or parameter.

Figure 3‑113 TC \f G "-11
DynamicValue"
: DynamicValue

The following example looks up instance zero of ‘SizeFromThisParameter’, then multiplies it by 8, and then adds 25.

<xtce:DynamicValue>
<xtce:ParameterInstanceRef parameterRef="SizeFromThisParameter"/>
<xtce:LinearAdjustment intercept="25" slope="8"/>

</xtce:DynamicValue>
The following shows DynamicValue as it’s modified for CommandMetaData.
[image: image18.png]| xtce:ArgumentinstanceRefType

Battributes

|

|

|

Give the name of the I
argument. There is |
no path, this is a |
|

|

|

|

|

local reference.

xtce:ArgumentinstanceRef 1

Retrieve the value by |
referencing the value of an |
Argument. | Typically the

calibrated/engineering
value is used and that
is the defaul.

|
‘ Blattributes
| [parameterRer

xtce:DynamicValue G}

Determine the value by
interrogating an
instance of an
argument or
parameter.

xice:ParameterlnstanceRef £}

Retrieve the value by referencing
the value of a Parameter.

A slope and intercept may
be applied to scale or shift
the value selected from the

argument or parameter.

Figure 12 ArgumentDynamicValue
As can be seen in Figure 12 above, the DynamicValue in CommandMetaData allows for either an ArgumentInstanceRef or a ParameterInstanceRef.
3.4.5.4 DiscreteLookupList Element

DiscreteLookupList is a list of the element DiscreteLookup, which contains a condition and associated value. The value from the first true condition is returned. The DiscreteLookup is constructed from a MatchCriteria (see 3.4.3.6) although now it is wrapped in its own schema types, as well as the DiscreteLookupListType itself.
NOTE
–
There is also a CommandMetaData side specific one with similar modifications as described in DynamicValue above.

[image: image19.png](

reteLookupl

ve -G e

Describe an ordered table
of integer values and
associated conditions,
forming a lookup table. The
list may have duplicates.
The table is evaluated from
first to last, the first
condition to be true returns
the value associated with it
See DiscreteLookupType.

Describe a lookup
condition set using
discrete values from
parameters.

xtce:Comparison

A simple comparison
checkinvolving a
single test of a
parameter value.

xtce:ComparisonList

|

|

|

|

|

|

|

|

A series of simple |
comparison checks with

an implicit 'and in that |

they all must be true for |
the overall condition to

be true. |

|

|

|

|

|

|

|

|

|

xtce:BooleanExpression

An arbitrarily complex
boolean expression that has
addiional flexibility on the
terms beyond the
Comparison and
ComparisonList elements.

xtce:CustomAlgorithm

An escape to an externally
defined algorithm.

Figure 3‑133 TC \f G "-12
DiscreteLookup"
: DiscreteLookup

A large variety of constructions are possible with this element. The example below simulates checking the value of a single parameter, which results in different returned sizes. Here the value of ‘10’, ‘25’, or ‘711’ will be returned depending on which condition is true.

<xtce:DiscreteLookupList>
<xtce:DiscreteLookup value="10">
<xtce:Comparison parameterRef="P1" value="1"/>
</xtce:DiscreteLookup>
<xtce:DiscreteLookup value="25">
<xtce:Comparison parameterRef="P1" value="2"/>
</xtce:DiscreteLookup>
<xtce:DiscreteLookup value="711">
<xtce:Comparison parameterRef="P1" value="3"/>
</xtce:DiscreteLookup>

</xtce:DiscreteLookupList>

Here is the same construction for CommandMetaData side of XTCE now, it alls both the ParameterInstanceRef and ArgumentInstanceRef.
[image: image20.png][Argumenﬂ)iscreteLookupLisﬂype E]—E)a—{ xtce:DiscreteL ookup ﬁ]

Identical to DiscreteLookupListType but
supports argument instance
references.

1=
Describe a lookup
condition set using
discrete values from
arguments and/or
parameters.

A simple comparison
checkinvolving a
single test of an
argument or
parameter value.

xtce:ComparisonList B

|
|
|
|
|
|
|
|
|
A series of simple |
comparison checks with |
an implict ‘and' in that
they all must be true for |
the overall condition to |
be true.
|
|
|
|
|
|
|
|
|

xtce:BooleanExpression

An arbitrarily complex
boolean expression that has
addiional flexibility on the
terms beyond the
Comparison and
ComparisonList elements.

xtce:CustomAlgorithm

An escape to an externally
defined algorithm.

Figure 14 ArgumentDiscreteLookupList
3.5 Modified CommandMetaData Schema Types
As has been eluded to above, many CommandMetaData side schema types have been modified slightly in XTCE 1.2 to allow for either a ParameterInstanceRef or ArgumentInstanceRef. The overall effect is the command side has become more independent from XTCE 1.1. The following schema types are affected and in the annotation usually something like of this nature: “Identifical to X element but supports argument instance references.” All or nearly all of them have the word “Argument” prefixed to their previous name. They are listed here as follows:

· ArgumentArgumentRefEntryType
· ArgumentArrayArgumentRefEntryType

· ArgumentArrayParameterRefEntryType

· ArgumentContainerSegmentRefEntryType

· ArgumentFixedValueEntryType

· ArgumentIndirectParameterRefEntryType

· ArgumentParameterRefEntryType

· ArgumentParameterSegmentRefEntryType

· ArgumentStreamSegmentRefEntryType

· ArgumentLocationInContainerInBitsType

· ArgumentSequenceEntryType

· ArgumentComparisonType

· ArgumentComparisonCheckType

· ArgumentComparisonListType

· ArgumentDiscreteLookupType

· ArgumentDiscreteLookupListType

· ArgumentDynamicValueType

· ArgumentInputAlgorithmType

· ArgumentInputSetType

· ArgumentInstanceRefType

· ArgumentBooleanExpressionType

· ArgumentANDedConditionsType

· ArgumentORedConditionsType

· ArgumentMatchCriteriaType

· ArgumentBaseDataType
· ArgumentBaseTimeDataType

· ArgumentBooleanDataType

· ArgumentDimensionType

· ArgumentDimensionListType

· ArgumentEnumeratedDataType

· ArgumentFloatDataType

· ArgumentIntegerDataType

· ArgumentStringDataType

· ArgumentBinaryDataEncodingType

· ArgumentVariableStringType

· ArgumentStringDataEncodingType

· ArgumentIntegerValueType

· ArgumentRepeatType

3.6 New and Modified Schema TypeS
In XTCE 1.2 there has been a major creation and rework of many existing schema types overall, not just the items listed above related to ArgumentInstanceRef support. The overall purposes was clean up the mapping in popular software technologies such as JAXB so that in essence every schema type becomes a top-level class. Consequently in transitioning from XTCE 1.1, developers will probably confront the largest changes , while end users will see limited change to the overall syntax.

4 XTCE Elements and Attributes

4.1 Overview

This section describes the remaining XTCE element and attributes. It explains the function of each and in many cases provides an example. It refers to the sections above as needed.

4.2 The SpaceSystem Element

4.2.1 General

The SpaceSystem element forms the root of an XTCE instance document (file). It contains elements for describing telemetry and command descriptions. It also describes attributes and elements associated with documentation, document management, and services.
A SpaceSystem may hae child SpaceSystems the resulting structure forming a hierarchical tree definition. The meaning of the SpaceSystem is left to the user.

[image: image21.png]SpaceSystem E}

The top-level
SpaceSystem is the
root element for the
set of metadata
necessary to monitor
and command a
space device, such
as a satellte. A
Spacesystem
defines a
namespace.
Metadata areas
include:
packets/minor
frames layout,
telemetry,
calibration, alarm,
algorithms, streams
and commands. A
SpaceSystem may
have child
SpaceSystems,
forming a
SpaceSystem tree.
See
SpaceSystemType.

[e o —— T -
xtce:Space SystemType

Hlattributes

Optional short
description to be
used for explanation
of this tem. Ttis
recommended that
the short description
be kept under 80
characters in length.

The name of this
defined item. See
NameType for
restriction
information.

Optional descriptive
attribute for
document owner
convenience.

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| <h3>base
| Gsamatie
| name)</h3>
<>
| denotes an
| attribute whose
value
| provides a URD
to be used as the
| base for interpreting
} " elote URs n
the scope of the
element on which it
I appears; ts
| value is inherited.
This name is
I reserved
| by virtue of its
definition in the XML
I1] sse
| specification. </p>
<p>
I See <3
| href="http://wevw.w
| 3.0rg/TR/xmlbase/"
>hitp:/uvive.w3.0rg
| [TR/xmibase/
| for information
| about this attribute.
</p>
Jav>
| <
|
|
|
|

xtce:LongDescription |

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Optional long form |
description to be used

for explanatory |

descriptions of this item |
and may include HTML

markup using CDATA. |

Long Descriptions are of |

unbounded length. |

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Used to contain an
alias (alternate)
name or D for this
item. See
AliasSetType for
additional
explanation.

Use for any non-standard
data associated with this
named item. See
AndillaryDataSetType for
addtional explanation.

The Header element
contains optional
descriptive
information about
this SpaceSystem or
the document as a
whole wihen
specified at the root
SpaceSystem.

This element contains
descriptions of the telemetry
created on the space
asset/device and sent to
other data consumers.

This element contains
descriptions of the commands
and their associated
constraints and verifications
that can be sent to the space
asset/device.

0=
Additional
SpaceSystem elements
may be used like
namespaces to
segregate portions of
the space asset/device
into convenient
groupings or may be
used to specialze a
product ine generic
SpaceSystem to a
specifc asset instance.

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L

Figure 4‑14 TC \f G "-1
SpaceSystem Root Element"
: SpaceSystem Root Element

4.2.2 Encoding

All valid XML documents must have a version/encoding element at the top of this form:
<?xml version="1.0" encoding="UTF-8"?>

The encoding is specified before the document root element (i.e., before the first SpaceSystem element).

4.2.3 SCHEMA xmlns:xtce

The top level schema element set the namespace to ‘xtce’ and other features.

‘http://www.omg.org/spec/XTCE/20180204’
4.2.4 import XML.XSD
In XTCE1.2 the next element after schema is an import element for the XML.XSD which is used for supporting xinclude.

4.2.5 xml:base Attribute
Also new in XTCE 1.2, this is also used for xinclude support.

Note: When creating instance documents consider that XML tools will automatically load the document in question from the URL. If this is not acceptable to an organization, the official XTCE Schema should be placed in a well-known location on its file system.

a) Although the exact name of the schema may be important to an organization, it is not important in terms of validation.

b) Many users may find it easier to put the schema location in a relative path such as:

‘SpaceSystem.xsd’

c) Another popular XTCE Schema location designation has been:

‘https://www.omg.org/spec/XTCE/20180204/SpaceSystem.xsd’

4.2.6 nameDescription Attributes and Elements

Refer to subsection 3.4.2 for a description of the elements and attributes associated with this element: name, shortDescription, LongDescription, AliasSet, and AncillaryDataSet.
4.2.7 Header

4.2.7.1 General

The SpaceSystem Header element contains several documentation-oriented area important to missions.
[image: image22.png]| xtce:HeaderType

Hlattributes

This attribute
contains an optional
version descriptor
for this document.

This attribute
contains an optional
date to be
associated with this
document.

classification |

This attribute
contains optional
dlassification status
for use by programs
for which that is
applicable.

classificationInstructions |

“This attribute contains an
optional additional
instructions attribute to be
interpreted by programs that
use this attribute.

validationStatus

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

I | Ths e
& contains a fiag
The Header element describing the state
contains optional of this document in
descriptive the evolution of the
information about project using it.
this SpaceSystem or
the document as a
whole wihen
specified at the root
SpaceSystem.

The Authorset
contains optional
contact information
for this document.

The NoteSet
contains optional
technical information
related to the
content of this
document.

The HistorySet
contains optional
evolutionary
information for data
contained in this
document.

Figure 4‑24 TC \f G "-2
Header"
: Header

4.2.7.2 version Attribute

The version attribute indicates the version of the XTCE document. It is left to the end user to define the format.

4.2.7.3 date Attribute

The date attribute indicates the date the XTCE document was created. The date attribute’s format is left up to the end user to define.

4.2.7.4 classification Attribute

The classification attribute indicates the XTCE document classification (normal, contingency, special operations, etc.). The content of the classification attribute is left to the end user.

4.2.7.5 classificationInstructions Attribute

Based on the classification of the XTCE document special instructions might be required. The content of the classificationInstructions attribute is left up to the end user.

4.2.7.6 validationStatus Attribute

The validationStatus attribute indicates the XTCE document validation status (successful, failed, etc.). The content of the validationStatus attribute is left up to the end user.
4.2.7.7 AuthorSet Element

Authors of the document are placed within the AuthorSet element. The content of the Author element itself is left up to the end user.

4.2.7.8 NoteSet Element

The NoteSet element allows capturing of notes associated with the file. The NoteSet contents are set at the discretion of the end user.

4.2.7.9 HistorySet Element

The HistorySet element allows the capture of document creation history. It is set at the discretion of the end user.

4.2.7.10 Child SpaceSystem—SpaceSystem Hierarchy

A SpaceSystem may have one or more child SpaceSystems forming a hierarchy of SpaceSystem elements. Any number of levels may be created to form a tree representation for an entire project as it meets the needs of the user.
A SpaceSystem tree may map nicely to various views of the project, but it adds complexity to the XTCE document processing (especially NameReferences). It is recommended to use just one SpaceSystem since it simplifies the NameReferences.

[image: image23.emf]SpaceSystem Root

-name

-description

-authors/versioning

-history

TLM CMD

SpaceSystem ChildA

-name

-description

-authors/versioning

-history

TLM CMD

SpaceSystem ChildB

-name

-description

-authors/versioning

-history

TLM CMD

SpaceSystem ChildC

-name

-description

-authors/versioning

-history

TLM CMD

SpaceSystem ChildCa

-name

-description

-authors/versioning

-history

TLM CMD

SpaceSystem ChildAa

-name

-description

-authors/versioning

-history

TLM CMD

SpaceSystem ChildAb

-name

-description

-authors/versioning

-history

TLM CMD

Figure 4‑34 TC \f G "-3
SpaceSystem Tree Diagram"
: SpaceSystem Tree Diagram

<xtce:SpaceSystem name="Root">
<xtce:SpaceSystem name="ChildA">
<xtce:SpaceSystem name="ChildAa"/>
<xtce:SpaceSystem name="ChildAb"/>
</xtce:SpaceSystem>
<xtce:SpaceSystem name="ChildB"/>
<xtce:SpaceSystem name="ChildC">
<xtce:SpaceSystem name="ChildCa"/>
</xtce:SpaceSystem>

</xtce:SpaceSystem>
NOTE
–
For the purposes of brevity, in the above example the various child elements and attributes are not being shown.

4.3 TelemetryMetaData—Telemetry

4.3.1 General

Telemetry description information is captured in the TelemetryMetaData area of SpaceSystem.

[image: image24.png]' tce:TelemetryMetaDataType 1

Alist of Parameters for
this Space System.

Holds the st of all
potential container
definitions for
telemetry. Containers
may parts of packets
or TOM, and then
groups of the
containers, and then
an entire entity - such
as a packet. In order
to maximize re-used
for duplication, the
pieces may defined
once here, and then
assembled as needed
into larger structures,

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
also here. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

relemetryMetaData

This element contains
descriptions of the telemetry
created on the space
asset/device and sent to
other data consumers.

Messages are an
alternative method of
uniquely identifying
containers within a
Service. A message
provides a test in the
form of MatchCriteria
tomatchto a
container. A simple
example might be:
[When
minorframelD=21,
the message is the
21t minorframe
container. The
collection of
messages to search
thru will be bound by
a Service.

Figure 4‑44 TC \f G "-4
TelemetryMetaData"
: TelemetryMetaData

TelemetryMetaData contains elements for ParameterTypes, Parameters, Containers, Messages, Streams, and Algorithms. With these elements, one can create descriptions for telemetry and how it is packaged (e.g.., a CCSDS packet).

Telemetry is described in XTCE using the following forms:

· Uncalibrated Parameters;
· Calibrated Parameters;
· System-Supplied Parameters;
· Derived Parameters.
‘Parameters’ refers to individual telemetry values (e.g., a mnemonic value) sent from the remote system (spacecraft) to the ground. These telemetred values have a data type that describes how that value is encoded. This is called ParameterType in XTCE and each Parameter has one of them. XTCE’s ParameterTypes goes somewhat further and describes both the source data type – the format of the information from the spacecraft. And likely destination data type after ground conversion or calibration (in the case of calibrated parameters, this is a polynomial or linear function.)
The destination data type is defined by the particular ParamterType – for example IntegerParameterType. And The source data type are captured within it as one of the DataEncodings (for example IntegerDataEncoding). These two together then form the complete XTCE “data type” definition for a Parameter – and there are many additional attributes and elements within this construct calibrators, alarms, valid range and various other properties.
Containers are used to group parameters into common blocks which can be used to describe abstract structures (formats) like the CCSDS Packet format, ESA PUS, or minor frames.

4.3.2 ParameterTypeSet—ParameterTypes

4.3.2.1 General

ParameterTypes are defined in ParameterTypeSet. Each Parameter has a ParameterType through a NameReference. ParameterTypes contain the bulk of the descriptive information related to individual telemetry items.

Many of the ParameterTypes are similar to each other since they are constructed using the same schema types and follow a similar pattern. Most ParameterTypes consist of the areas documentation, encoding, and alarm. Within the encoding area is the calibration area. The overall pattern is introduced in this section. Follow-on sections show the patterns for each individual ParameterType.
[image: image25.png]1 xtce:ParameterType Set

Alist of parameter types

xtce:StringParameterType

Describe a parameter type that
has an engineering/calibrated
value in the form of a character
string.

xtce:EnumeratedParameterType

Describe a parameter type that has an
engineering/calibrated value in the
form of an enumeration.

xtce:IntegerParameterType

Describe a parameter type that
has an engineering/calibrated
value in the form of an integer.

xtce:BinaryParameterType

Describe a parameter type that
has an engineering/calibrated
value in the form of a binary
(usually hex represented).

xtce:FloatParameterType

Describe a parameter type
that has an
engineering/calibrated value in

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
the form of a decimal. ‘
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

xtce:BooleanParameterType

Describe a parameter type that
has an engineering/calibrated

value in the form of a boolean
enumeration.

xtce:RelativeTimeParameterType

Describe a parameter type that has an
engineering/calibrated value in the
form of a duration in time.

xtce:AbsoluteTimeParameterType

Describe a parameter type that has an
engineering/calibrated value in the form
of an instant in time.

xtce:ArrayParameterType

Describe a parameter type that
has an engineering/calibrated
value in the form of an array
of a primitive type.

xtce:AggregateParameterType

Describe a parameter type that has
an engineering/calibrated value in
the form of a structure of
parameters of other types.

Figure 4‑54 TC \f G "-5
ParameterTypes"
: ParameterTypes

4.3.2.2 ParameterType Pattern

4.3.2.2.1 General

The basic ParameterType pattern is shown below using the FloatParameterType. It has become larger in XTCE 1.2 because of the substantial increase in annotation. The resulting diagrams are split into four parts to better fit the page.
The first part, shown below contains the name, descriptive items, the alias and ancillary elements and several ParameterType specific attributes.
[image: image26.png]xtce:FloatParameterType

Hlattributes

Optional short
description to be
used for explanation
of this tem. Ttis
recommended that
the short description
be kept under 80
characters in length.

The name of this
defined item. See
NameType for
restriction
information.

Used to derive one
Data Type from
another - will inherit
all the attributes
from the baseType
any of which may be
redefined in this type
definition.

Tnital value is
always given in
aalibrated form

Optional hint to the
implementation
about the size of the
engineering/calibrat
ed data type to use
internally. Generally

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
‘ this can be
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1

determined by
examination of the
space required to
capture the full
range of the
encoding, but itis
not always clear
when calibrators are
in use. A tolerant
implementation vill
endeavor to always
make sufficient size
engineering data
types to capture the
entire range of
possible values.

Optional long form
description to be used
for explanatory
descriptions of this item
and may include HTML
markup using COATA.
Long Descriptions are of
unbounded length.

Used to contain an
alias (alternate)
name or D for this
item. See
AliasSetType for
additional
explanation.

xtce:AncillaryDataSet

Use for any non-standard
data associated with this
named item. See
AndillaryDataSetType for
addtional explanation.

Figure 4‑64 TC \f G "-6
FloatParameter"
: FloatParameterType – The First Part
The second part of the syntax includes all the DataEncoding choices.
[image: image27.png]xtce:FloatParameterType E}

Describe a parameter type
that has an
engineering/calibrated value in
the form of a decimal.

xtce:BinaryDataEncoding }

sinary encoding s ypically 2 |
"pass through" raw encoding
form where one of the more |
common encodings is not |
required for the parameter. A
custom transformation |
capabilty is available if |
needed. |
|

xtce:FloatDataEncoding

Float encoding s a comman |

encoding where the raw

binary s in a form that gets |

interpreted as a decimal |

numeric value. |
|

xtce:IntegerDataEncoding

Integer encoding is a common |
encoding where the raw binary

is in a form that gets |
interpreted as an integral |
value, either signed or

unsigned.

encoding where the raw
binary is in a form that gets
interpreted as a character

|
|
|
string encoding s @ common |
|
e I

Figure 7- FloatParameter -- The Second Part

The third part shows the ToString and ValidRange elements, these are only in the numeric ParameterTypes (Float and Integer).
[image: image28.png]xice ToString 1

This element
provides the
implementation with
‘assistance rendering
the value as a string
for users.

xice:ValidRange B

The Valid Range
provides additional
boundary/constraint
information beyond
that of the data
encoding in the
range of possible
values that are
meaningful to this
parameter. Not to
be construed s an
‘alarm definition,
violations of the valid
range make a
parameter value
“unreasonable, as
opposed to
reasonable to be
reported, but in a
state which should
be of concern.

Figure 8 - FloatParameter -- Third Part

The final part of Parameter, the alarms. These are only in the scalar ParameterTypes which the exception of AbsoluteTimeParameterType.
[image: image29.png]xice:DefaultAlarm ’

Default alarm
definitions are those
which do not adjust
definition logic based
on the value of other
parameters. Other
parameters may
participate in the
determination of an
‘alarm condition for
this parameter, but
the definition logic of
the alarm on this
parameter is constant.
T the alarming logic
on this parameter
changes based on the
value of other
parameters, then it is
‘a Contextalarm and
belongs in the
ContextalarmList
element.

xice:ContextAlarml ’

Context alarm defintions
‘are those which adjust the
definition logic for this
parameter based on the
value of other parameters.
A context which evaluates
to being in effect, based on
the testing of another
parameter, takes
precedence over the
default alarms in the
Defaultalarm element. 1f
the no context alarm
evaluates to being in
effect, based on the testing
of another parameter, then
the default alarm
definitions from the
Defaultalarm element will
remain in effect. T
multiple contexts evaluate
to being in effect, then the
first one that appears will
take precedence.

Figure 9 -- FloatParameterType Fourth Part
Note: In BinaryParameterType, the ContextAlarmList is called BinaryContextAlarmList. This appears to be a typo in XTCE 1.2.
The ParameterTypes defines the relationship between the remote (source) data type of a data item (telemetry) and the destination data type that will hold it (receiving ground system data type). Alarms and calibrators are specified in this area, if they are applicable.
NOTES

1 ValidRange check is only applicable to IntegerParameterTypes and FloatParameterTypes.

2 Each ParameterType has four possible DataEncodings (Integer, Float, String, Binary).
[image: image1.emf]
Figure 4‑104 TC \f G "-7
Relationship of ParameterType Elements"
: Relationship of ParameterType Elements

4.3.2.2.2 nameDescription Attributes and Elements
Subsection 3.4.2 contains a description of the elements and attributes associated with name, shortDescription, LongDescription, AliasSet, and AncillaryDataSet.
4.3.2.2.3 baseType Attribute

4.3.2.2.3.1 General

Some ParameterTypes may optionally inherit from other ParameterTypes to form a new ParameterType description. The String, Enumerated, Binary, Integer, Float, and Boolean ParameterTypes have a @baseType and therefore extend other ParameterTypes.

The following broad rules apply:
a) ParameterTypes may only inherit from other ParameterTypes that have a baseType attribute (e.g., ArgumentTypes may only extend other ArgumentTypes).

b) Inheritance may only occur between the same ParameterTypes (e.g., IntegerParameterTypes may only inherit from another IntegerParameterType).

c) Only certain elements and attributes may be overridden or inherited by the child. In some cases these are specific to each ParameterType.

d) baseType NameReferences that form loops are illegal.

e) Empty or unspecified content does not override explicit content.

f) The result of the inheritance must be a valid XTCE ParameterType construction.

4.3.2.2.3.2 Common ParameterType Inheritance Rules

Common ParameterType inheritance is used to narrow a general parameter description that is applicable to many parameters.

The underlying ParameterType/DataEncoding relationship cannot be changed. For example, it may be desirable to add alarms specific to a device that is represented in more than one location on a SpaceSystem.
Table 4‑1 is a list of elements and attributes per type that the baseType inheritance mechanism can apply.

Table 4‑14 TC \f T "-1
Common ParameterType Inheritance Rules"
: Common ParameterType Inheritance Rules

	Element or Attribute
	Inheritance Rule

	@name
	Not inherited by child.

	@shortDescription
	Not inherited by child.

	@baseType
	N/A.

	@initialValue
	The child overrides parent’s shortDescription if supplied; otherwise, the child gets the parent’s content if it is present.

	LongDescription
	Not inherited by child.

	AliasSet
	Not inherited by child.

	AncillaryDataSet
	Child’s content prefixed to parent’s content if present.

	UnitSet
	The child’s UnitSet will override the parent’s if it has content (is nonempty); otherwise, it gets the parent’s UnitSet. An empty UnitSet cannot override one that has content.

	DataEncodings
	The DataEncodings and most of their child elements cannot be overridden or changed by the child. The calibrator elements can be set or overridden by the child. An empty (or unspecified) DataEncoding cannot override one with content. If the parent has no DataEncoding, the child cannot specify a DataEncoding. The DataEncoding specified in the child should match the parent.

	DataEncoding/DefaultCalibrator
	The child may override the parent’s content or inherit the parent’s content.

	DataEncoding/ContextCalibrator
	The child may add calibrators which are prefixed to a specified parent. Otherwise the child inherits any specified by the parent.

	BinaryDataEncoding/TransformAlgorithm
	FromBinaryTransformationAlgorithm and ToBinaryTransformationAlgorthm can be overridden by the child if specified in the parent. Otherwise the child inherits the parent’s content.

	DefaultAlarm
	The child’s DefaultAlarm overrides the parent’s if supplied; otherwise the child gets the parent’s content if present.

	ContextAlarmList
	The child’s content is prefixed to the parent’s content if present.

4.3.2.2.3.3 Specific ParameterType Inheritance Rules

4.3.2.2.3.3.1 General

Certain items are specific to each ParameterType. Those items are listed in table 4‑2.

Table 4‑24 TC \f T "-2
Specific ParameterType Inheritance Rules"
: Specific ParameterType Inheritance Rules

	Element or Attribute
	Inheritance Rule

	StringParameterType/@restrictionPattern
	The child overrides the parent’s if supplied; otherwise the child gets the parent’s content if present.

	StringParameterType/@characterWidth
	The child may not override parent content.

	StringParameterType/SizeRangeInCharacters
	The child overrides the parent’s if supplied; otherwise the child gets the parent’s content if present.

	EnumeratedParameterType/EnumerationList
	The child may add enumerations which are prefixed to the parent’s.

	IntegerParameterType/@sizeInBits
	The child cannot override the parent, including default values. The child gets the parent’s value even if specifies a different value.

	IntegerParameterType/@signed
	The child cannot override the parent. The child gets the parent’s value even if specifies a different value.

	IntegerParameterType/@validRangeAppliesToCalibrated
	The child cannot override the parent. The child gets the parent’s value even if specifies a different value.

	IntegerParameterType/toString
	The child overrides the parent’s if supplied; otherwise the child gets the parent’s content if present.

	IntegerParameterType/ValidRange
	The child overrides the parent’s if supplied; otherwise the child gets the parent’s content if present. An empty ValidRange cannot override one with content.

	FloatParameterType/@sizeInBits
	The child cannot override the parent. The child gets the parent’s value even if specifies a different value.

	FloatParameterType/@validRangeAppliesToCalibrated
	The child cannot override the parent. The child gets the parent’s value even if specifies a different value.

	FloatParameterType/toString
	The child overrides the parent’s if supplied; otherwise the child gets the parent’s content if present.

	FloatParameterType/ValidRange
	The child overrides the parent’s if supplied; otherwise the child gets the parent’s content if present. An empty ValidRange cannot override one with content.

	BooleanParameterType/@oneStringValue
	The child cannot override the parent. The child gets the parent’s value even if specifies a different value.

	BooleanParameterType/@zeroStringValue
	The child cannot override the parent. The child gets the parent’s value even if specifies a different value.

4.3.2.2.3.3.2 StringParameterType Example

The following is the original base ParameterType. It defines a general ‘status message’ that is simply a string of a fixed length.

<xtce:StringParameterType name="StatusMsgType">
<xtce:UnitSet/>
<xtce:StringDataEncoding>
<xtce:SizeInBits>
<xtce:Fixed>
<xtce:FixedValue>160</xtce:FixedValue>
</xtce:Fixed>
</xtce:SizeInBits>
</xtce:StringDataEncoding>
</xtce:StringParameterType>

A particular ‘PSU-B’ subsystem ParameterType extends the base ParameterType. Only strings that start with ‘PSU-B:’ are allowed. The extending type inherits the string encoding from the parent and adds a restriction pattern and alarm.

<xtce:StringParameterType name="PSU-B_MsgType" restrictionPattern="^PSU-B:" baseType="StatusMsgType">
<xtce:UnitSet/>

<xtce:StringDataEncoding/>
<xtce:DefaultAlarm>
<xtce:StringAlarmList>
<xtce:StringAlarm matchPattern="PSU-B: LL0V OUT" alarmLevel="warning"/>
</xtce:StringAlarmList>
</xtce:DefaultAlarm>

</xtce:StringParameterType>

The following shows a construction if all the element and attributes were combined into a single ParameterType.
<xtce:StringParameterType name="ResultsOfInheritance_PSU-B_Msg" restrictionPattern="^PSU-B:">
<xtce:UnitSet/>
<xtce:StringDataEncoding>
<xtce:SizeInBits>
<xtce:Fixed>
<xtce:FixedValue>160</xtce:FixedValue>
</xtce:Fixed>
</xtce:SizeInBits>
</xtce:StringDataEncoding>
<xtce:DefaultAlarm>
<xtce:StringAlarmList>
<xtce:StringAlarm matchPattern="PSU-B: LL0V OUT" alarmLevel="warning"/>
</xtce:StringAlarmList>
</xtce:DefaultAlarm>

</xtce:StringParameterType>
4.3.2.2.4 UnitSet

Units are defined in the UnitSet area within each ParameterType. UnitSet is an option element now in XTCE 1.2, it may be empty.
[image: image30.png]UnitSetType E} (&=

Describe an ordered
collection of units
that form a
unit-expression.
Units may be
described for both
calibrated/engineeri
ng values and also
potentially
uncalibrated/raw
values. See
UnitType.

‘exponent, factor,
form, and
description for a
unit. The attributes
are optional because
different programs
use this element in
different ways,
depending on vendor
support.

Optional attribute
used in conjunction
with the "factor”
attribute where
some programs
choose to specify the
unit definition with
these machine
processable
algebraic features.
For example, a unit
text of "meters" may
have a "power”
attribute of 2,
resulting "meters
squared” as the
‘actual unit. This is
not commonly used.
‘The most common
method for "meters
squared” is to use
the text content of
the Unit element in a
form like "m~2".

et
Optional attribute
used in conjunction
with the "power”
attribute where
some programs
choose to specify the
unit definition with
these machine
processable
algebraic features.
For example, a unit
text of "meters" may
have a "factor”
attribute of 2,
resulting "2 times
meters" as the
‘actual unit. This is
not commonly used.
‘The most common
method for "2 times
meters" i to use the
text content of the
Unit element in a
form like "2*m".

desctiotion |

A description of the
unit, which may be
for expanded human
readabilty or for
‘specifcation of the
nature/property of
the unit. For
example, meters per
second squared is of
‘a nature/property of
acceleration.

Jom
‘The default value
“calibrated" is most
o g
‘specify units at the
engineering/calibrat
ed value, it is
possible to specify
an additional Unit
element for the
raw/uncalibrated
value.

Figure 4‑114 TC \f G "-8
UnitSet"
: UnitSet

Unit elements in UnitSet are used together to build more complex formulas, e.g., to define ‘meter/sec’ (meters per second). In this example, two Unit elements would be defined: one with a content of ‘meter’, a power of ‘1’ (default), and a factor of ‘1’ (default); the other with a content of ‘sec’, a power of ‘-1’, and a factor ‘1’. The result is a formula of ‘meter * sec^-1’ or ‘meter/sec’.

Unit terms are multiplied together to form a more complex formula.

<xtce:UnitSet>
<!--this is meters/sec or meters * seconds^-1-->
<xtce:Unit>meters</xtce:Unit>
<xtce:Unit power="-1">second</xtce:Unit>

</xtce:UnitSet>
4.3.2.2.4.1 Form Attribute
The form attributes, new in XTCE 1.2 can be used to set the unit as being related to the calibrated value or raw value.

The default is calibrated and this is typical, however because UnitSet can allow multiple Unit elements, it’s possible to set the raw unit by specifying Unit two times. This would be in conjunction with the common practice of just using the Unit element itself to hold the unit text, and ignoring the other attributes.

Recommendation
–
Many (or even most) implementations only support Unit as holding the text representation of the entire unit value. The power and factor attributes are ignored, and multiple Units are not formed into an expression. Or if there is more than on Unit element as indicated above, its hold multiple Unit values – one for calibrated and one for raw.
<xtce:UnitSet>
<!--this is the common practice way for meters/sec or meters * seconds^-1-->
<xtce:Unit>m/s</xtce:Unit>
</xtce:UnitSet>
4.3.2.2.5 DataEncoding Elements

4.3.2.2.5.1 General

The DataEncoding elements in most of the ParameterTypes describe source value format from the spacecraft. The four supported encodings are StringDataEncoding, IntegerDataEncoding, FloatDataEncoding, and BinaryDataEncoding which will be described in the sections below. However each of these shares a common schema type lineage and this will described first.

[image: image31.png]DataEncodingType E}

Describes how a
particular piece of
data is sent or
received from some
non-natie,
off-platform device.
(e.9. a spacecraft)

Figure 12 - Parent DataEncodingType

All DataEncodings share the same parent schema type (DataEncodingType) and so follow a pattern and share certain elements and attributes. These will be described first.
4.3.2.2.5.2 bitOrder Attribute

The bitOrder attribute is used to specify whether the Most Significant Bit (MSB) or Least Significant Bit (LSB) is the first bit in the stream. The default is mostSignificantBitFirst.

4.3.2.2.5.3 ErrorDetectCorrect Element

The ErrorDetectCorrect element describes the parity or Cyclic Redundancy Check (CRC) checks that may be used during the transmission of information on the link. New for XTCE1.2, a Checksum element has been added.
[image: image32.png]DataEncodingType E}

xtce:ErrorDetectCorrectType

Batributes

type.

xice:Parity B}

B posiion sars with 2

bitsFromReference

reference

Batributes

reference

|

Blatrues }

xtce:Term @7 coefficient | | |
s exponent] | |

o oo |

‘Generated by XMLSpy

www.altova.com

Figure 4‑134 TC \f G "-9
ErrorDetectCorrect Element"
: ErrorDetectCorrect Element

The Parity element is used to describe the offset (bitsFromReference), where the offset should be applied (start or end), and the type (even or odd).
· Reference=start:
· offset=0: the first bit in the stream of the item;
· offset=1: the 2nd bit in the stream of the item;
· offset=length of item -2: the last bit in the stream of the item;
· length of item -1: parity location;
· Reference=end:
· offset=0: the last bit in the stream of the item;
· offset=1: the 2nd to last bit in the stream of the item;
· offset=length of item -1: the first bit in the stream of the item;
· length of item -1: parity location.
The parity calculates from the location (reference, bitsFromReference) to the last bit of the item, not including the parity bit itself.

The CRC describes the offset (bitsFromReference) and the reference (start or end), then the polynomial itself (see 4.3.2.2.6.3, which reuses the same schema types). Other CRC details may need to be stored in AncillaryData. BitsFromReference and reference are similar to Parity.
The Checksum…
4.3.2.2.5.4 ByteOrder Attribute
The ByteOrderList element has been reworked in XTCE 1.2 to be a text based attribute. The ByteOrder allows the specification of byte order transmission of an item. If the element is unspecified, then the Most Significant Byte (MSB) is transmitted first in the stream. Otherwise, a list can be constructed to describe the transmission byte orderings.

To construct a new ordering, it must be recognized that the first Byte element in the list corresponds to the first item in the stream. Its byteSignificance attribute is then used to weight the other Bytes’ order relative to each other in the list. For example, if the first byte has the lowest byteSignificance in terms of its value. It will be the Least Significant Byte (LSB) in the list. If it has the highest value it would be the MSB.

<xtce:IntegerDataEncoding bitOrder="leastSignificantBitFirst" sizeInBits="24">
<xtce:ByteOrderList>
<xtce:Byte byteSignificance="2"/>
<xtce:Byte byteSignificance="1"/>
<xtce:Byte byteSignificance="0"/>
</xtce:ByteOrderList>

</xtce:IntegerDataEncoding>

The LSB should be given the value of ‘0’ and the MSB a value of ‘ByteOrderList length -1’. For example, in a four Byte ByteOrderList, the MSB would have a value of ‘3’ and the LSB would have a value of ‘0’.

In the above example, a 24-bit item is downlinked. The 3rd byte (2—MSB) is to be received first, then the 2nd (1—middle) byte, and finally the 1st byte (0—LSB). Within each byte in this construction the bits are ordered from low-bit first to high-bit.
This element can be used in conjunction with the bitOrder attribute which is present in every DataEncoding. The bit ordering applies to the entire construction.
4.3.2.2.5.5 StringDataEncoding Element

4.3.2.2.5.5.1 General

The rest of StringDataEncoding is described in this section – other elements have been hidden if they are not specific to StringDataEncoding and have been discussed above.

StringDataEncoding describes strings data types as they appear in telemetry so that they be decommutted successfully on the ground.

StringDataEncoding supports several kind of string formats including UTF-8, UTF-16 and US-ASCII – among several others listed below.
[image: image33.png]The character set
encoding of this
string data type.

String encoding is a common
encoding where the raw
binary is in form that gets
interpreted as a character
sequence.

Static length strings
do not change in
overall length
between samples.
They may terminate
before the end of
their buffer using a
terminating
character, or by
various lookups, or
calculations. But
they have a
maximu fixed size,
and the data itself is
always within that
maximum size.

|

|

|

|

|

|

|

|

|

|

|

|

‘ Variable length

| strings are those

| where the space
occupied ina

| container can vary.

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

TFthe string has
variable content but
occupies the same
amount of space
when encoded
should use the
Sizengits element.
Specification of a
variable length string
needs to consider
that the
implementation
needs to allocate
space to store the
string. Specify the
maximum possible
length of the string
data type for
memory purposes
and also specify the
bit size of the string
to use in containers
with the dynamic
elements.

Figure 4‑144 TC \f G "-10
StringDataEncodingType"
: StringDataEncodingType
StringDataEncoding supports describing string telemetered values in two overall ways, these are discussed below.
4.3.2.2.5.5.2 encoding Attribute

In the encoding format of the string can be one of these:

· US-ASCII

· ISO-8859-1

· Windows-1252

· UTF-8

· UTF-16

· UTF-16LE

· UTF-16BE

· UTF-32

· UTF-32LE

· UTF-32BE

Note: Where the byte order is applicable, it may conflict with the byteOrder attribute which should elicit at least a warning in any implementation.
4.3.2.2.5.5.3 SizeInBits

The first form of a string is one that is fixed in length overall. It may be literally of a specific length at all times, or maybe fit within an fixed length field but be terminated specifically to length for each instance value.

In either case, the SizeInBits element is used for this type of string.
4.3.2.2.5.5.4 SizeInBits/Fixed/FixedValue Element

The SizeInBits/Fixed element is set to a fixed bit length portion of the description. If no other elements are set, then this is the specific size of the string.
Note: the SizeInBits should take into the account the character encoding information.
4.3.2.2.5.5.5 SizeInBits/TerminationChar Element

If the TerminationChar is specified under SizeInBits – then the string fits within the “box” of FixedValue but may be shorter due to the present of the terminatingChar.
<xtce:StringDataEncoding>
<xtce:SizeInBits>
<xtce:TerminationChar>0000</xtce:TerminationChar>
</xtce:SizeInBits>

</xtce:StringDataEncoding>

4.3.2.2.5.5.6 SizeInBits/LeadingSize Element

LeadingSize is another way some strings are sized. It is similar to the string length specification in Pascal strings. The string length is specified before the characters. This element is the length in bits of that size tag. The default is 16 bits.

<xtce:StringDataEncoding>
<xtce:SizeInBits>
<xtce:LeadingSize sizeInBitsOfSizeTag="17"/>
</xtce:SizeInBits>

</xtce:StringDataEncoding>
For the purposes of illustration, the leading size is 17 bits, which is an unlikely value in real life since the default is 16. The size should always be interpreted as an unsigned integer.
If this elementis specified under SizeInBits – then the string fits within the “box” of FixedValue but may be shorter due to the present of the terminatingChar.

Recommendation – if SizeInBits set and both TerminationChar and LeadingSize are set, this is an error in the document.
4.3.2.2.5.5.7 Variable
If Variable is set, the string is truly variable length in nature. In this case the maximum size allowed of the value must be set. The syntax is shown below.

[image: image34.png]Battributes

|

|

|

} The upper bound of
the size of this string

| | data type so that the

[[] imementation can

reserve/allocate

| enough memory to

||| cotore i reportea

instances of the

| string.

|

|

|

|

xtce:DynamicValue

Determine the container
size in bits by
interrogating an
instance of a
parameter.

xtce:DiscreteL ookupList

Variable length
strings are those
where the space
occupied ina
container can vary.
TFthe string has
variable content but
occupies the same
amount of space
when encoded
should use the
Sizelngits element.
Specification of a
variable length string
needs to consider
that the
implementation

|
‘ Determine the container size
|
|
|
|
|
|
|
|
|
needs to allocate ‘
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

S |

instance of a parameter and |

selecting a pecied vlue |
based on tests of the value

of that parameter. |

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

In some string
implementations, the
size of the string
contents (not the
memory allocation
size) is determined by
a leading numeric
value. This is
sometimes referred
to as Pascal strings.
TFa LeadingSize is
specified, then the
TerminationChar
element does not
have a functional
meaning.

space to store the
string. Specify the
maximum possible
length of the string
data type for
memory purposes
and also specify the
bit size of the string
to use in containers
with the dynamic
elements.

The termination character
that represents the end of
the string contents. For C
and most strings, this is
null (00), which is the
defautt.

Figure 15 - Variable String
As can be seen in the above diagram, there are several way to specify the length of the variable length string: by looking up another value (DynamicValue or DiscreteLookupList), or by a leading size, or a terminationChar.

Recommendation: Although the syntax allows more than one of these two be set, finding it so means the document is in error.
4.3.2.2.5.6 IntegerDataEncoding Element

4.3.2.2.5.6.1 General

Telemetered value that are encoded as integers are described with IntegerDataEncoding. In XTCE 1.2, the this schema type has been split off from FloatDataEncoding which in XTCE 1.1 shared a common ancestor.

The IntegerDataEncoding also allows for calibrator descriptions. These should be interpreted as expressions (not shown – see 4.3.2.2.5.6.5) that convert telemetered value to some ground value in some format – typically a Float. (In that scenario, the FloatParameterType would have an IntegerDataEncoding and a calibrator definition).

But it is not impossible in XTCE to that the calibrator is applied from the IntegerDataEncoding to IntegerParameterType, or even various other ParameterTypes.

Although legal syntactically some definitions are suspect due to their lack of real work use cases, and so common practice in this area has been captured in the table below (see Section 4.3.2.5) – for DataEncoding and ParameterType combinations that are typically and supported within the industry.
[image: image35.png]For all major encodings of
integer data

‘Specifies integer
numeric value to
raw encoding
method, with the
default being
“unsigned”

! Sizelnt |s'|

Number of bits to
use for the raw
encoding, with 8
being the default.

changeThreshold I

A changeThreshold
{ may optionally be
specified to inform
systems of the
minimum change in
value that is
significant. This is
used by some
systems to limit the
telemetry processing
‘and/or recording
requirements, such
as for an
‘analog-to-digital
converter that
dithers in the least
significant bit. If the
value s
unspecified or zero,
any change is
significant.

xice DefaultCalibrator ()

Calibrator to be applied to
the raw uncalibrated value
to arrive at the
engineering/calibrated
value when no Context
Calibrators are provided or
evaluate to true, based on
their MatchCriteria.

xice ContextCalibratorList]

Calibrator to be applied to the
raw uncalibrated value to arrive
at the engineering/calibrated
value when a MatchCriteria
evaluates to true.

Figure 4‑164 TC \f G "-11
IntegerDataEncoding"
: IntegerDataEncoding
As can be seen above, the shared common elements are not shown and the specific to IntegerDataEncoding items are shown. These are described below.
4.3.2.2.5.6.2 encoding Attribute

Choose one of the following for the encoding attribute:
· unsigned (default);
· twosComplement;
· onesComplement;
· BCD (Binary Coded Decimal);
· packedBCD.
It is typical in most use case, that the value of thise encoding attribute will be either unsigned or twosComplement.
4.3.2.2.5.6.3 sizeInBits Attribute

The size in bits of the item can be any positive number. The default value is 8 bits.
4.3.2.2.5.6.4 changeThreshold
A flag to a real processing system on whether to collect or store this value if it doesn’t change enough.
4.3.2.2.5.6.5 DefaultCalibrator and ContextCalibratorList

Subsection 4.3.2.2.6 shows the details for the float and integer calibrators specific to IntegerDataEncoding and FloatDataEncoding.
Both element share the same calibrator construction using the CalibratorType for the DefaultCalibrator and the CalibratorListType for ContextCalibrator.
4.3.2.2.5.7 FloatDataEncoding Element

4.3.2.2.5.7.1 General

FloatDataEncoding can describe various kinds of telemetered float format. In XTCE 1.2, it now support these formats:
· EEE754_1985

· IEEE754

· MILSTD_1750A

· DEC

· IBM

· TI

The sizeInBits attribute set the overall size, and are as follows: 16, 32, 40, 48, 64, 80, 128.

Recommendation: Not all formats support all the sizes. Its to the implementation to determine if the sizeInBits and encoding combination are legal. If they not legal, the document is in error. If the combination is not supported, that’s a implementation issue.

· [image: image36.png]|

|

|

|

|

|

|

|

}

} InBit I
|| tmberf bt
|
|
|
|
|
|
|
|
|
|
|

ingeThr |

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

geTrosnold ‘

optionally be |
ciied to inform
ge in

|

This

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Float encoding is a common I cording
encoding where the raw rements. I the
binary is in a form that gets Is unspecified
interpreted as a decimal e

numeric value.

Calibrator to be applied to
the raw uncalibrated value
to arrive at the
engineering/calibrated
value when no Context
Calibrators are provided or
evaluate to true, based on
their MatchCriteria.

Calibrator to be applied to the
raw uncalibrated value to arrive
at the engineering/calibrated
value when a MatchCriteria
evaluates to true.

Figure 4‑174 TC \f G "-12
FloatDataEncoding Element"
: FloatDataEncoding Element

4.3.2.2.5.7.2 encoding Attribute

Both IEEE-754 and MIL-1750A are supported. If another floating-point format is needed, BinaryEncoding is used and the appropriate descriptive items in AncillaryData in the ParameterType are specified.

4.3.2.2.5.7.3 sizeInBits Attribute

The sizeInBits attribute supports sizes 32, 64, or 128 bits. Setting the value to ‘non-32’ is a workaround for the MIL-1750A 48 bits.

4.3.2.2.5.7.4 DefaultCalibrator and ContextCalibratorList Elements

There are two areas to define calibrators under FloatDataEncoding and IntegerDataEncoding: DefaultCalibrator and ContextCalibrator.

· The DefaultCalibrator is an optional element and may be used to define a calibrator that will apply by default. (See 4.3.2.2.5.6.5, 4.3.2.2.5.7.4, and 4.3.2.2.6.)

· ContextCalibrator is dependent on ContextMatch (a MatchCriteriaType) in order for it to be used. (See 3.4.3.6 for more explanation.)
· The number of ContextCalibrators defined in the ContextCalibratorList is unlimited.
[image: image37.png]xtce:Space SystemType

TelemetryMetaDataType

=
xtce:ParameterType SetType

ngType

Figure 4‑184 TC \f G "-13
DefaultCalibrator"
: DefaultCalibrator

Subsection 4.3.2.2.6 contains a detailed discussion of the Numeric Calibrators specific to IntegerDataEncoding and FloatDataEncoding.

4.3.2.2.5.8 BinaryDataEncoding Element

4.3.2.2.5.8.1 General

BinaryDataEncoding is used to describe telemetry that is either “data type less” in nature (in which case it would probably be a child of BinaryParametertype) or is one of the other data types but cannot be described using the other data encodings (for example a float format that is unavaible in FloatDataEncoding).
[image: image38.png]xtce:BinaryDataEncoding E

Binary encoding is typically a
"pass through" raw encoding
form where one of the more
common encodings is not
required for the parameter. A
custom transformation
capabilty is available if
needed.

Number of bits this
value occupies on
the stream being
encoded/decoded.

Used to convert binary data to an
application data type

Used to convert binary data from an
1 application data type to binary data

Figure 4‑194 TC \f G "-14
BinaryDataEncoding"
: BinaryDataEncoding
4.3.2.2.5.8.2 From/ToBinaryTransformAlgorithm

BinaryTransformAlgorithms are custom algorithms used to describe the conversion from a binary format to the destination format. (See 3.4.3.5 for a description of CustomAlgorithm.)
4.3.2.2.5.9 Specifying No DataEncoding—Non-Telemetry Data Types

All the DataEncodings are optional. Specifying a ParameterType without a DataEncoding indicates that it is a ‘local’, ‘ground’, ‘constant’ or even ‘derived’ variable data type whose value will not be supplied through telemetry directly.
[image: image39.png]xtce:Space SystemType

elemetryletaDataType

xtce:ParameterType SetType

xtce:lntegerDataType (exiension)

Figure 4‑204 TC \f G "-15
Optional Choice for Encodings"
: Optional Choice for Encodings

These variables then define values that are not explicitly part of the telemetry stream. For example, a mission phase may be represented as EnumerationParameterType (and Parameter).
The child element of Parameter/ParameterProperties/@dataSource should set this value to ‘local’.

Value created locally, so called ‘pseudo-telemetry’ would not have a DataEncoding (the attribute dataSource should be set to ‘derived’.)
To define a system variable, a Parameter would reference a ParameterType that has no data encoding element and set the Parameter/ParameterProperties/dataSource to one of the choices that is not ‘telemetered’.
Such variables may be used in various conditions related calibrators, and alarms as ParameterInstanceRefs. The following is an example of defining some kind of local or system variable data type:

<xtce:TelemetryMetaData>
 <xtce:ParameterTypeSet>
<xtce:StringParameterType name="SystemNameType">
<xtce:UnitSet/>
</xtce:StringParameterType>
</xtce:ParameterTypeSet>

</xtce:TelemetryMetaData>
In this example, the string system variable type SystemNameType has been defined as one whose value will be supplied by the system.
Recommendation: These are paired with Parameter, and so one of the appropriate Parameter/ParameterProperties/dataSource should be set: local, ground, derived or constant. If the DataEncoding is not set and the dataSource is set to telemetered (either explicitly or implied), the implementation should issue at least a warning.
4.3.2.2.5.10 SizeInBits element

Subsection 3.4.5 contains the description of the SizeInBits element.

4.3.2.2.6 Numeric Calibrators—FloatDataEncoding and IntegerDataEncoding

4.3.2.2.6.1 General

DefaultCalibrator and ContextCalibrator may support spline, polynomial, or more general mathematical expression calibrators. These are used for FloatParameterType and IntegerParameterType.

NOTE
–
The DefaultCalibrator and ContextCalibrator associated with FloatDataEncoding and IntegerDataEncoding are NameDescription types. They can be optionally named, have aliases, or have AncillaryData.

4.3.2.2.6.2 Spline Calibrators

4.3.2.2.6.2.1 General

Linear calibrators may be represented with the SplineCalibrators element if the order attribute is set to ‘1’ (the default). Other order values have additional meaning (see 4.3.2.2.6.2.4).

[image: image40.emf]0

100

200

300

0 2 4 6 8

Output Value

Input Value

Figure 4‑214 TC \f G "-16
Spline Calibrator Graph"
: Spline Calibrator Graph

The linear (Spline) calibrator maps input value to an output value.

[image: image41.png]Hlattributes

Optional name for
this
calibrator/algorithm

Optional description
for this
librator/algorithm

|

|

|

|

|

|

|

|

|

|

| The interpolation

| order to apply to the

| overall spline
function. Order 0 is

| o no siope between

the points (flat).

| Order 1 is linear

| interpolation. Order

2 would be quadratic

and in this special

I P

| case, 3 points would

| be required, etc.

|

|

|

|

|

|

|

|

|

|

|

Extrapolation allows
the dosest outside
point and the
associated
interpolation to
extend outside of the
range of the points
in the spline
function.

Optional addtional
Xt ineCalibrator [} ancillary information for
T this calibrator/algorithm

the form of a piecewise
defined function

| xtce:SplinePointType

Hlattributes

|
|
|
|
The order of a |
SpineCalbrator |
refers to the
interpolation |
functon. Order 0is ||
a fat line from the
defined point |
(incusive) tothe |
next point
(exclusive). Order 1 ||
isnear interpoaton |
between two points.
Order 2 is quadratic ||
fitand requiresat ||
|
|
|
|
|
|
|
|
|
|
|
|

|

|

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| L= e satinopoint 81| st poine
| — o5 |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
|

- (unusual case). This

order is generally
Describes a single not needed, but may
point of the spline or

be used to override
piecewise function. the interpolation

order for this point.

The raw encoded
value.

The
engineering/calibrat
ed value associated
with the raw value
for this point.

Figure 4‑224 TC \f G "-17
SplineCalibrator"
: SplineCalibrator

In figure 4‑22, the raw attribute refers to the input value, and the calibrated attribute refers to the output value.
4.3.2.2.6.2.2 name
Some systems have names for the calibrators. This is a convenient place to store that information. At this time the name cannot be referened by other locations in the document.

4.3.2.2.6.2.3 shortDescription
Descriptive information related to this calibrator.

4.3.2.2.6.2.4 order Attribute

The following are the order attribute values and corresponding meaning:
· zero: a step-wise function;
· one: a linear calibrator;
· two: a quadratic spline;
· three: a cubic spline;
· four or more: (and so forth).

4.3.2.2.6.2.5 extrapolate Attribute

If extrapolate is set to ‘true’, the values after the end points of the specified spline will be extrapolated.
In XTCE 1.2 AncillaryData appears in far more places, such as here in the calibrator section.

4.3.2.2.6.2.6 SplinePoint

4.3.2.2.6.2.7.1
General

In the example below, each point represents a mapping from an input value (raw) to an output value (calibrated):

<xtce:SplineCalibrator>
<xtce:SplinePoint raw="1" calibrated="10"/>
<xtce:SplinePoint raw="2" calibrated="100"/>
<xtce:SplinePoint raw="3" calibrated="500"/>

</xtce:SplineCalibrator>
The following shows the use of some legal double-type values:

<xtce:SplineCalibrator>
<xtce:SplinePoint raw="1" calibrated="10.4222E0"/>
<xtce:SplinePoint raw="2" calibrated="100.78E-2"/>
<xtce:SplinePoint raw="3" calibrated="INF"/>

</xtce:SplineCalibrator>
4.3.2.2.6.2.7.2
SplinePoint—order Attribute

The order for each point can be set here also.
4.3.2.2.6.3 PolynomialCalibrator

4.3.2.2.6.3.1 General

Polynomial calibration is supported by the PolynomialCalibrator element.

[image: image42.png]| xtce:PolynomialCalibratorType

Hlattributes

Optional name for
this

Optional description
for this
calibrator/algorithm

Optional additional
ancillary information for
this calibrator/algorithm

xtce:PolynomialCalibrator E}

Describes a calibrator in the
form of a polynomial function

The coefficient in a
single term of a

polynomial
expression.

|| The exponentina
j| g termera
polynomial

|| expression. should
|| negetve exponents
|

|

A single term in the
polynomial function.

be required, use a
Math Calibrator style
of definiton for this
type.

|
|
|
|
|
|
| L rom?
|
|
|
|
|
|
|

Figure 4‑234 TC \f G "-18
PolynomialCalibrator"
: PolynomialCalibrator

The polynomial description consists of a series of Term elements with the attributes coefficient and exponent.
4.3.2.2.6.3.2 Name, shortDescription and AncillaryDataSet
Described above, these have been added in XTCE 1.2. to help more fully describe the calibrator.

4.3.2.2.6.3.3 Term Element

4.3.2.2.6.3.3.1
General
Term is used to describe a single polynomial term for a polynomial equation.

4.3.2.2.6.3.3.2
coefficient Attribute

The coefficient attribute is used to specify the coefficient of the term of a polynomial equation.
4.3.2.2.6.3.3.3
exponent Attribute

The exponent of the Term element is a non-negative integer value. The following is an example equation:

 y = 0.5 + 1.5x + -0.045x2 + 1.25x3 + 0.0025x4
The equation above is represented in table format in table 4‑3.
Table 4‑34 TC \f T "-3
Exponent and Coefficient Table"
: Exponent and Coefficient Table

	Exponent
	Coefficient

	0
	0.5

	1
	1.5

	2
	-0.045

	3
	1.25

	4
	0.0025

The following is the XTCE representation:

<xtce:PolynomialCalibrator>
<xtce:Term exponent="0" coefficient="0.5"/>
<xtce:Term exponent="1" coefficient="1.5"/>
<xtce:Term exponent="2" coefficient="-0.045"/>
<xtce:Term exponent="3" coefficient="1.25"/>
<xtce:Term exponent="4" coefficient="2.5E-3"/>
</xtce:PolynomialCalibrator>
4.3.2.2.6.4 MathOperationCalibrator

MathOperationCalibrator describes a calibration using a variety of possible mathematical operators and operands in the MathOperationType. (See 4.3.7.3 for a discussion of this type.)
4.3.2.3 Alarm Descriptions

4.3.2.3.1 General

The following subsections are the various Alarm descriptions available for different ParameterTypes. They are specified in the DefaultAlarm and ContextAlarmList areas of their respective elements. While some of these are unique to their specific ParameterType, others are shared among one or more – they are called out here to avoid repeating the information in each ParameterType description below – and referenced as is appropriate there
4.3.2.3.2 DefaultAlarm and ContextAlarmList

Most ParameterTypes have a DefaultAlarm and ContextAlarmList.

[image: image43.png]xtce:StringParameterType E}

Describe a parameter type that
has an engineering/calibrated
value in the form of a character
string.

xtce:StringParameterType

Default alarm
definitions are those
which do not adjust
definiton logic based
on the value of other
parameters. Other
parameters may
participate in the
determination of an
alarm condition for
this parameter, but
the definition logic of
the alarm on this
parameter is constant.
T the alarming logic
on this parameter
changes based on the
value of other
parameters, then it is
a ContextAlarm and
belongs in the
ContextalarmList
element.

Context alarm definitions
are those which adjust the
definition logic for this
parameter based on the
value of other parameters.
A context which evaluates
to being in effect, based on
the testing of another
parameter, takes
precedence over the
default alarms in the
Defaultalarm element. 1f
the no context alarm
evaluates to being in
effect, based on the testing
of another parameter, then
the default alarm
definitions from the
Defaultalarm element will
remain in effect. T
multiple contexts evaluate
to being in effect, then the
first one that appears will
take precedence.

Figure 4‑244 TC \f G "-19
DefaultAlarm"
: DefaultAlarm and ContextAlarmList
· The DefaultAlarm applies when no defined ContextAlarm is active.

· ContextAlarms are defined for certain contexts and take precedence over the DefaultAlarm. The first context to evaluate to ‘true’ is used to indicate which alarm to process.

· A ContextAlarm has a ContextMatch, which is a MatchCriteria (see 3.4.3.6 for further description of the MatchCriteria).

· Any number of ContextAlarms may be defined for ParameterTypes that support them in the ContextAlarmList.
4.3.2.3.3 DefaultAlarm
All the scalar ParameterTypes have alarms except for AbsoluteTimeParameterType which does not have alarm. The base of all these default alarms is the AlarmType which is described in the next section first.
After that there are several alarms specific to their ParameterType, and these are described in turn.

[image: image44.png]Defines a base
‘schema type used to
build up the other
data type specific
alarm types. The
definition includes a
count to go into
‘alarm (minViolations
~ the counts to go
out of alarm is the
same), a condition
style alarm and a
custom alarm. See
AlarmConditionType,
CustomAlgorithmTyp
e
BinaryAlarmConditio
nType,
BooleanAlarmType,
BinaryContextAlarmT
yoe,
EnumerationAlarmTy
pe,
NumericAlarmType,
StringAlarmType,
TimeAlarmType,
‘TimeAlarmCondition
Type.

name.

‘The alarm definition
may be named

shorDescription |

An optional brief
description of this
alarm definition.

{=—E+ xtce:AncillaryDataSet

minViolations |

‘The number of
successive instances
that meet the alarm
‘conditions for the
‘alarm to trigger. The
defaultis 1.

[minConformance §

Optionally specify
the number of
successive instances
that do not meet the
‘alarm conditions to
leave the alarm
state. I this attribute
is not specified, itis
treated as being
equal to
minviolations
(symmetric).

A MatchCriteria may be
specified for each of the 5
alarm levels. Each level is
optional and the alarm
should be the highest level
to test true.

An escape for
ridiculously complex
‘alarm conditions. Will
trigger on changes to
the containing
Parameter.

Figure 25- AlarmType
Similar to calibrators the alarms have been expanded in XTCE 1.2 to allow them to be named, and to provide descriptive or ancillary information.
4.3.2.3.3.1 minViolations
The minViolations attribute is simply the number of successive violations that must occur before the Parameter is in the alarm state.
4.3.2.3.3.2 minConformance
The minConformance attribute is the opposite of minViolations. It’s the number of successive non-violations that remove the alarm state.
4.3.2.3.3.3 AlarmConditions
The AlarmConditions element is a base kind of alarm, that defines various kind of conditions that will result in an alarm state if the expression evaluates to true.
Each level is based on MatchCriteria.
[image: image45.png]A MatchCriteria may be
specified for each of the 5
alarm levels. Each level is
optional and the alarm
should be the highest level
to test true.

An alarm state of
least concern.
Considered to be
below the most
commonly used
Warning level.

An alarm state of
concern that represents
the most commonly

used minimum concern
level for many software
applications.

An alarm state of
concern in between
the most commonly
used Warning and

Critical levels.

An alarm state of
concern that
represents the most
commonly used
maximum concern
level for many
software applications.

An alarm state of
highest concern.
Considered to be
above the most
commonly used
Critical level.

A simple comparison
checkinvolving a
single test of a
parameter value.

xtce:ComparisonList B

A series of simple
comparison checks with
an implict 'and in that
they all must be true for
the overall condition to

xtce:BooleanExpression

An arbitrarily complex
boolean expression that has
addtional flexibility on the
terms beyond the
Comparison and
ComparisonList elements.

xtce:CustomAlgorithm

An escape to an externally
defined algorithm.

|
|
|
|
|
|
|
|
|
|
be true. ‘
|
|
|
|
|
|
|
|
|

4.3.2.3.3.4 CustomAlarm
The CustomAlarm element is an algorithmic based alarm. Because it also extends BaseAlarm it has the name and descriptive elements from that.
[image: image46.png]An escape for
ridiculously complex
alarm conditions. Will
trigger on changes to
the containing
Parameter.

| xtce:CustomAlarmType

Hlattributes

The alarm definition
may be named.

|

|

|

|

|

‘ An optional brief
| description of this
| alarm definition.
|

|

|

|

|

|

|

xtce:InputAlgorithm E}

Algorithm returns a
boolean.

| xtce:InputAlgorithmType 1

Optional long form
description to be used
for explanatory
descriptions of this item
and may include HTML
markup using COATA.
Long Descriptions are of
unbounded length.

Used to contain an
alas (akternate)
name or D for this

item. See
AliasSetType for
additional

|
|
|
|
|
|
|
|
|
|
|
|
|
|
explanation. }
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Use for any non-standard
data associated with this
named item. See
AndillaryDataSetType for
addtional explanation.

The InputSet
describes the list of
parameters that
should be made
available as input
arguments to the
algorithm.

Figure 26 - CustomAlarm

And because it has the name and descriptive attribtues from InputAlgorithm, it appears to have another set from that.
Recommenation: use the InputAlgorithm for the name of the algorithm and the top alarm name which is optional for the alarm name itself (these may be the same). But ignore the name in CustomAlarm itself.

4.3.2.3.4 ContextAlarmList
ContextAlarms are alarm definitions that have an expression that must be evaluated to determine if the alarm is active. They are specialized by scalar ParameterType (less AbsoluteTimeParameterType which has no alarms) – but the overall pattern is the same among them.
[image: image47.png]Context alarm defintions
are those which adjust the
definition logic for this
parameter based on the
value of other parameters.
A context which evaluates
to being in effect, based on
the testing of another
parameter, takes
precedence over the
default alarms in the
Defaultalarm element. 1f
the no context alarm
evaluates to being in
effect, based on the testing
of another parameter, then
the default alarm
definitions from the
Defaultalarm element wil
remain in effect. T
multiple contexts evaluate
to being in effect, then the
first one that appears wil
take precedence.

Figure 27 - ContextAlarmList

There can be any number of these since it’s a list, and they all must be evaluated to determine if they are active.

Finally if none of them are active or in the alarm state, the default alarm should be considered next.

In a way it’s something like a chain of if-then-else statements, where each ContextAlarm is an if-then, and the final else is the DefaultCalibrator.

[image: image48.png]A simple comparison
checkinvolving a
single test of a
parameter value.

A series of simple
comparison checks with
an implict 'and in that
they all must be true for
the overall condition to
be true.

xtce:BooleanExpression

An arbitrarily complex
boolean expression that has
addiional flexibility on the
terms beyond the
Comparison and
ComparisonList elements.

xtce:CustomAlgorithm

An escape to an externally
defined algorithm.

Figure 28 – ContextMatch
As can be seen above, the ContextMatch element of the ContextAlarm is a kind of MatchCriteria (see Section XYZ).
4.3.2.3.5 EnumerationAlarmList—EnumerationAlarm

4.3.2.3.5.1 General

The EnumeratedParameterType has its own kind of alarm. EnumerationAlarmLists consists of a list of one or more EnumerationAlarm elements that contain the attributes alarmLevel and enumerationValue.

[image: image49.png]| xtce:EnumerationAlarmLevelType

Battributes

Defines six levels:
Normal, Watch,
Warning, Distress,
Critical and Severe.
Typical
implementations
color the "normal®
level as green,
"wiarning” level as
yellow, and "critical"
level s red. In the

|
|
|
|
|
|
|
|
|
|
F1 case of enumeration
|
|
|
|
|
|
|
|
|
L

alarms, the "normal®
is assumed by
implementations to
be any label not
otherwise in an
alarm state.

The enumeration
Iabel is the
engineering/calibrated
value for enumerated
types.

List of alarm state definitions for
this enumerated type.

‘ Describe an alarm state for

| an enumeration label where

| the label is
engineer/calibrated value.

| Note that labels may

| represent mltiple

| raw/uncalbrated values.

|

|

|

|

Figure 4‑294 TC \f G "-20
EnumerationAlarm"
: EnumerationAlarm

4.3.2.3.5.2 alarmLevel Attribute

Alarm levels are one of: ‘normal’, ‘watch’, ‘warning’, ‘distress’, ‘critical’, or ‘severe’.

4.3.2.3.5.3 enumerationValue Attributes

A specific enumeration label is associated with a value. The following is an example of a specified label.

<xtce:EnumerationAlarmList>
<xtce:EnumerationAlarm alarmLevel="warning" enumerationValue="NUM_RANGE_ERR"/>

</xtce:EnumerationAlarmList>
4.3.2.3.6 AlarmConditions

The AlarmConditions element appears in many of the ParameterType and are used to specify alarm condition levels. Each alarm level is a MatchCriteria. (See 3.4.3.6 for a discussion of the MatchCriteriaType.)

[image: image50.png]xtce:Space SystemType

i |
R
{ xestendor

xtce:TelemetryletaDataType

I stce:ParameterTypesetType

xtce:NumericAlarmType

Figure 4‑304 TC \f G "-21
AlarmConditions"
: AlarmConditions

<xtce:AlarmConditions>
<xtce:WarningAlarm>
<xtce:Comparison parameterRef="BAT1VOLT1" value="12.4" comparisonOperator=">"/>
</xtce:WarningAlarm>

</xtce:AlarmConditions>

In this example the calibrated value of parameter instance zero (last recorded value) is compared to 12.4. If it is greater, the alarm level is set to ‘Warning’.

The various levels are optional, but the alarm ‘returns’ the most severe level to test ‘true’.

4.3.2.3.7 Numeric Alarms

4.3.2.3.7.1 General

Numeric alarms only appear in FloatParameterType and IntegerParameterType. The general term ‘Numeric Alarms’ refers to the StaticAlarmRanges, ChangeAlarmRanges and now in XTCE 1.2 the MultiRangeAlarm elements – these appear in the NumericAlarmType.
4.3.2.3.7.2 StaticAlarmRanges—Fixed Ranges

StaticAlarmRanges describe fixed alarm numeric ranges and appear as follows for the five supported range elements:

[image: image51.png]StaticAlarmRanges are used
to trigger alarms when the
parameter value passes
some threshold value.

The alarm definition
may be named.

shortDescription

An optional brief
description of this
alarm definition.

rangeForm

Avalue of outside
specifies that the
most severe range is
outside all the other
ranges: -severe
critcal -distress
~wiarning -watch
normal +watch
“+warning +distress
+critical +severe. A
value of inside
“inverts" these
bands: -green
-wiatch -warning
distress -crtical
severe critical
+distress +warning
“watch. The most
common form used
s "outside” and is
the default.

xtce:WatchRange

A range of least
concern. Considered
to be below the most
commonly used

Warning level.

A range of concern that
represents the most
commonly used
minimum concern level
for many software
applications.

xice DistressRange

A range of concern in
between the most
commonly used
Warning and Critical

A range of concern
that represents the
most commonly used
maximum concern
level for many
software applications.

xtce:SevereRange

A range of highest
concern. Considered to
be above the most
commonly used Critical
level.

Figure 4‑314 TC \f G "-22
StaticAlarmRanges"
: StaticAlarmRanges

XTCE 1.2 now supports outside and inside alarms.
Note: In the previous version of the this report, the term “inside alarms” was used to denote the style of alarm or limit where the least significant range – the inner range is “green” or normal. However the industry is not consistent in this terminology and some call these “outside” alarms. In the XTCE 1.2 – it now describes alarms with the inner most range as being green as “outside alarms” – adopting the terminology of the weighting of the “red” or most severe range. Given that, it now describes “inside alarms” as being green or normal at the outer most range.
4.3.2.3.7.2.1 rangeForm – Outside Alarms
When the attribute rangeForm is “outside” – the default, the alarms have the normal (green here) range inside the least severe range specified, and the most severe (red here) range on the outside. This is illustrated graphically as follows:

[image: image52.emf]Normal

Watch

Warning

Distress

Critical

Severe

Figure 4‑324 TC \f G "-23
Visual Depiction of Alarm Range Bands"
: Visual Depiction of Outside Alarm Range Bands

Note: The colors above are only illustrative, although many systems use a three color system: green, yellow and red from least to most severe.

Recommendation: On systems with a tri-color limit scheme (typically green, yellow, red as noted) – the green range would be Normal, the next highest range which is typically yellow – would be Warning, and the red range which is the most severe range would be Severe in XTCE’s nomeclature.

<xtce:StaticAlarmRanges>
<xtce:WarningRange minInclusive="-5" maxInclusive="5"/>

<xtce:CriticalRange minInclusive="-20" maxInclusive="20"/>

</xtce:StaticAlarmRanges>
In the above example the ranges are as follows:

· the normal range is -5 < x < 5

· the warning range is -20 < x <= -5 and 5 <= x < 20

· the critical range is x <= -20 and x >= 20

In XTCE the ‘min’ specification always implies that it ‘points’ towards -Infinity; the ‘max’ band always points towards +Infinity.
4.3.2.3.7.2.2 rangeForm – Inside Alarms
If the rangeForm is set to “inside” the ranges are inverted and the least severe (unstated) range is on the outside to infinity. The inner bands form the increasingly severe ranges with the inner most band being the most severe.
[image: image53.png]Severe

Critical

Distress

Warning
Watch
Normal

<xtce:StaticAlarmRanges>
<xtce:WarningRange minInclusive="-25" maxInclusive="25"/>

<xtce:CriticalRange minInclusive="-2" maxInclusive="2"/>

</xtce:StaticAlarmRanges>
In the above example the ranges are as follows, in order from most severe to least logically:

· the critical range is -2 <= x <= 2
· the warning range is -25 <= x <= 25
· Otherwise the value is normal.
So, normal always points away from the checked bands in that order.
4.3.2.3.7.3 ChangeAlarmRanges—Delta Alarm or Change Over Time

4.3.2.3.7.3.1 General

ChangeAlarmRanges is used to describe delta alarms, which compare multiple samples of a parameter to determine if the difference exceeds the change allowed.
[image: image54.png]name.

‘The alarm definition
‘may be named.

shorDescription |
An optional brief

description of this
‘alarm definition.

rangeForm

Avalue of outside
specifies that the
‘most severe range is
outside all the other
ranges: -severe
~critical -distress
-warning -watch
normal +watch
“+warning +distress
“critical +severe. A
value of inside
"inverts" these
bands: -green
“watch -warning
~distress -critical
severe +critical
distress +warning
“+watch. The most
‘common form used
is "outside” and is
the default.

{ xtce:ChangeAlarmRanges E}

ChangeAlarmRanges are used
to trigger alarms when the
parameter value changes by a
rate or quantity from a
reference.

xtce:WarningRange

xtce:CriticalRange

xice:SevereRange

Figure 4‑334 TC \f G "-24
ChangeAlarmRanges"
: ChangeAlarmRanges

ChangeAlarmRanges are similar to StaticAlarmRanges, and similar rules apply.

4.3.2.3.7.3.2 changeType Attribute

A value of ‘changePerSample’ designates a delta-style alarm. A value of ‘changePerSecond’ is a rate-style alarm.

4.3.2.3.7.3.3 changeBasis Attribute

If the value is ‘absoluteChange’, the absolute value change between samples is calculated. If the value is set to ‘percentageChange’, the percentage change between samples is calculated.
4.3.2.3.7.3.4 spanOfInterestInSamples Attribute

The default value of ‘one’ indicates that every sample is used in the calculations. If the value is ‘two’, every other sample is used in the calculation. This attribute should be ignored if changeType is set to ‘changePerSecond’.

4.3.2.3.7.3.5 spanOfInterestInSeconds Attribute

The spanOfInterestInSeconds attribute default is ‘zero’. It must be set to a positive value if changeType is set to ‘changePerSecond’.
4.3.2.3.7.4 ChangeAlarmRanges—Delta

The ChangeAlarmRanges element forms a delta style alarm when changeType is set to ‘changePerSample’. For example:

<xtce:ChangeAlarmRanges changeBasis="absoluteChange" changeType="changePerSample" spanOfInterestInSamples="1">
<xtce:SevereRange maxInclusive="10" minInclusive="-10"/>

</xtce:ChangeAlarmRanges>
In this example the alarm ranges are the following per sample:

· normal range: -10 < x < 10

· severe range: x <= -10 and x >= 10

4.3.2.3.7.5 ChangeAlarmRanges—Rate of Change

The ChangeAlarmRanges element can also be used to detect rates of change. By slightly varying the attributes, the delta alarm can be changed to detect rate of change. The following example shows a percentage rate of change:

<xtce:ChangeAlarmRanges changeBasis="percentageChange" changeType="changePerSecond" spanOfInterestInSeconds="1">

<xtce:SevereRange maxInclusive="10" minInclusive="-10"/>

</xtce:ChangeAlarmRanges>

In this example the alarm ranges are the following per second:

· normal range: -10% < x < 10%

· severe range: x <= -10% and x >= 10%
4.3.2.3.7.6 ChangeAlarm rangeForm – Outside/Inside
The rangeForm attribute is available in the ChangeAlarm element. Outside and inside here which is the default have a consistent interpretation as the numeric ranges.
4.3.2.3.8 MultiRange
New for XTCE 1.2, the numeric multi-range allows one to set any number of ranges ranges in different forms, they would be processed so that the most severe range is the level of the alarm.
[image: image55.png]Hlattributes

The alarm definition
may be named.

shortDescription

An optional brief
description of this
alarm definition.

Minimum
decimaljreal number
value including itself.

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
e AlammiluiiRanges B

Similar to but more lenient
form of StaticalarmRanges.

Minimum
decimaljreal number
value excluding

itself.

Maximum
decimaljreal number
value including itself.

Maximum
decimaljreal number
value excluding
itself.

Avalue of outside
specifies that the
most severe range is
outside all the other
ranges: -severe
critcal -distress
~wiarning -watch
normal +watch
“+warning +distress
+critical +severe. A

|

|

|

|

|

|

|

|

|

|

|

|

|

I Describe any
| number of alarm
| ranges, each with ts
| oun level (normal,
|

|

|

|

|

|

|

|

|

|

|

|

|

|

warning, watch,
distress, critical,

severe) and range
form (inside or

value of inside
“inverts" these
disjoint and so forth. bands: -green

|
|
|
|
|
|
outside). Ranges |
|
Ranges within the } -watch -warning
|
|
|
|
|
|
|
|

may overlap, be

distress -critical
severe +critical
+distress +warning
“+watch. The most
common form used
is "outside” and is
the default.

value sprectrum
non-specified are
non-normal. The
most severe range
level of value within
the ranges is the
level of the alarm.
Range values are in

calibrated
engineering units. The level of concern
See for this alarm
FloatRangeType. definition.

Figure 34- AlarmMultiRanges
This is a very general kind of alarm definition, because the number of ranges is unlimited and any they may overlap, be of the same level and so forth.
4.3.2.3.8.1 AlarmMultiRange -- rangeForm
In this element rangeForm is set to inside is interpreted, min and max are interpreted as either:

· [min, max]

· (min, max)

· [min, max)

· (min, max]

In this case (above), the rangeForm should be set opposite of its default -- to inside.

For the value of outside, the ranges are interpreted as:

· (-inf, min]
· (-inf, min)
· [max, inf)

· (max, inf)

Where in each case the notation of () means exclusive, and [] means inclusive.

Outside and inside here which is the default have a consistent interpretation as the numeric ranges.
4.3.2.3.9 ValidRange and Alarms
Although this element is not part of numeric alarms, its worth considering it briefly because it is often a point of confusion as to its nature and relation to them.

The valid range which is optional captures the legal range of values for this numeric DataEncoding after calibration (typically).

It has in some sense nothing directly to do with alarms which are tests against bands within this overall range.

An example of this might be something like a speedometer.

Perhaps a speedometer is defined from to show speeds from 0 to 200 – this would be considered its valid range.

But a particular car model which uses that speedometer may simply not be designed to go those speeds – in which case alarm ranges may be set within that overall range for various levels.

Given that values outside of this are marked as invalid in relation to the speedometer, but are not really alarmed either. (although this is an implementation specific issue)

Likewise the kind of alarm doesn’t really affect the valid range or whether its an inside or outside alarm and so forth.
4.3.2.4 ParameterTypes

4.3.2.4.1 General

XTCE has ten ParameterTypes that are discussed in the subsections below, there are two groups. The first, the scalar ParameterTYpes are: String, Enumerated, Binary, Boolean, Integer, Float and String. And the second, the complex types are Array and Aggregate (“struct”).
4.3.2.4.2 StringParameterType

4.3.2.4.2.1 General

StringParameterType describes strings. The DataEncoding will normally be StringDataEncoding when using this ParameterType if its telemetered. The syntax diagram is large, it will split into several sections. The first part includes name, descriptions and other familiar attributes and elements.
[image: image56.png]xtce:StringParameterType E}

r
xtce:StringParameterType

Hlattributes

Optional short
description to be
used for explanation
of this tem. Ttis
recommended that
the short description
be kept under 80
characters in length.

The name of this
defined item. See
NameType for
restriction
information.

Used to derive one
Data Type from
another - will inherit
all the attributes
from the baseType
any of which may be
redefined in this type
definition.

Initial values for
string types, may
include C language
stle (W, \t, V' W
etc.) escape
sequences.

restriction pattern is
a reguiar expression

Optional long form
description to be used
for explanatory
descriptions of this item
and may include HTML
markup using COATA.
Long Descriptions are of
unbounded length.

Used to contain an
alias (alternate)
name or D for this
item. See
AliasSetType for
additional
explanation.

Use for any non-standard
data associated with this
named item. See
AndillaryDataSetType for
addtional explanation.

When appropriate,
describe the units of
measure that are
represented by this
parameter value.

Figure 4‑354 TC \f G "-25
StringParameterType"
: StringParameterType – Part 1
The next part of StringParameterType is the DataEncoding section through the SizeRangeInCharacters.

[image: image57.png]xtce:StringParameterType E}

Describe a parameter type that
has an engineering/calibrated
value in the form of a character
string.

xtce:BinaryDataEncoding

Binary encoding is typically a
"pass through" raw encoding
form where one of the more
common encodings is not
required for the parameter. A
custom transformation
capabilty is available if
needed.

xtce:FloatDataEncoding

Float encoding is a common
encoding where the raw
binary is in a form that gets
interpreted as a decimal
numeric value.

xtce:IntegerDataEncoding

1
|
|
|
|
|
|
|
|
|
|
|
|
|

e encadng = 2 common |

encoding where the raw binary |

isin a form that gets |
interpreted as an integral

value, either signed or |

unsigned. |

|
|
|
|
|
|
|
|
|
|
1

xtce:StringDataEncoding

String encoding is a common
encoding where the raw
binary is in form that gets
interpreted as a character
sequence.

The size in bits may be greater
than or equal to minincluswe. It
may be less than or equal to
maxinclusive. They both may be
set indicating a closed range.

Figure 36: StringParameterType -- Part 2
Like all scalar ParameterType, StringParameterType has four DataEncodings. However StringDataEncoding is typically used in this element and will be discussed further below.
Finally the last part of StringParameterType are the alarms.

[image: image58.png]xtce:StringParameterType E}

Describe a parameter type that
has an engineering/calibrated
value in the form of a character
string.

Default alarm
definitions are those
which do not adjust
definiton logic based
on the value of other
parameters. Other
parameters may
participate in the
determination of an
alarm condition for
this parameter, but
the definition logic of
the alarm on this
parameter is constant.
T the alarming logic
on this parameter
changes based on the
value of other
parameters, then it is
a ContextAlarm and
belongs in the
ContextalarmList
element.

Context alarm definitions
are those which adjust the
definition logic for this
parameter based on the
value of other parameters.
A context which evaluates
to being in effect, based on
the testing of another
parameter, takes
precedence over the
default alarms in the
Defaultalarm element. 1f
the no context alarm
evaluates to being in
effect, based on the testing
of another parameter, then
the default alarm
definitions from the
Defaultalarm element will
remain in effect. T
multiple contexts evaluate
to being in effect, then the
first one that appears will
take precedence.

Figure 37: StringParameterType -- Part 3
StringParameterType specific alarms will be discussed below.
4.3.2.4.2.2 Name, ShortDescription, BaseType, LongDescription, AliasSet and AncillaryData

These attributes and elements have been described in other sections below.
4.3.2.4.2.3 initialValue Attribute

The initialValue attribute uses \u for Unicode escapes characters.

4.3.2.4.2.4 RestrictionPattern Attribute

The RestrictionPattern attribute is used to restrict the string with this regular expression.
4.3.2.4.2.5 CharacterWidth Attribute

If the CharacterWidth attribute is unspecified, it is assumed the ParameterType can hold the entire Unicode set. Otherwise, the number of bits supported is specified.
4.3.2.4.2.6 UnitSet
UnitSet is discussed in Section 4-21.
4.3.2.4.2.7 StringDataEncoding Element

4.3.2.4.2.7.1 General

For most applications, a StringParameterType will have a StringDataEncoding element. If the StringDataEncoding element cannot describe the string encoding properly, BinaryDataEncoding can be used. FloatDataEncoding and IntegerDataEncoding are not explicitly defined for StringParameterType.

[image: image59.png]xtce:Space SystemType

TelemetryMetaDataType

xtce:ParameterType SetType

-
xtce: StringDataType (exiension)

Rorowscripion

xtce:StringDataEncodingType

Figure 4‑384 TC \f G "-26
StringDataEncoding"
: StringDataEncoding

4.3.2.4.2.7.2 Encoding Attribute

The options are now:

· US-ASCII

· ISO-8859-1

· Windows-1252

· UTF-8

· UTF-16

· UTF-16LE

· UTF-16BE

· UTF-32

· UTF-32LE

· UTF-32BE
NOTE
–
UTF-8 and UTF-16 may be represented by multi-unit sequences that must be accounted for in the size. Likewise some have byte order marks or other meta data that should be accounted for in the size.
4.3.2.4.2.7.3 SizeInBits Attribute

Subsection 4.3.2.2.5.5 contains a description of the SizeInBits attribute.

4.3.2.4.2.8 SizeRangeInCharacters

SizeRangeInCharacters is used to clip the character set. The values are given as integers in hex, binary, or octal representation. The Unicode range is specified. The processing system will convert to the specified encoding: UTF-8 or UTF-16. In the example below, the character range is clipped to ASCII.

<xtce:SizeRangeInCharacters minInclusive="0x00" maxInclusive="0x7F"/>
4.3.2.4.2.9 StringAlarm Element

4.3.2.4.2.9.1 General

[image: image60.png]is not specified, itis
StringAlarmType 3 treated as being

Describe alarms
specific to the string
data type, extends
the basic
AlarmType, while
adding a
StringAlarmList and
defaultalarmLevel
attribute. The string
alarm st is
evaluated in ist
order. See
ConcernsLevelsType
and
StringAlarmListType.

| xtce:AlarmType (extension)

Hlattributes

The alarm definition
may be named.

An optional brief
description of this
alarm definition.

successive instances
that meet the alarm
| condiions for the
alarm to trigger. The
defauttis 1.

Optionally specify
the number of

successive instances
that do not meet the
alarm conditions to
leave the alarm

| state. If this attribute

|
|
|
|
|
|
|
|
|
| The number of
|
|
|
|
|
|
|
|
|

equal to
minviolations
(symmetric).

A MatchCriteria may be
specified for each of the 5
alarm levels. Each level is
optional and the alarm
should be the highest level
to test true.

xice:CustomAlarm

An escape for
ridiculously complex
alarm conditions. Wil
trigger on changes to
the containing
Parameter.

xice:AlarmConditions

|'xtce:StringalarmLevelType |

} Hlattributes

alarmLevel

matchPattern

Figure 4‑394 TC \f G "-27
StringAlarm Element"
: StringAlarm Element

The StringAlarm element is used to set an alarm against an associated string pattern.
4.3.2.4.2.9.2 minViolations Attribute

The minViolations attribute identifies the number of successive instances that meet the alarm conditions for the alarm to trigger.
4.3.2.4.2.9.3 minConformance
See above?
4.3.2.4.2.9.4 defaultAlarmLevel Attribute

The defaultAlarmLevel attribute identifies the alarm level for strings not matched in the StringAlarmList. In the following example, the StringParameterType is restricted to strings that start with ‘REDALERT’. In this case the critical alarm regarding ‘SHIELDS DOWN TO’ is ignored three times. Any other ‘REDALERT’ string defaults to simply ‘warning’ level.

<xtce:StringParameterType name="" restrictionPattern="^REDALERT">
<xtce:UnitSet/>
<xtce:StringDataEncoding>
<xtce:SizeInBits>
<xtce:Fixed>
<xtce:FixedValue>40</xtce:FixedValue>
</xtce:Fixed>
</xtce:SizeInBits>
</xtce:StringDataEncoding>
<xtce:DefaultAlarm minViolations="3" defaultAlarmLevel="warning">
<xtce:StringAlarmList>
<xtce:StringAlarm alarmLevel="critical" matchPattern="SHIELDS DOWN TO"/>
</xtce:StringAlarmList>
</xtce:DefaultAlarm>

</xtce:StringParameterType>

4.3.2.4.3 EnumeratedParameterType

4.3.2.4.3.1 General

EnumeratedParameterType supports the description of enumerations, which are a list of values and their associated labels.

[image: image61.png]Describe a parameter type that has an
engineering/calibrated value in the
form of an enumeration.

‘Optional short
description to be
used for explanation
of tis item. Itis
recommended that
the short description
be kept under 80
characters in length.

baseType

Used to derive one
Data Type from
‘another - vl inherit
allthe attributes
from the baseType
‘any of which may be
redefined in this type

alValue §

Default/nitial value
s ahways given in
calibrated form. Use
the label, it must be
in the enumeration
listto be valid.

Figure 4‑404 TC \f G "-28
EnumeratedParameterType"
: EnumeratedParameterType – Part 1
The first part of EnumeratedParameterType looks similar to the other scalar ParameterTypes. InitialValue is slightly specialized for it though, this is discussed below.
The EnumeratedParameterType continues with the standard DataEncodings.

[image: image62.png]xtce:EnumeratedParameterType E}

Describe a parameter type that has an
engineering/calibrated value in the
form of an enumeration.

Unordered
label/value

xtce:BinaryDataEncoding

Binary encoding is typically a
"pass through" raw encoding
form where one of the more
common encodings is not
required for the parameter. A
custom transformation
capabilty is available if
needed.

xtce:FloatDataEncoding

Float encoding is a common
encoding where the raw
binary is in a form that gets
interpreted as a decimal
numeric value.

xtce:IntegerDataEncoding

encoding where the raw binary
is in a form that gets
interpreted as an integral
value, either signed or
unsigned.

xtce:StringDataEncoding

String encoding is a common
encoding where the raw
binary is in a form that gets
interpreted as a character
sequence.

xice:EnumerationL i

lst of
pairs where

values cannot be

duplicated.

|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integer encoding is a common ‘
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 41: EnumeratedParameter -- Part 2
Which are then followed by the EnumerationList which is also discussed below.

Finally the alarms complete the EnumeratedParameterType.

[image: image63.png]xtce:EnumeratedParameterType E}

Descrbe o parometer ype ot has on. |
engineering/calibrated value in the
form of an enumeration.

Deseribe abels fr tis |

parameter that should

be in an alarm state. |

The default definiion |

applies when there

are no context alarm |

defnfons orall the |

context alarm

definitions evaluate to |

folse n their matching |

arteria. |
|

Describe labels for this
parameter that should be
in an alarm state when
another parameter and
value combination
evaluates to true using the
described matching
criteria.

|

|

|

|

|

|

AMatchCrteria maybe |
specied for each of the 5

alarm levels. Each levelis |

optional and the alarm |
should be the highest level

o test true. |

|

|

|

|

|

|

|

|

|

An escape for
ridiculously complex
alarm conditions. Wil
trigger on changes to
the containing
Parameter.

List of alarm state definitions for
this enumerated type.

Figure 42: EnumeratedParameterType -- Part 3

EnumeratedParameterType has a specialized alarm in the EnumerationAlarmList, and this is discussed below as well.
4.3.2.4.3.2 Name, ShortDescription, BaseType, LongDescription, AliasSet and AncillaryData

These attributes and elements have been described in other sections below.
4.3.2.4.3.3 initialValue Attribute

The intialValue attribute is set to one of the defined labels. The mapping of values to labels is defined by the implementation.
4.3.2.4.3.4 UnitSet
UnitSet is discussed in Section 4.3.2.2.4.
4.3.2.4.3.5 IntegerDataEncoding Element

Enumerated telemetered values are most often integers. So, the IntegerDataEncoding is likely to be used in the EnumeratedParameterType. They can be calibrated or uncalibrated.
See Section 4-31for more information on IntegerDataEncoding.
4.3.2.4.3.6 EnumerationList/Enumeration Element

The EnumerationList/Enumeration element specifies the value/label pairs of the enumeration.
[image: image64.png]e S ———— o |

xtce:ValueEnumerationType

Blattributes

Numeric
raw/uncalibrated
value to associate
with a string
enumeration label.

T max value is
given, the label
maps to a range
where value is less
than or equal to

|
|
|
|
|
|
|
|
|
|
|
maxvalue. The ‘
[Enumerationtist &1 {2 e Enumeration range is nclusive. |
|
|
|
|
|
|
|
|
|
|
|

Unordered list of label

Iabel/value pairs where
String enumeration

values cannot be

duplicated. Tabel to apply to this
value definition in

the enumeration.

An optional
addtional string
description can be
specified for this
enumeration label to
provide extended
information if
desired.

Figure 43: EnumerationList
4.3.2.4.3.7 Value Attribute
The integer value associated with the label.
4.3.2.4.3.8 MaxValue Attribute
The maxValue attribute is optional. If used, the value and maxValue attributes form a range associated with the label.
4.3.2.4.3.9 Label Attribute
The label is the text representation of the value or range.
4.3.2.4.3.10 ShortDescription Attribute
ShortDescription has been added in XTCE 1.2 to further describe each label/value pair.

An example is as follows.
<xtce:EnumerationList>
<xtce:Enumeration label="OFF" value="1"/>
<xtce:Enumeration label="ON" value="2"/>
<xtce:Enumeration label="TRIPPED" value="3"/>
<xtce:Enumeration label="NOTWORKING" value="4"/>

</xtce:EnumerationList>
4.3.2.4.3.11 EnumerationAlarm Element

4.3.2.4.3.11.1 General

The alarm elements of EnumeratedParameterType are similar to the other base alarms in the other ParameterType, except the EnumerationAlarm element – which specifies the alarm level and enumeration value to trip the alarm.
[image: image65.png]| xtce:EnumerationAlarmLevelType

Hlattributes

|
|
|
|
Defines six levels: |
Normal, Watch,
Warning, Distress, |
Critcal and Severe. |
Typical
implementations |
colo the "normal® |
level a5 green,
"wiarning" level as |
yellow, and "citcal” |
level 25 red. Inthe |
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
F1 case of enumeration
|
|
|
|
|
|
|
|
|
L

alarms, the "normal®
is assumed by
implementations to
be any label not
otherwise in an
alarm state.

The enumeration
Iabel is the
engineering/calibrated
value for enumerated
types.

Lt o slarm siate dfinitons for |

this enumerated type. Describe an alarm state for

| an enumeration label where

| the label is
engineer/calibrated value.

| Note that labels may

| represent mltiple

| raw/uncalbrated values.

|

|

|

|

Figure 44: EnumerationAlarm Details
The enumerationValue is a string.

<xtce:EnumerationAlarmList>
<xtce:EnumerationAlarm alarmLevel="distress" enumerationValue="TRIPPED"/>

</xtce:EnumerationAlarmList>
4.3.2.4.3.11.2 minViolations Attribute

The minViolations attribute refers to the number of successive instances that meets the alarm conditions for the alarm to trigger.
4.3.2.4.3.11.3 defaultAlarmLevel Attribute

The defaultAlarmLevel attribute indicates the alarm level for label/values not matched in the EnumerationAlarmList.

4.3.2.4.4 IntegerParameterType

4.3.2.4.4.1 General

IntegerParameterType describe integer telemetry value data types if its telemetered or other local data types if the DataEncoding is not present (and the corresponding Parameter/ParameterProperties/dataSource is set).
As is shown below, the IntegerParameterType is similar to the scalars in construction overall.
[image: image66.png]xtee

xtce:IntegerParameterType 1

Describe a parameter type that
has an engineering/calibrated
value in the form of an integer.

eIntegerParameterType

Hlattributes

Optional short
description to be
used for explanation
of this tem. Ttis
recommended that
the short description
be kept under 80
characters in length.

The name of this
defined item. See
NameType for
restriction
information.

Used to derive one
Data Type from
another - will inherit
all the attributes
from the baseType
any of which may be
redefined in this type
definition.

Default/Inital value
is ahways given in
calibrated form.
Default is base 10
form; binary, octal,
or hexadecimal
values may be given
by preceding value
with o[b|8], o[o|OI,
0[xIX] respectiely.

Optional hint to the
implementation
about the size of the
engineering/calibrat
ed data type to use
internally. Generally
this can be
determined by
examination of the
space required to
capture the full
range of the
encoding, but itis
not always clear
when calibrators are
in use. A tolerant
implementation vill
endeavor to always
make sufficient size
engineering data
types to capture the
entire range of
possible values.

Flag indicating if the
engineering/calibrat
ed data type used
should support
signed
representation. This
should not be
confused with the
encoding type for
the raw value. The
default is true.

Optional long form
description to be used
for explanatory
descriptions of this item
and may include HTML
markup using COATA.
Long Descriptions are of
unbounded length.

Used to contain an
alias (alternate)
name or D for this
item. See
AliasSetType for
additional
explanation.

Use for any non-standard
data associated with this
named item. See
AndillaryDataSetType for
addtional explanation.

Figure 4‑454 TC \f G "-29
IntegerParameterType"
: IntegerParameterType -- Part 1
The second part shows the standard DataEncodings.

[image: image67.png]xtce:IntegerParameterType 1

Describe a parameter type that
has an engineering/calibrated
value in the form of an integer.

This element
provides the
implementation with
assistance rendering
the value as a string
for users.

xtce:ValidRange

xtce:BinaryDataEncoding

Binary encoding is typically a
"pass through" raw encoding
form where one of the more
common encodings is not
required for the parameter. A
custom transformation
capabilty is available if
needed.

xtce:FloatDataEncoding

Float encoding is a common
encoding where the raw
binary is in a form that gets
interpreted as a decimal
numeric value.

xtce:IntegerDataEncoding

Tnteger encoding is a common
encoding where the raw binary
is in a form that gets
interpreted as an integral
value, either signed or
unsigned.

xtce:StringDataEncoding

String encoding is a common
encoding where the raw
binary is in a form that gets
interpreted as a character

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sequence. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

The Valid Range
provides additional
boundary/constraint
information beyond
that of the data
encoding in the
range of possible
values that are
meaningful to this
parameter. Not to
be construed as an
alarm definition,
violations of the valid
range make a
parameter value
"unreasonable", as
opposed to
reasonable to be
reported, but in a
state which should
be of concern.

Figure 46: IntegerParameterType -- Part 2
And specific to the “numerics” the ToString and ValidRange elements which are discussed below.

Finally the numeric alarms.

[image: image68.png]xtce:IntegerParameterType 1

Describe a parameter type that
has an engineering/calibrated
value in the form of an integer.

| xtce:IntegerParameterType

When appropriate,
describe the units of
measure that are
represented by this
parameter value.

| xtce:NumericAlarmType

A MatchCriteria may be
specified for each of the 5
alarm levels. Each level is
optional and the alarm
should be the highest level
to test true.

An escape for
ridiculously complex
alarm conditions. Wil
trigger on changes to

|
|
|
|
|
|
|
|
|
|
|
|
|
the containing }
|
|
|
|
|
|
|
|
|
|
|
|
|

Defautt alarm |
definons are those |
which do not adjust
definition logic based |
onthe value of ther |
parameters. Other
e |
particpate in the |
determination of an
alarm condition for |
this parameter but |
the definition logic of |
|
|
|
|
|
|
|

Parameter.

StaticAlarmRanges are used
to trigger alarms when the
parameter value passes
some threshold value.

the alarm on this
parameter is constant.
T the alarming logic
on this parameter
changes based on the
value of other
parameters, then it is
a ContextAlarm and
belongs in the
ContextalarmList
element.

ChangeAlarmRanges are used
to trigger alarms when the
parameter value changes by a
rate or quantity from a
reference.

similar to but more lenient
form of StaticalarmRanges.

Context alarm defintions
are those which adjust the
definition logic for this
parameter based on the
value of other parameters.
A context which evaluates
to being in effect, based on
the testing of another
parameter, takes
precedence over the
default alarms in the
Defaultalarm element. If
the no context alarm
evaluates to being in
effect, based on the testing
of another parameter, then
the default alarm
definitions from the
Defaultalarm element wil
remain in effect. If multple
contexts evaluate to being
in effect, then the first one
that appears will take
precedence.

Figure 47: IntegerParameterType -- Part 3
The specific alarms to this ParameterType are: StaticAlarmRange, ChangeAlarmRange and AlarmMultiRanges. These are discussed below.
4.3.2.4.4.2 validRangeAppliesToCalibrated Attribute

ValidRange occurs on the raw values, before Calibration (4.3.2.2). The valid range itself is defined in the element ValidRange (4.3.2.4.4.7).

4.3.2.4.4.3 sizeInBits Attribute

The IntegerParameterType’s sizeInBits attribute should match or exceed the precision needed to capture the DataEncoding.
Note: This attribute has caused a lot of confusion. It is not the number of bits in the telemetered item. That is the DataEncoding/SizeInBits. Instead this say something about the range of the data type the local impelemtnation needs to support. It’s something of hint since XTCE has no way to enforce implementation details. As a general rule, matching this value or exceeding the one in the DataEncoding is good practice.
4.3.2.4.4.4 signed Attribute

The signed attribute is set to ‘unsigned’ if encoding is unsigned (default is ‘signed’).

4.3.2.4.4.5 IntegerDataEncoding Element

Most IntegerParameterTypes will select IntegerDataEncoding (uncalibrated or calibrated). BinaryDataEncoding is also an option. StringDataEncoding and FloatDataEncoding are undefined for IntegerParameterType, and their use would be user dependent.

4.3.2.4.4.6 ToString Element

The ToString Element is one of the few places in XTCE that has any information regarding display. It is used to print an integer on the screen.

4.3.2.4.4.7 ValidRange Element

For telemetry, the valid range supplies an overall possible range of value in question. It is not the size in bits of the data type necessarily.
One example might be something like a speedometer – where the other valid range exceeds a particular model car using it. The speedometer’s range would be the ValidRange in this scenario. It also is not an alarm.
4.3.2.4.4.8 StaticAlarmRanges Element

The StaticAlarmRanges element is used to define numeric based bands of increasing levels of severity. Inside and outside versions are supported. (See 4.3.2.3.7.2 for a discussion of static ranges.)
4.3.2.4.4.9 ChangeAlarm Element

The ChangeAlarm element is used to describe delta or change in time alarms. Inside and outside versions are supported. (See 4.3.2.3.7.3.)
4.3.2.4.4.10 AlarmMultiRange
AlarmMultiRange is a very general kind of alarm where any number of range sets can be defined with any level (even duplicates and overlap). Inside and outside forms are supported for each individual range. This alarm is more fully discussed in numeric alarm section below.
4.3.2.4.5 BinaryParameterType

4.3.2.4.5.1 General

BinaryParameterType is a general purpose ‘data type-less’ type that is used to describe a block of bits that cannot be captured with other ParameterTypes.
The constructions follows the pattern of the other ParameterTypes.
[image: image69.png]xtce:BinaryParameterType E}

prer—————
has an engineering/calibrated |
value nthe form of a bnary |
(usually hex represented). ‘

aryParameterType

Hlattributes

Optional short
description to be
used for explanation
of this tem. Ttis
recommended that
the short description
be kept under 80
characters in length.

The name of this
defined item. See
NameType for
restriction
information.

Used to derive one
Data Type from
another - will inherit
all the attributes
from the baseType
any of which may be
redefined in this type
definition.

Default/Inital value
is ahways given in
calibrated form.
Extra bits are
truncated from the
MSB (leftmost).

xtce:LongDescription

Optional long form
description to be used
for explanatory
descriptions of this item
and may include HTML
markup using COATA.
Long Descriptions are of
unbounded length.

Used to contain an
alias (alternate)
name or D for this
item. See
AliasSetType for
additional
explanation.

Use for any non-standard
data associated with this
named item. See
AndillaryDataSetType for
addtional explanation.

When appropriate,
describe the units of
measure that are
represented by this

Figure 4‑484 TC \f G "-30
BinaryParameterType"
: BinaryParameterType – First Half
The second half shown below includes the four data encodings, and alarms.

[image: image70.png]xtce:BinaryParameterType E}

Describe a parameter type that
has an engineering/calibrated
value in the form of binary
(usually hex represented).

auauitiofial Explaliation.

When appropriate,
describe the units of
measure that are
represented by this
parameter value.

xtce:BinaryDataEncoding
Binary encoding is typically a

"pass through" raw encoding
form where one of the more
common encodings is not
required for the parameter. A
custom transformation
capabilty is available if
needed.

xtce:FloatDataEncoding

Float encoding is a common
encoding where the raw
binary is in a form that gets
interpreted as a decimal
numeric value.

xtce:IntegerDataEncoding

Tnteger encoding is a common
encoding where the raw binary

is in a form that gets
interpreted as an integral
value, either signed or
unsigned.

xtce:StringDataEncoding

String encoding is a common
encoding where the raw
binary is in a form that gets
interpreted as a character
sequence.

Optionally describe an
alarm monitoring
specification that is
effective whenever a
contextual alarm
definition does not
take precedence.

xtce:BinaryContextAlarmList

Optionally describe one or more
alarm monitoring specifications
that are effective whenever a
contextual match definition
evaluates to true. The first match
that evaluates to true takes
precedence.

Figure 49: ParameterType -- Second Part

These items are explored more fully below.
4.3.2.4.5.2 initialValue Attribute

The initialValue attribute is specified in hex binary. The bits are truncated from the leftmost (MSB).

4.3.2.4.5.3 BinaryDataEncoding Element

4.3.2.4.5.3.1 General

Typically BinaryDataEncoding is used with BinaryParameterType.

4.3.2.4.5.3.2 BinaryDataEncoding—SizeInBits Element

SizeInBits is used to specify the length using FixedValue, DynamicValue, or DiscreteLookup.
4.3.2.4.5.3.3 BinaryDataEncoding—FromBinaryTransformAlgorithm or ToBinaryTransformAlgorithm Elements

FromBinaryTransformAlgorithm and ToBinaryTransformAlgorithm Elements are optional elements to capture a custom algorithm for transforming encoded binary data to the destination’s data type.

4.3.2.4.6 FloatParameterType

4.3.2.4.6.1 General

FloatParameterType is used to describe either a float data encoding (source data type) or a calibrated integer data encoding (source data type) to a destination’s float data type.

[image: image71.png]xtce:FloatParameterType

Hlattributes

Optional short
description to be
used for explanation
of this tem. Ttis
recommended that
the short description
be kept under 80
characters in length.

The name of this
defined item. See
NameType for
restriction
information.

Used to derive one
Data Type from
another - will inherit
all the attributes
from the baseType
any of which may be
redefined in this type
definition.

Tnital value is
always given in
aalibrated form

Optional hint to the
implementation
about the size of the
engineering/calibrat
ed data type to use
internally. Generally

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
‘ this can be
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1

determined by
examination of the
space required to
capture the full
range of the
encoding, but itis
not always clear
when calibrators are
in use. A tolerant
implementation vill
endeavor to always
make sufficient size
engineering data
types to capture the
entire range of
possible values.

Optional long form
description to be used
for explanatory
descriptions of this item
and may include HTML
markup using COATA.
Long Descriptions are of
unbounded length.

Used to contain an
alias (alternate)
name or D for this
item. See
AliasSetType for
additional
explanation.

xtce:AncillaryDataSet

Use for any non-standard
data associated with this
named item. See
AndillaryDataSetType for
addtional explanation.

Figure 4‑504 TC \f G "-31
FloatParameterType"
: FloatParameterType – First Part
Second Part.

[image: image72.png]xtce:FloatParameterType E}

Describe a parameter type
that has an
engineering/calibrated value in
the form of a decimal.

xtce:BinaryDataEncoding }

sinary encoding s ypically 2 |
"pass through" raw encoding
form where one of the more |
common encodings is not |
required for the parameter. A
custom transformation |
capabilty is available if |
needed. |
|

xtce:FloatDataEncoding

Float encoding s a comman |

encoding where the raw

binary s in a form that gets |

interpreted as a decimal |

numeric value. |
|

xtce:IntegerDataEncoding

Integer encoding is a common |
encoding where the raw binary

is in a form that gets |
interpreted as an integral |
value, either signed or

unsigned.

encoding where the raw
binary is in a form that gets
interpreted as a character

|
|
|
string encoding s @ common |
|
e I

Figure 51: FloatParameterType -- Second Part

Third Part.

[image: image73.png]xtcerToString 1

This element
provides the
implementation with
‘assistance rendering
the value as a string
for users.

xice:ValidRange B

The Valid Range
provides additional
boundary/constraint
information beyond
that of the data
encoding in the
range of possible
values that are
meaningful to this
parameter. Not to
be construed s an
‘alarm definition,
violations of the valid
range make a
parameter value
“unreasonable, as
opposed to
reasonable to be
reported, but in a
state which should
be of concern.

Figure 52: FloatParameterType -- Third Part

Fourth Part.

[image: image74.png]xice:DefaultAlarm ’

Default alarm
definitions are those
which do not adjust
definition logic based
on the value of other
parameters. Other
parameters may
participate in the
determination of an
‘alarm condition for
this parameter, but
the definition logic of
the alarm on this
parameter is constant.
T the alarming logic
on this parameter
changes based on the
value of other
parameters, then it is
‘a Contextalarm and
belongs in the
ContextalarmList
element.

xice:ContextAlarml ’

Context alarm defintions
‘are those which adjust the
definition logic for this
parameter based on the
value of other parameters.
A context which evaluates
to being in effect, based on
the testing of another
parameter, takes
precedence over the
default alarms in the
Defaultalarm element. 1f
the no context alarm
evaluates to being in
effect, based on the testing
of another parameter, then
the default alarm
definitions from the
Defaultalarm element will
remain in effect. T
multiple contexts evaluate
to being in effect, then the
first one that appears will
take precedence.

Figure 53: FloatParameterType -- Fourth Part

Discussed below.
4.3.2.4.6.2 validRangeAppliesToCalibrated Attribute

The validRangeAppliesToCalibrated attribute is ignored since the ValidRange check is always applied before calibration (see 4.3.2.2).

4.3.2.4.6.3 sizeInBits Attribute

In FloatParameterType, the sizeInBits attribute is used to describe the precision of the output of a calibrator (typically an integer count). For single precision, 32 is used; for double, 64; for extended, 80; and for quad precision, 128. The destination should match or exceed the precision needed by the encoding. For example, if the FloatDataEncoding is 32 bits, the FloatParameterType sizeInBits should be at least 32 bits.

4.3.2.4.6.4 BinaryDataEncoding and FloatDataEncoding Elements

FloatDataEncoding supports IEEE or MIL-1750 formats. If other formats are needed, BinaryDataEncoding can be used to supply the basic information. The AncillaryData is used to supply other aspects of the format.
4.3.2.4.6.5 IntegerDataEncoding Element

If IntegerDataEncoding is defined in FloatParameterType, it is used to designate a raw count to engineering unit conversion. The calibrator is defined in the IntegerDataEncoding element.

4.3.2.4.6.6 ValidRange Element

The ValidRange element is similar to the element of the same name in IntegerParameterType (see 4.3.2.4.4.7) but for floating point.
4.3.2.4.7 BooleanParameterType

4.3.2.4.7.1 General

BooleanParameterType is used to describe true/false items. This is a restricted form of enumeration.

[image: image75.png]xtce:BooleanParameterType E}

Describe a parameter type that
has an engineering/calibrated
value in the form of a boolean
enumeration.

xtce:BooleanParameterType

Hlattributes

Optional short
description to be
used for explanation
of this tem. Ttis
recommended that
the short description
be kept under 80
characters in length.

The name of this
defined item. See
NameType for
restriction
information.

Used to derive one
Data Type from

[another - will inherit
all the attributes
from the baseType
any of which may be
redefined in this type
definition.

Defaul/Initial value
is alviays given in
aalibrated form.

Enumeration string
representing the 1
value, vith the

defautt being "True

Enumeration string
representing the 0
value, with the
default being ‘False'.

Optional long form
description to be used
for explanatory
descriptions of this item
and may include HTML
markup using COATA.
Long Descriptions are of
unbounded length.

Used to contain an
alias (alternate)
name or D for this
item. See
AliasSetType for
additional
explanation.

laryDataSet

Use for any non-standard
data associated with this
named item. See
AndillaryDataSetType for
addtional explanation.

When appropriate,
describe the units of
measure that are
represented by this
parameter value.

Figure 4‑544 TC \f G "-32
BooleanParameterType"
: BooleanParameterType – First Part
Second Part.

[image: image76.png]Describe a parameter type that
has an engineering/calibrated
value in the form of a boolean
enumeration.

named item. See
AndillaryDataSetType for
addtional explanation.

When appropriate,
describe the units of
measure that are
represented by this
parameter value.

:BinaryDataEncoding

Binary encoding is typically a
"pass through" raw encoding
form where one of the more
common encodings is not
required for the parameter. A
custom transformation
capabilty is available if
needed.

S
8

xtce:FloatDataEncoding

Float encoding is a common
encoding where the raw
binary is in a form that gets
interpreted as a decimal
numeric value.

Tnteger encoding is a common
encoding where the raw binary
is in a form that gets
interpreted as an integral
value, either signed or
unsigned.

xtce:StringDataEncoding

String encoding is a common
encoding where the raw
binary is in a form that gets
interpreted as a character
sequence.

Optionally describe an
alarm monitoring
specification that is
effective whenever a
contextual alarm
definition does not
take precedence.

Optionally describe one or
more alarm monitoring
specifications that are
effective whenever a
contextual match definition
evaluatesto true. The first
match that evaluates to
true takes precedence.

xtce:IntegerDataEncoding

Figure 55: BooleanParameterType -- Second Part

Below.
4.3.2.4.7.2 oneStringValue Attribute

The oneStringValue attribute is used to set the string associated with value ‘1’ (default is ‘true’).

4.3.2.4.7.3 zeroStringValue Attribute

The zeroStringValue attribute is used to set the string associated with value ‘0’ (default is ‘false’).

4.3.2.4.7.4 IntegerDataEncoding Element

IntegerDataEncoding is used for encoding.

4.3.2.4.8 RelativeTimeParameterType

4.3.2.4.8.1 General

RelativeTimeParameterType is a relative time description offset from an absolute time.

[image: image77.png]Optional short
description to be
used for explanation
of this tem. Ttis
recommended that
the short description
be kept under 80
characters in length.

The name of this
defined item. See
NameType for
restriction
information.

Extend another
absolute or relative
time type.

Optional long form
description to be used
for explanatory
descriptions of this item
and may include HTML
markup using COATA.
Long Descriptions are of
unbounded length.

Used to contain an
alias (alternate)
name or D for this
item. See
AliasSetType for
additional
explanation.

Use for any non-standard
data associated with this
named item. See
AndillaryDataSetType for
addtional explanation.

Figure 4‑564 TC \f G "-33
RelativeTimeParameterType"
: RelativeTimeParameterType – First Part
Second Part.

[image: image78.png]xtce:RelativeTimeParameterType E}

Describe a parameter type that has an

engineering/calibrated value in the
form of a duration in time.

Describes how the
raw base counts of
the time type are

encodeddecoded.

Describes origin (epoch
or reference) of this time

type.

_
xtce:BinaryDataEncoding

Binary encoding is typically a
"pass through" raw encoding
form where one of the more
common encodings is not
required for the parameter. A
custom transformation
capabilty is available if
needed.

xtce:FloatDataEncoding

Float encoding is a common
encoding where the raw
binary is in a form that gets
interpreted as a decimal
numeric value.

xtce:IntegerDataEncoding

Tnteger encoding is a common
encoding where the raw binary
is in a form that gets
interpreted as an integral
value, either signed or
unsigned.

xtce:StringDataEncoding

String encoding is a common
encoding where the raw
binary is in a form that gets
interpreted as a character
sequence.

|
|
|
‘ \
| Epochs may be |
| specied as an xs
date where tme s |
| implied to be |
00:00:00, x5
I [e
| enumeration of |
common epochs.
‘ The enumerations |
| are TAT(used by |
| CCSDS and others),
| 72000, NX (also |
known as POSD), |
and Ges.
‘ \

I

Figure 57: RelativeTimeParameterType -- Second Part

Third part.

[image: image79.png]xice:DefaultAlarm ’

Default alarm
definitions are those
which do not adjust
definiton logic based
on the value of other
parameters. Other
parameters may
participate in the
determination of an
alarm condition for
this parameter, but
the definition logic of
the alarm on this
parameter is constant.
T the alarming logic
on this parameter
changes based on the
value of other
parameters, then it is
a ContextAlarm and
belongs in the
ContextalarmList
element.

xice:ContextAlarmList ’

Context alarm defintions
are those which adjust the
definition logic for this
parameter based on the
value of other parameters.
A context which evaluates
to being in effect, based on
the testing of another
parameter, takes
precedence over the
default alarms in the
Defaultalarm element. 1f
the no context alarm
evaluates to being in
effect, based on the testing
of another parameter, then
the default alarm
definitions from the
Defaultalarm element will
remain in effect. T
multiple contexts evaluate
to being in effect, then the
first one that appears will
take precedence.

Figure 58: RelativeTimeParameterType -- Third Part

Discussed below.
4.3.2.4.8.2 initialValue Attribute

· The initialValue attribute is a string formatted to xsd:duration. (See javax.xml.datatype for an implementation of this type.)
· An example of time specified for less than one second is PT0.5S for half a second.

· Longer time spans can be specified such as: -P120D (-120 days) and P1Y2M3DT10H30M (1 year, 2 months, 3 days, 10 hours, and 30 minutes).

4.3.2.4.8.3 units, scale, and offset Attributes

a) The units attribute is used to supply units related specifically to time.
b) The scale attribute supplies a scaling factor for the encoded value.
c) The offset attribute is used to set an offset.

4.3.2.4.8.4 DataEncoding Elements

For DataEncoding Elements, IntegerDataEncoding is used. BinaryDataEncoding may be necessary for some cases. The other encodings are not defined.

4.3.2.4.8.5 ReferenceTime—OffsetFrom Element

ReferenceTime—OffsetFrom Element is used to reference another time parameter. It allows for the stringing together of several dissimilar but related time parameters.
4.3.2.4.8.6 ReferenceTime—Epoch Element

ReferenceTime—Epoch Element is used to specify a starting epoch for the date. This schema type is a union between xsd:date and the string International Atomic Time (TAI, January 1, 1958).
4.3.2.4.8.7 Default and ContextAlarms

Alarms may be specified for RelativeTimeParameterType. The alarm forms include AlarmConditions, CustomAlarm, and StaticAlarmRanges.
The ChangePerSecondAlarmRanges is used to describe rates of changes that are either too fast or too slow. Its attribute ‘@timeUnits’ specifies the unit of time.

4.3.2.4.9 AbsoluteTimeParameterType

4.3.2.4.9.1 General

AbsoluteTimeParameterType describes absolute time values. This is similar to RelativeTimeParameterType in construction except there are no alarms.

[image: image80.png]Hlattributes

Optional short
description to be
used for explanation
of this tem. Ttis
recommended that
the short description
be kept under 80
characters in length.

The name of this
defined item. See
NameType for
restriction
information.

Extend another
absolute or relative
i

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
Default/Initial value
|
‘ is always given in ‘
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
1

calibrated form.

Optional long form
description to be used
for explanatory
descriptions of this item
and may include HTML
markup using COATA.
Long Descriptions are of
unbounded length.

Used to contain an
alias (alternate)
name or D for this
item. See
AliasSetType for
additional
explanation.

Use for any non-standard
data associated with this
named item. See
AndillaryDataSetType for
additional explanation.

Figure 4‑594 TC \f G "-34
AbsoluteTimeParameterType"
: AbsoluteTimeParameterType – First Part
Second part.

[image: image81.png]xtce:AbsoluteTimeParameterType E}

Describe a parameter type that has an
engineering/calibrated value in the form
of an instant in time.

Describes how the
raw base counts of
the time type are

encodeddecoded.

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ly

Hlattributes

Time units, with the
defautt being in
seconds.

Linear slope used as
a shorter form of
specifying a
| calibrator to convert
betuween the raw
value and the
engineering urits.

Linear intercept used
as a shorter form of
specifying a
calibrator to convert
betuween the raw
value and the
engineering urits.

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Binary encoding is typically a |
tpass throught raw encoding |
form where one of the more
common encodings is not |
requiredfor the parameter. A |
custom transformation
capability is available if |
needed. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

xtce:FloatDataEncoding

Float encoding is a common
encoding where the raw
binary is in a form that gets
interpreted as a decimal
numeric value.

I

xtce:IntegerDataEncoding

Tnteger encoding is a common
encoding where the raw binary
is in a form that gets
interpreted as an integral
value, either signed or
unsigned.

xtce:StringDataEncoding

String encoding is a common
encoding where the raw
binary is in a form that gets
interpreted as a character
sequence.

Figure 60: AbsoluteTimeParameterType -- Second Part

Third part.

[image: image82.png]Describes origin (epoch
or reference) of this time
type.

|

|

|

|

Epochsmaybe |
specied as an xs

date where tme s |

implied to be |

|

|

|

|

|

|

|

|

|

|

| 00:00:00, xs
‘ dateTime, or string
|

|

|

|

|

enumeration of
common epochs.

The enumerations

are TAI (used by
CCSDS and others),
12000, UNIX (also
known as POSIX),

and GPS. |

Figure 61: AbsoluteTimeParameterType -- Third Part

Described below.
4.3.2.4.9.2 initialValue Attribute

The XML Schema dateTime type is used to describe absolute time initialValues. (See javax.xml.datatype.XMLGregorianCalendar for an implementation of dateTime.) The W3C Schema data type specifies the detailed explanation of accepted formats.

Examples include: 2002-10-10T12:00:00-05:00 (noon on 10 October 2002, Central Daylight Savings Time as well as Eastern Standard Time in the United States).

4.3.2.4.9.3 ReferenceTime—Epoch Element

The ReferenceTime—Epoch element is used to hold the epoch.

4.3.2.4.10 ArrayParameterType

4.3.2.4.10.1 General

ArrayParameterType is used to describe arrays of other ParameterTypes. The way arrays are define has been revised in XTCE1.2. In XTCE 1.1 the number of dimensions was defined at the ArrayParameterType, but size of each dimension was were specified at the point of use in the container’s EntryList.
This proved to be problematic – for many it was cumbersome, but some it made defining Aggregates with members that were arrays impossible with creative syntax use.

So, in XTCE 1.2 this has been revised so that the Dimensions are defined in each ArrayParameterType. This is explored more below.
[image: image83.png][

xtce:ArrayParameterType E}

Describe a parameter type that
has an engineering/calibrated
value in the form of an array
of a primitive type.

xtce:ArrayParameterType

Hlattributes

Optional short
description to be
used for explanation
of this tem. Ttis
recommended that
the short description
be kept under 80
characters in length.

The name of this
defined ftem. See
NameType for
restriction
information.

arrayTypeRef

Reference to the
data type that
represents the type
of the elements for
this array.

Optional long form
description to be used
for explanatory
descriptions of this item
and may include HTML
markup using COATA.
Long Descriptions are of
unbounded length.

Used to contain an
alas (akternate)
name or D for this
item. See
AliasSetType for
additional
explanation.

Use for any non-standard
data associated with this
named item. See
AndillaryDataSetType for
addtional explanation.

(o xece

Describe the
dimensions of this
array.

imen:

Figure 4‑624 TC \f G "-35
ArrayParameterType"
: ArrayParameterType

4.3.2.4.10.2 arrayTypeRef Attribute

ArrayTypeRef attribute is a NameReference to another ParameterType from which the array cells are formed (i.e., its data type).
4.3.2.4.10.3 DimensionList Element
This is a change from XTCE 1.1, and replaces the numberOfDimensions attribute and EntryList DimensionList combination in that version.

Instead the number of dimensions and their sizes are set here. The EntryList still retains the ArrayParameterRefEntry element, and it has a DimensionList there – which is optional – but it may only be used to subset the DimensionList specified here in the ParameterType.

4.3.2.4.11 AggregateParameterType

4.3.2.4.11.1 General

AggregateParameterType is used to describe aggregates. It is similar to C-structs or records in other languages.

[image: image84.png]| xtceiAggregateParameterType

Hlattributes

Optional short
description to be
used for explanation
of this tem. Ttis
recommended that
the short description
be kept under 80
characters in length.

The name of this
defined item. See
NameType for
restriction
information.

Optional long form
description to be used
for explanatory
descriptions of this item
and may include HTML
markup using COATA.
Long Descriptions are of
unbounded length.

Used to contain an
alias (alternate)
name or D for this
item. See
AliasSetType for
additional
explanation.

Use for any non-standard
data associated with this
named item. See
AndillaryDataSetType for
addtional explanation.

Figure 4‑634 TC \f G "-36
AggregateParameterType"
: AggregateParameterType – First Part
Second Part.

[image: image85.png]xtce:AggregateParameterType El

Describe a parameter type that has
an engineering/calibrated value in
the form of a structure of
parameters of other types.

Hlattributes

Optional short
description to be
used for explanation
of this tem. Ttis
recommended that
the short description
be kept under 80
characters in length.

The name of this
defined item. See
NameType for
restriction
information.

Used to set the initial
calibrated values of
Parameters. Will
overwrite an intial
value defined for the
ParameterType. For
integer types base
10 (decimal) form is
assumed unless: if
proceeded by a 0b
or 08, value is in
base two (binary
form, if proceeded
by a 00 or 00,
valuesis in base 8
(octal) form, or if
proceeded by a 0x
or 0, value is in
base 16 (hex) form.
Floating point types
may be specified in
normal (100.0) or
scientific (1.062)
form. Time types
are specified using
the 150 8601
formats described
for XTCE time data
types. Initial values

Ordered list of the
members of the

aggregate/structure. for string types, may
Members are include C language
contiguous. style (\n, \& V", \\

etc.) escape
sequences.

Optional long form
description to be used
for explanatory
descriptions of this item
and may include HTML
markup using COATA.
Long Descriptions are of
unbounded length.

Used to contain an
alias (alternate)
name or D for this
item. See
AliasSetType for
additional
explanation.

Use for any non-standard
data associated with this
named item. See
AndillaryDataSetType for
addtional explanation.

Figure 64: AggregateParameterType -- Second Part

As can be seen, the Aggregate has a number of new elements related to documentation and initial value.
4.3.2.4.11.2 MemberList/Member Elements

MemberList/Member Elements are lists of fields of the aggregate; typeRef is a NameReference to another ParameterType.
NOTE
–
ParameterInstanceRefs to an aggregate use the syntax ‘AggregateName.MemberName’. Further members can now point to ArrayParamaterTypes.
4.3.2.5 ParameterType and Encoding Tables—Recommendations

4.3.2.5.1 General

Tables 4‑4 - 4‑18 provide examples of ParameterTypes and encodings. Examples of each are given after the tables. Defining other ParameterType encodings is the responsibility of the end user. Default attribute values are used where possible to decrease the size of the description.

4.3.2.5.2 Uncalibrated ParameterTypes

Table 4‑44 TC \f T "-4
Settings for Uncalibrated StringParameterType"
: Settings for Uncalibrated StringParameterType

	Destination Side
	Encoding (Source) Side

	ParameterType
	@characterWidth
	DataEncoding
	@encoding
	SizeInBits

	String
	ignore (use default); interpret as Unicode
	String
	UTF-8
(use default)
	Set to size taking into account codes per character

	String
	ignore (use default); interpret as Unicode
	String
	UTF-16
	Set to size taking into account codes per character

	UTF-8
	UTF-16

	<xtce:StringParameterType name="UTF8Type">
	<xtce:StringParameterType name="UTF16Type">

	 <xtce:UnitSet/>
	 <xtce:UnitSet/>

	 <xtce:StringDataEncoding>
	 <xtce:StringDataEncoding encoding="UTF-16">

	 <!—Ex. Length in bits is 11 characters,
	 <!-- Length in bits is 11 characters,

	 8-bits per ASCII-type character -->
	 16-bits per character -->

	 <xtce:SizeInBits>
	 <xtce:SizeInBits>

	 <xtce:Fixed>
	 <xtce:Fixed>

	 <xtce:FixedValue>88</xtce:FixedValue>
	 <xtce:FixedValue>176</xtce:FixedValue>

	 </xtce:Fixed>
	 </xtce:Fixed>

	 </xtce:SizeInBits>
	 </xtce:SizeInBits>

	 </xtce:StringDataEncoding>
	 </xtce:StringDataEncoding>

	</xtce:StringParameterType>
	</xtce:StringParameterType>

Table 4‑54 TC \f T "-5
Settings for Uncalibrated Unsigned IntegerParameterType"
: Settings for Uncalibrated Unsigned IntegerParameterType

	Destination Side
	Encoding (Source) Side

	ParameterType
	@signed
	@sizeInBits
	DataEncoding
	@encoding
	@sizeInBits

	Integer
	unsigned
	32
(use default)
	Integer
	unsigned
(use default)
	1–7

	Integer
	unsigned
	32
(use default)
	Integer
	unsigned
(use default)
	8
(use default)

	Integer
	unsigned
	32
(use default)
	Integer
	unsigned
(use default)
	9–16

	Integer
	unsigned
	32
(use default)
	Integer
	unsigned
(use default)
	17–32

	Integer
	unsigned
	64
	Integer
	unsigned
(use default)
	33–64

	Integer
	unsigned
	Set to next multiple
	Integer
	unsigned
(use default)
	64+

<xtce:IntegerParameterType name="UnsignedLongType" signed="false">
<xtce:UnitSet/>
<xtce:IntegerDataEncoding encoding="unsigned" sizeInBits="32"/>

</xtce:IntegerParameterType>
Table 4‑64 TC \f T "-6
Settings for Uncalibrated Unsigned IntegerParameterType"
: Settings for Uncalibrated Unsigned IntegerParameterType

	Destination Side
	Encoding (Source) Side

	ParameterType
	@signed
	@sizeInBits
	DataEncoding
	@encoding
	@sizeInBits

	Integer
	signed
(use default)
	32
(use default)
	Integer
	twosComplement
onesComplement
signedMagnitude
	2–7

	Integer
	signed
(use default)
	32
(use default)
	Integer
	twosComplement
onesComplement
signedMagnitude
	8
(use default)

	Integer
	signed
(use default)
	32
(use default)
	Integer
	twosComplement
onesComplement
signedMagnitude
	9–16

	Integer
	signed
(use default)
	32
(use default)
	Integer
	twosComplement
onesComplement
signedMagnitude
	17–32

	Integer
	signed
(use default)
	64
	Integer
	twosComplement
onesComplement
signedMagnitude
	33–64

	Integer
	signed
(use default)
	Set to next multiple
	Integer
	twosComplement
onesComplement
signedMagnitude
	64+

<xtce:IntegerParameterType name="SignedLongType">
<xtce:UnitSet/>
<xtce:IntegerDataEncoding sizeInBits="32"/>

</xtce:IntegerParameterType>
Table 4‑74 TC \f T "-7
Settings for Uncalibrated BCD IntegerParameterType"
: Settings for Uncalibrated BCD IntegerParameterType

	Destination Side
	Encoding (Source) Side

	ParameterType
	@signed
	@sizeInBits
	DataEncoding
	@encoding
	@sizeInBits

	Integer
	unsigned
	32
(use default)
	Integer
	BCD
packedBCD
	4+ in 4 or 8 bit increments up to values 2^32

	Integer
	unsigned
	32
(use default)
	Integer
	BCD
packedBCD
	8
(use default)

	Integer
	signed
(use default)
	32
(use default)
	Integer
	BCD
packedBCD
	4+ in 4 or 8 bit increments up to values of +/– 2^32–1

	Integer
	signed
(use default)
	32
(use default)
	Integer
	BCD
packedBCD
	8 (use default)

	Integer
	unsigned
	Set to bit precision to hold largest value
	Integer
	BCD
packedBCD
	Size needed to hold value

	Integer
	signed
(use default)
	Set to bit precision to hold max/min values
	Integer
	BCD
packedBCD
	Size needed to hold value

<xtce:IntegerParameterType name="BCD0Thru9">
<xtce:UnitSet/>
<xtce:IntegerDataEncoding sizeInBits="40" encoding="BCD"/>
</xtce:IntegerParameterType>
Table 4‑84 TC \f T "-8
Settings for Uncalibrated FloatParameterType"
: Settings for Uncalibrated FloatParameterType

	Destination Side
	Encoding (Source) Side

	ParameterType
	@sizeInBits
	AncillaryData
	DataEncoding
	@encoding
	@sizeInBits

	Float
	32
(use default)
	
	Float
	IEEE754_1985
(use default)
	32
(use default)

	Float
	64
	
	Float
	IEEE754_1985
(use default)
	64

	Float
	128
	@name=
"IEEE754_1985_EXTENDED"
Element holds 80
	Float
	IEEE754_1985
(use default)
	32
(use default); interpret as 80

	Float
	128
	
	Float
	IEEE754_1985
(use default)
	128

	Float
	32
(use default)
	
	Float
	MILSTD_1750A
	32
(use default)

	Float
	64
	@name=
"MILSTD_1750A_EXTENDED"
Element holds 48
	Float
	MILSTD_1750A
	32
(use default); interpret as 48

<xtce:FloatParameterType name="SinglePrecisionFloatType">
<xtce:UnitSet/>
<xtce:FloatDataEncoding/>
</xtce:FloatParameterType>
Table 4‑94 TC \f T "-9
Settings for Uncalibrated EnumeratedParameterType"
: Settings for Uncalibrated EnumeratedParameterType

	Destination Side
	Encoding (Source) Side

	ParameterType
	DataEncoding
	@encoding
	@sizeInBits

	Enumerated
	Integer
	unsigned (use default)
	1–7

	Enumerated
	Integer
	unsigned (use default)
	8 (use default)

	Enumerated
	Integer
	unsigned (use default)
	9+

<xtce:EnumeratedParameterType name="PowerStateType">
<xtce:UnitSet/>
<xtce:IntegerDataEncoding />
<xtce:EnumerationList>
<xtce:Enumeration label="ON" value="1"/>
<xtce:Enumeration label="OFF" value="0"/>
</xtce:EnumerationList>
</xtce:EnumeratedParameterType>
Table 4‑104 TC \f T "-10
Settings for Uncalibrated BinaryParameterType"
: Settings for Uncalibrated BinaryParameterType

	Destination Side
	Encoding (Source) Side

	ParameterType
	DataEncoding
	SizeInBits

	Binary
	Binary
	1+

<xtce:BinaryParameterType name="Blob">
<xtce:UnitSet/>
<xtce:BinaryDataEncoding>
<xtce:SizeInBits>
<xtce:FixedValue>255</xtce:FixedValue>
</xtce:SizeInBits>
</xtce:BinaryDataEncoding>
</xtce:BinaryParameterType>
Table 4‑114 TC \f T "-11
Settings for Uncalibrated BooleanParameterType"
: Settings for Uncalibrated BooleanParameterType

	Destination Side
	Encoding (Source) Side

	ParameterType
	DataEncoding
	@encoding
	@sizeInBits

	Boolean
	Integer
	unsigned
(use default)
	1

<xtce:BooleanParameterType name="Boolean">
<xtce:UnitSet/>
<xtce:IntegerDataEncoding sizeInBits="1"/>
</xtce:BooleanParameterType>
Table 4‑124 TC \f T "-12
Settings for Uncalibrated Relative and AbsoluteParameterTypes"
: Settings for Uncalibrated Relative and AbsoluteParameterTypes

	Destination Side
	Encoding (Source) Side

	ParameterType
	DataEncoding
	Attributes and Sizes

	Relative and Absolute
	Integer and String likely
	Follow suggestions above

<xtce: RelativeTimeParameterType name="SecondsTimeType">
<xtce:Encoding units="seconds">
<xtce:IntegerDataEncoding sizeInBits="32"/>
</xtce:Encoding>
<xtce:ReferenceTime>
<xtce:OffsetFrom parameterRef="SubSeconds"/>
</xtce:ReferenceTime>
</xtce:RelativeTimeParameterType>
<xtce:RelativeTimeParameterType name="SubSecondsTimeType">
<xtce:Encoding scale="0.00001" units="seconds">
<xtce:IntegerDataEncoding sizeInBits="32"/>
</xtce:Encoding>
<xtce:ReferenceTime>
<xtce:Epoch>TAI</xtce:Epoch>
</xtce:ReferenceTime>
</xtce:AbsoluteTimeParameterType>
<xtce:ParameterSet>
<xtce:Parameter name="Time" parameterTypeRef="SecondsTimeType"/>
<xtce:Parameter name="SubSeconds" parameterTypeRef="SubSecondsTimeType"/>
</xtce:ParameterSet>
<xtce:RelativeTimeParameterType name="SecondsTimeType">

<xtce:Encoding units="seconds">

<xtce:IntegerDataEncoding sizeInBits="32"/>

</xtce:Encoding

<xtce:ReferenceTime>
<xtce:OffsetFrom parameterRef="SubSeconds"/>
</xtce:ReferenceTime>
</xtce:RelativeTimeParameterType>
<xtce:RelativeTimeParameterType name="SubSecondsTimeType">
<xtce:Encoding scale="0.00001" units="seconds">
<xtce:IntegerDataEncoding sizeInBits="32"/>
</xtce:Encoding>

<xtce:ReferenceTime>
<xtce:Epoch>TAI</xtce:Epoch>

</xtce:ReferenceTime>
</xtce:RelativeTimeParameterType>
<xtce:ParameterSet>
<xtce:Parameter name="Time" parameterTypeRef="SecondsTimeType"/>
<xtce:Parameter name="SubSeconds" parameterTypeRef="SubSecondsTimeType"/>
</xtce:ParameterSet>
Table 4‑134 TC \f T "-13
Settings for Alternative Uncalibrated ParameterTypes"
: Settings for Alternative Uncalibrated ParameterTypes

	Destination Side
	Encoding (Source) Side

	ParameterType
	@sizeInBits
	AncillaryData
	DataEncoding
	SizeInBits

	Integer
	Set to size large enough for precision; use default when possible
	@name="INTEGER_FORMAT"
Element holds format name convention
	Binary
	1+

	Float
	Set to size large enough for precision; use default when possible
	@name="FLOAT_FORMAT"
Element holds format name convention
	Binary
	1+

	String
	Set to size large enough for precision; use default when possible
	@name="STRING_FORMAT"
Element holds format name convention
	Binary
	1+

<xtce:FloatParameterType name="NotVeryCommon">
<xtce:AncillaryDataSet>
<xtce:AncillaryData name="FLOAT_FORMAT">

Motorola68881PackedDecimalReal

</xtce:AncillaryData>
</xtce:AncillaryDataSet>
<xtce:UnitSet/>
<xtce:BinaryDataEncoding>
<xtce:SizeInBits>
<xtce:FixedValue>82</xtce:FixedValue>
</xtce:SizeInBits>
</xtce:BinaryDataEncoding>
</xtce:FloatParameterType>
4.3.2.5.3 Calibrated ParameterTypes

Only certain integer telemetry parameters and float parameters will use calibrators (see table 4‑14).
Table 4‑144 TC \f T "-14
Settings for Calibrated Unsigned IntegerParameterType"
: Settings for Calibrated Unsigned IntegerParameterType

	Destination Side
	Encoding (Source) Side

	ParameterType
	@signed
	@sizeInBits
	DataEncoding
	@encoding
	@sizeInBits

	Integer
	unsigned
	Long Precision: 32
(use default)
Long Long Precision: 64
	Integer
	unsigned
(use default)
	1–7

	Integer
	unsigned
	Long Precision: 32
(use default)
Long Long Precision: 64
	Integer
	unsigned
(use default)
	8
(use default)

	Integer
	unsigned
	Long Precision: 32
(use default)
Long Long Precision: 64
	Integer
	unsigned
(use default)
	9–16

	Integer
	unsigned
	Long Precision: 32
(use default)
Long Long Precision: 64
	Integer
	unsigned
(use default)
	17–32

	Integer
	unsigned
	Long Long Precision: 64
	Integer
	unsigned
(use default)
	33–64

	Integer
	unsigned
	Set to next multiple
	Integer
	unsigned
(use default)
	64+

Table 4‑154 TC \f T "-15
Settings for Calibrated Signed IntegerParameterTypes"
: Settings for Calibrated Signed IntegerParameterTypes

	Destination Side
	Encoding (Source) Side

	ParameterType
	@signed
	@sizeInBits
	DataEncoding
	@encoding
	@sizeInBits

	Integer
	signed
(use default)
	Long Precision: 32
(use default)
Long Long Precision: 64
	Integer
	twosComplement
onesComplement
signedMagnitude
	2–7

	Integer
	signed
(use default)
	Long Precision: 32
(use default)
Long Long Precision: 64
	Integer
	twosComplement
onesComplement
signedMagnitude
	8
(use default)

	Integer
	signed
(use default)
	Long Precision: 32
(use default)
Long Long Precision: 64
	Integer
	twosComplement
onesComplement
signedMagnitude
	9–16

	Integer
	signed
(use default)
	Long Precision: 32
(use default)
Long Long Precision: 64
	Integer
	twosComplement
onesComplement
signedMagnitude
	17–32

	Integer
	signed
(use default)
	Long Long Precision: 64
	Integer
	twosComplement
onesComplement
signedMagnitude
	33–64

	Integer
	signed
(use default)
	Set to next multiple
	Integer
	twosComplement
onesComplement
signedMagnitude
	64+

Table 4‑164 TC \f T "-16
Settings for Calibrated BCD IntegerParameterType"
: Settings for Calibrated BCD IntegerParameterType

	Destination Side
	Encoding (Source) Side

	ParameterType
	@signed
	@sizeInBits
	DataEncoding
	@encoding
	@sizeInBits

	Integer
	unsigned
	Long Precision: 32 (use default)
Long Long Precision: 64
	Integer
	BCD
packedBCD
	4+ in 4 or 8 bit increments up to values 2^32

	Integer
	unsigned
	Long Precision: 32 (use default)
Long Long Precision: 64
	Integer
	BCD
packedBCD
	8
(use default)

	Integer
	signed
(use default)
	Long Precision: 32 (use default)
Long Long Precision: 64
	Integer
	BCD
packedBCD
	4+ in 4 or 8 bit increments up to values of +/- 2^32-1

	Integer
	signed
(use default)
	Long Precision: 32 (use default)
Long Long Precision: 64
	Integer
	BCD
packedBCD
	8
(use default)

	Integer
	unsigned
	Set to bit precision to hold largest value
	Integer
	BCD
packedBCD
	Size needed to hold value

	Integer
	signed
(use default)
	Set to bit precision to hold max/min values
	Integer
	BCD
packedBCD
	Size needed to hold value

Table 4‑174 TC \f T "-17
Settings for Calibrated FloatParameterType"
: Settings for Calibrated FloatParameterType

	Destination Side
	Encoding (Source) Side

	ParameterType
	@sizeInBits
	AncillaryData
	DataEncoding
	@encoding
	@sizeInBits

	Float
	At least Single Precision: 32 (use default)
Double Precision: 64
Quad Precision: 128
	
	Float
	IEEE754_1985 (use default)
	32
(use default)

	Float
	At least Double Precision: 64
Quad Precision: 128
	
	Float
	IEEE754_1985 (use default)
	64

	Float
	Quad Precision: 128
	@name=
"IEEE754_1985_EXTENDED"
	Float
	IEEE754_1985 (use default)
	32
(use default); interpret as 80

	Float
	Quad Precision: 128
	
	Float
	IEEE754_1985 (use default)
	128

	Float
	At least Single Precision: 32 (use default)
Double Precision: 64
Quad Precision: 128
	
	Float
	MILSTD_1750A
	32
(use default)

	Float
	At least Double Precision: 64
Quad Precision: 128
	@name=
"MILSTD_1750A_EXTENDED"
	Float
	MILSTD_1750A
	32
(use default); interpret as 48

<xtce:FloatParameterType name="YourType" sizeInBits="64">
<xtce:UnitSet/>
<xtce:FloatDataEncoding>
<xtce:DefaultCalibrator>
<xtce:PolynomialCalibrator>
<xtce:Term exponent="0" coefficient="-48.446"/>
<xtce:Term exponent="1" coefficient="1.4091"/>
<xtce:Term exponent="2" coefficient="-0.0048"/>
<xtce:Term exponent="3" coefficient="0"/>
<xtce:Term exponent="4" coefficient="0"/>
<xtce:Term exponent="5" coefficient="0"/>
<xtce:Term exponent="6" coefficient="0"/>
<xtce:Term exponent="7" coefficient="0"/>
</xtce:PolynomialCalibrator>
</xtce:DefaultCalibrator>
</xtce:FloatDataEncoding>
</xtce:FloatParameterType>
Table 4‑184 TC \f T "-18
Settings for Calibrated FloatParameterType from Integer"
: Settings for Calibrated FloatParameterType from Integer

	Destination Side
	Encoding (Source) Side

	ParameterType
	@sizeInBits
	DataEncoding
	@encoding
	@sizeInBits

	Float
	Single Precision: 32 (use default)
Double Precision: 64
Quad Precision: 128
	Integer
	unsigned
(use default)
	1–7

	Float
	Single Precision: 32 (use default)
Double Precision: 64
Quad Precision: 128
	Integer
	unsigned
(use default)
	8
(use default)

	Float
	Single Precision: 32 (use default)
Double Precision: 64
Quad Precision: 128
	Integer
	unsigned
(use default)
	9+

	Float
	Single Precision: 32 (use default)
Double Precision: 64
Quad Precision: 128
	Integer
	signed
	2–7

	Float
	Single Precision: 32 (use default)
Double Precision: 64
Quad Precision: 128
	Integer
	signed
	8
(use default)

	Float
	Single Precision: 32 (use default)
Double Precision: 64
Quad Precision: 128
	Integer
	signed
	9+

<xtce:FloatParameterType name="YourType" sizeInBits="64">
<xtce:UnitSet/>
<xtce:IntegerDataEncoding sizeInBits="16"/>
<xtce:DefaultCalibrator>
<xtce:SplineCalibrator>
<xtce:SplinePoint raw="0" calibrated="1"/>
<xtce:SplinePoint raw="65535" calibrated="100"/>
</xtce:SplineCalibrator>
</xtce:DefaultCalibrator>
</xtce:IntegerDataEncoding/>
</xtce:FloatParameterType>
4.3.2.5.4 Complex Type Examples

4.3.2.5.4.1 ArrayParameterType

The sizes of the array dimensions can be subset in a container in ArrayParameterRefEntry., although they are now set in XTCE 1.2 in the ArrayParameterType itself.
<xtce:ArrayParameterType name="BVArray" arrayTypeRef="BatVolt">
 <xtce:DimensionList>

<xtce:Dimension>

<xtce:StartingIndex>

<xtce:FixedValue>0</xtce:FixedValue>

</xtce:StartingIndex>

<xtce:EndingIndex>

<xtce:FixedValue>4</xtce:FixedValue>

</xtce:EndingIndex>

</xtce:Dimension>
</xtce:DimensionList>
<xtce:ArrayParameterType>
4.3.2.5.4.2 AggregateParameterType

The following is an example of AggregateParameterType:

<xtce:MemberList>
<xtce:Member typeRef="TimeType" name="TimeStart"/>
<xtce:Member typeRef="TimeType" name="TimeEnd"/>
<xtce:Member typeRef="IntType" name="Count"/>
<xtce:Member typeRef="IntType" name="ErrorCnt"/>
</xtce:MemberList>
Aggregate are “structs” or records. Aggregate members may refer to another aggregate. Note that in XTCE 1.2, member may refer to an ArrayParameterType.

4.3.3 ParameterSet—Parameters
4.3.3.1 General

A ParameterSet holds Parameters, which refer to ParameterTypes using a NameReference to form complete mnemonic definitions. A single Parameter and ParameterType fully describes a single telemetry mnemonic (sample) within XTCE except for its bit location within Container, so that it can be decommutated into a ground side data type variable.
A ParameterSet may also define a ParameterRef, which is used to import a Parameter defined in another SpaceSystem into this SpaceSystem ParameterSet.
[image: image86.png]Alist of Parameters for
this Space System.

Figure 65: ParmeterSet
Unlike ParameterType, Parameter has few descriptive elements; often the only attributes set are the name and the parameterTypeRef attributes. However one should look more deeply into ParameterProperties and set the dataSource attribute. (ParameterProperties is optional and so the default interpretation without this attribute set is the Parameter is telemetered)
[image: image87.png]‘Optional short
description to be
used for explanation
of this item. Itis
recommended that
the short description
be kept under 80
characters in length.

‘Specify the reference
to the parameter type
from the
ParameterTypeset
area using the path
reference rules, either
Tocal to this
‘Spacesystem,
relative, or absolute.

‘Specify as: integer
data type using
xs:integer, float data
type using

:double, string
data type using
xs:string, boolean
data type using
xs:boolean, binary
data type using
xs:hexBinary, enum
data type using label
name, relative time
data type using
xs:duration, absolute
time data type using
xs:dateTime.
Values must not
exceed the
characteristics for
the data type or this
is a validation error.
Takes precedence
over an inital value
given in the data
type. Values are
calibrated unless
there is an option to
override it

Figure 4‑664 TC \f G "-37
ParameterSet—Parameters"
: ParameterSet—Parameters First Part
Second part.

[image: image88.png]xice:Parameter

Defines a named
and typed
Parameter.

Optional long form
description to be used
for explanatory
descriptions of this item
and may include HTML
markup using COATA.
Long Descriptions are of
unbounded length.

|
|
|
|
|
|
|
|
|
|
Used to contain an |
alss (alternate) |
name or D for this
ftem. See |
AliasSetType for |
addtional
explanation. |
|
|
|
|
|
|
|
|
|
|
|
|

Use for any non-standard
data associated with this
named item. See
AndillaryDataSetType for
addtional explanation.

Specify additional properties
for this Parameter used by the
implementation of tailor the
behavior and attributes of the
Parameter. When not
specified, the defauits on the
ParameterProperties element
attributes are assumed.

Figure 67: Parameter -- Second Part

The principal differences in XTCE 1.2 are the addition of the documentation related elements and the expansion of the annotation associate with initialValue.

Finally in ParameterProperties, the element TimeAssociation has been added to the EntryList elements, while existing here as well.
4.3.3.2 NameDescriptionType

Subsection 3.4.2 contains more information on the NameDescriptionType element and its attributes of name, shortDescription, LongDescription, AliasSet, and AncillaryDataSet.

4.3.3.3 parameterTypeRef Attribute

The parameterTypeRef attribute is the NameReference to the ParameterType for this Parameter. It may be qualified or unqualified.

4.3.3.4 initialValue Attribute

Any supplied initialValue should be interpreted as a format compatible with the referenced ParameterType. If initialValue is set in Parameter, it will override any initialValue in the ParameterType.

A typical Parameter construction simply consists of the Parameter’s name and parameterTypeRef, as shown in this example:
<xtce:Parameter name="MyParameter" parameterTypeRef="MyParameterType"/>
4.3.3.5 ParameterProperties

[image: image89.png]This attribute
describes the nature
of the source entity
for which this
parameter receives
avalue.
Implementations
‘assign different
attributes/properties
internally to a
parameter based on
the anticipated data
source.

A Parameter marked
s 'readonly' true is
non-settable by
users and
‘applications/services
that do not
represent the data
source itself. Note
that a siight
‘conceptual overlap
exists here between
the 'dataSource'
attribute and this
attribute when the
data source i
‘constant'. For a
constant data
source, then
readonly’ should be
'true’. Application
implementations
‘may choose to
implicitly enforce
this. Some
implementations
have both concepts
of a Parameter that
s settable or
non-settable and a
Constant in different
parts of their
internal data model.

persstonce |

A Parameter marked
to persist should
retain the latest
value through
resets/restarts to

” the extent that is
xice:ParameterProperties L} possile or defined

‘Specify additional properties inthe

for this Parameter used by the. implementation.

implementation of tailor the The et effect is that

bebavior and attributes of the the inital/default

Parameter. When not value on

‘specified, the defaults on the Parameter s only

ParameterProperties element seen once o when

attributes are assumed. the system has a

reset to revert to
iniial/default values.

Figure 4‑684 TC \f G "-38
ParameterProperties"
: ParameterProperties – First Part
The second part.

[image: image90.png]xtce: SystemName.

Optional. Normally
used when the

database is built in a
flat, non-hierarchical

Optional condition that
must be true for this
Parameter to be valid.

When present, this set of
elements describes physical
address location(s) of the

parameter where it is stored.
Typicaly this is on the data
source, although that is not
constrained by this scherma.

This time will override any
Default value for
TimeAssociation.

Figure 69: ParameterProperties -- Second Part

4.3.3.6 dataSource Attribute

The dataSource attribute is used to further describe a telemetry parameter’s origin.

For telemetry:

· telemetered: a product of telemetry; a parameter is considered telemetered unless it is a session variable;
· derived: a product of an algorithm using other telemetered parameters as input;
· constant: an unchanging telemetered value;
· local: a nontelemetered parameter such as a session variable;
· telemetered/derived/local/constant: should be either not set or ignored.

4.3.3.7 readOnly Attribute

For telemetry, setting the readOnly attribute to ‘true’ indicates that no user or system process can override its value once the item has started to be received. The initialValue should still be applied first if it is specified.

4.3.3.8 persistance Attribute

Implemenation specific value indicating the parameter value should persist through system cycles.
4.3.3.9 SystemName Element

The SystemName element holds the subsystem or system name if SpaceSystem hierarchies are not being used; i.e., it is used if a single SpaceSystem is defined and all the information is in a ‘flat file’. This allows for a single SpaceSystem and one level of named subsystems. Parameters, Arguments, and MetaCommands all have this element; however, Telemetry containers do not, so they must be marked with AncillaryData.

4.3.3.10 ValidityCondition Element

The element ValidityCondition specifies optional conditions that must be true for the telemetry to be valid. For example, in the case where one telemetry parameter indicates that a particular subsystem is either ‘On’ or ‘Off’, if its value is ‘Off’, then a second parameter’s values are invalid until the first parameter is set to ‘On’. (See 3.4.3.6 for a description of MatchCriteria.)
4.3.3.11 PhysicalAddressSet Element

The PhysicalAddressSet element is a way to capture hardware addresses associated with some forms of telemetry. What constitutes a hardware address is user defined.

[image: image91.png]| xtce:PhysicalAddressSetType

|
|
|
|
|
|
|
|
|
|
|
|
|
|
=
When present, this set of ‘
elements describes physical | G a e
| (e.g., channel
| information) required to
process the spacecraft
| telemetry streams. May
| be an onboard id, a mux
| address, or a physical
location.
|
|
|
|
|
|
|
|
|
|
|
|

address location(s) of the
parameter where it is stored.
Typicaly this is on the data
source, although that is not
constrained by this scherma.

[stce:PhysicaladaressType

lattrbutes
SourceName. I

A descriptive name
for the location, such
as a memory type,
where this address
is located.

SourceAddress. I

The address within
the memory
location. This
specification does
not specify program
and hardwiare
specific attributes,
such as address size
and address region
starting location.
These are part of

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
the spacecraft |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

hardware

properties.

|

|

|

|

} X sub-address may
be used to further

| speciy the location f
it ractionally

| occupies the

| address. Addiional

| possibites exist for
separating partiions

| of memory or other
address based

| storage mechanisms.

| This specification
does not speciy

| spacecraft specific

| harduare properties,

| 50 usage of
addressing

| information is largely
program and

| platform specific.

Figure 4‑704 TC \f G "-39
PhysicalAddress"
: PhysicalAddress

<xtce:PhysicalAddress sourceName="RT" sourceAddress="5">
<xtce:SubAddress sourceName="SA" sourceAddress="27"/>
</xtce:PhysicalAddress>

In the example above, the telemetered item is from a MIL-STD-1553 bus. Details about the bus address are captured using PhysicalAddress.

4.3.3.12 TimeAssociation Element

4.3.3.12.1 General

The TimeAssociation element is used to capture offset in time within a packet or minor frame from a known timestamp.
Note – for XTCE 1.2 this now also exists within the EntryList elements. This is mainly due to the fact that a parameter may be shared by more than one container, and so any TimeAssociation offset may be different per container. If this element is present, it overrides any in the EntryList.
[image: image92.png]interpolateTime

T true, then the
current value of the
AbsoluteTime will be
projected to current
time. In other
words, if the value
of the AbsoluteTime
parameter was set
10 seconds ago,
then 10 seconds will
“This time will override any be added to its value
Default value for before associating
TimeAssociation. this time with the
parameter.

ot
‘The offset is used to
supply a relative
time offset from the
time association and
to this parameter

‘Specify the units the
offset is in, the
defaultis si_second.

Figure 4‑714 TC \f G "-40
TimeAssociation"
: TimeAssociation

4.3.3.12.2 parameterRef Attribute

The parameterRef attribute specifies a time reference type.

4.3.3.12.3 instance Attribute

The instance attribute specifies which recorded value or instance number to use. The parameterRef is actually an instance reference. (See 3.4.4 for a discussion of ParameterInstanceReferences.)
4.3.3.12.4 useCalibratedValue Attribute

The useCalibratedValue attribute is part of the instance reference. It is used by an event that refers to a time parameter that uses a calibrator. The value of this attribute is to ‘true’ or ‘false’.
4.3.3.12.5 interpolateTime Attribute

The interpolateTime attribute is used to match the current absolute time stamp to the wall clock time.

4.3.3.12.6 offset Attribute

The offset attribute specifies the delta offset from a known absolute time stamp. In XTCE 1.2. the data type for this attribute is now a double, in the units in the next attribute

4.3.3.12.7 unit Attribute

The units the offset is in – the default is seconds.

4.3.4 ContainerSet—Containers and Telemetry Packets

4.3.4.1 General

ContainerSet holds SequenceContainers (i.e., ‘containers’) that can be used to describe CCSDS packets, minor frames, or other data blocks.
[image: image93.png]

Figure 72: ContainerSet

A single telemetry packet may use several SequenceContainers to form a single packet definition. For example, one container may be used to describe the packet header (i.e., CCSDS Primary Header), while another container may be used to describe the packet body. Both containers can then be combined to form another container.

[image: image94.png]xtce: SequenceContainer C}

SequenceContaners defne |

cequences of parameters or

other containers. |
|

xtce:SequenceContainerType

Hlattributes

shortDescriptior

Optional short
description to be
used for explanation
of this tem. Ttis
recommended that
the short description
be kept under 80
characters in length.

The name of this
defined item. See
NameType for
restriction
information.

Abstract container
definitions that are
not instantiated,
rather only used as
bases to inherit from
to create specialized
container definitions.

The idle pattern is
part of any

unallocated space in
the container. This

is uncommon.

Optional long form
description to be used
for explanatory
descriptions of this item
and may include HTML
markup using COATA.
Long Descriptions are of
unbounded length.

Used to contain an
alias (alternate)
name or D for this
item. See
AliasSetType for
additional
explanation.

Use for any non-standard
data associated with this
named item. See

AncillarviataGetTune for

Figure 4‑734 TC \f G "-41
The SequenceContainer Element"
: The SequenceContainer Element – First Part
Second part.

[image: image95.png]==z

Ratelnstream is
used to: a)
generate alarms
when the Container
is updated too
frequently or too
infrequently, b)
provide some
“quidelines’ for
generating forward
fink containers,)
provide some
quidelines for
spacecraft

|
|
|
|
|
|
|
|
|
|
|
|
|
‘ simulators to
|
|
|
|
|
|
|
|
|
|
|
|
|

May be used to indicate
error detection and
correction, change byte
order, provide the size
(when it can't be
derived), or perform
some custom processing.

generate telemetry
containers. 1f
necessary, these
rates may be
defined on a per
stream basis.

List of tem entries
to pack/encode into
this container
defnition.

Optional inheritance for
this container from
another named
container.

Figure 74: The SequenceContainer Element-- Second Part
The SequenceContainer element lists the parameters in the packet using EntryList. The default is to list the parameters in the order they appear.

4.3.4.2 NameDescription

Subsection 3.4.2 contains a description of the elements and attributes associated with name, shortDescription, LongDescription, AliasSet, and AncillaryDataSet.
4.3.4.3 abstract Attribute

The abstract attribute is used in conjunction with container inheritance to specify that the container represents an abstraction or generic form. This flag is often set in an inheritance hierarchy until the construction is complete. For example, when defining a CCSDS packet with several levels of inheriting containers, all packets will be set to ‘abstract’ until the final container. These concepts are more fully explored in subsections below.

4.3.4.4 idlePattern Attribute

The idlePattern attribute is the expected container pattern when no telemetry is received. For CCSDS missions this applies to special idle packets, as shown in the following example:
<xtce:SequenceContainer name="IdlePacket" idlePattern="0xabba505">
<xtce:EntryList/>
<xtce:BaseContainer containerRef="Header">
<xtce:RestrictionCriteria>
<xtce:Comparison parameterRef="ID" value="2047"/>
</xtce:RestrictionCriteria>
</xtce:BaseContainer>

</xtce:SequenceContainer>
4.3.4.5 DefaultRateInStream Element

The DefaultRateInStream is an expected receive data rate for the container. The user defines the action taken if the expected rate is out of range.
[image: image96.png]i |

‘The measurement
unit basis for the
minimum and
maximum
‘appearance count
values.

 minimumValue I

‘The minimum rate
for the specified
basis for which this
container should
appear in the
stream.

maximumValue |

‘The maximum rate
for the specified
basis for which this
container should
appear in the
stream.

Figure 4‑754 TC \f G "-42
DefaultRateInStream"
: DefaultRateInStream

The following is an example of DefaultRateInStream:
<xtce:SequenceContainer name="SlowPacket">
<xtce:DefaultRateInStream basis="perSecond" minimumValue="1.5" maximumValue="0.5"/>
<xtce:EntryList/>
<xtce:BaseContainer containerRef="CCSDSHeader">
<xtce:RestrictionCriteria>
<xtce:Comparison parameterRef="APID" value="20"/>
</xtce:RestrictionCriteria>
</xtce:BaseContainer>

</xtce:SequenceContainer>

4.3.4.6 RateInStreamSet Element

The element RateInStreamSet is shown in figure 4‑76.
[image: image97.png]The measurement
unit basis for the
minimum and
maximum
appearance count
values.

|

|

|

|

|

|

|

|

|

The minimum rate |
for the speciied

basis for which this |

container should |

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
s 3]
= |
|
|
|
|
|
|
|
|
|
|

stream.

The maximurm rate
for the specified
basis for which this
container should
appear in the
stream.

Reference to a
named stream for
which this rate
specification applies.

Figure 4‑764 TC \f G "-43
RateInStreamSet Element"
: RateInStreamSet Element

A set of expected rates may be specified and associated with a stream (see 4.3.6 for an explanation of StreamSet).

<xtce:SequenceContainer name="SlowPacket">
<xtce:RateInStreamSet>

<xtce:RateInStream streamRef="XBand" basis="perSecond" minimumValue="1" maximumValue="1"/>

<xtce:RateInStream streamRef="TDRSS" basis="perSecond" minimumValue="2" maximumValue="2"/>
</xtce:RateInStreamSet>
<xtce:EntryList/>
<xtce:BaseContainer containerRef="CCSDSHeader">
<xtce:RestrictionCriteria>
<xtce:Comparison parameterRef="APID" value="20"/>
</xtce:RestrictionCriteria>
</xtce:BaseContainer>

</xtce:SequenceContainer>

Streams in this example could be defined to represent different communication paths for the container.

4.3.4.7 BinaryEncoding Element

The BinaryEncoding element is used to explicitly set the size of the container. It may be used to indicate error detection and correction, change byte order, provide the size, or perform some custom processing. It has the same content as BinaryDataEncoding.

NOTES

1 The Container/BinaryEncoding/@bitOrder and BinaryEncoding/ByteOrderList should be ignored.

2 Subsection 3.4.5 discusses use of the SizeInBits element (a child element of BinaryEncoding) to set the size value.

3 Depending on the complexity of the entries (i.e., variable length), it may be easier to derive the size of the container by the bit-lengths of its entries.
4.3.4.8 EntryList

4.3.4.8.1 General

A container’s EntryList is used to describe its contents by referencing parameters, containers, and streams.
[image: image98.png]xtce:EntryList E}---

List of item entries
to pack/encode into
this container
definition.

xtce:ParameterRefEntry

Specify a Parameter to be a
part of this container layout
definition.

xtce:ParameterSegmentRefEntry

Specify a portion of a Parameter to be
a part of this container layout
definition. This s used when the
Parameter is reported in fractional
parts in the container before being
fully updated.

xtce:ContainerRefEntry

Specify the content of
another Container to be a
part of this container layout
definition.

xtce:ContainerSegmentRefEntry

to be a part of this container layout
definition.

xtce: Stream SegmentEntry

Specify a portion of a Stream
to be a part of this container
Iayout definition.

xtce:IndirectParameterRefEntry

Specify a previous (not last reported)
value of a Farmeter to be a part of
this container layout definition.

xtce:ArrayParameterRefEntry

Specify an Array Type Parameter
to be a part of this container layout
definition when the Container does
not populate the entire space of
the Array contents. IF the entire
space of the Array is populated, a
tolerant implementation will accept
ParameterRefEntry also.

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Specfy a porton of ancther Container |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 77: The SequenceContainer EntryList

The size of a container is calculated by summing the lengths of the DataEncodings (or segment sizes) of the parameters specified in the EntryList. The various child elements described below need to be included.
[image: image99.png]xtce:ParameterRefEntry C}

] xtce:ParameterSegmentRefEntry

xtce:ContainerRefEntry
xtce:ContainerSegmentRefEntry
xtce: Stream SegmentEntry

xtce:IndirectParameterRefEntry

xtce:ArrayParameterRefEntry

Figure 4‑784 TC \f G "-44
EntryList Element"
: EntryList Elements and Pattern
4.3.4.8.2 EntryList Entry Pattern

The EntryList elements are very similar in construction and follow a pattern like the one shown in figure 4‑78 for ParameterRefEntry. All the items in EntryList are ‘RefEntry’ named items.

[image: image100.png]}

Specify a Farameter to be a
part of this container layout
definition.

xtce:ParameterRefEntryType

Hlattributes

Optional short
description for this
entry element.

The start bit 0 position for each
container is local to the container,
but does include space occupied by
inherited containers. When a
container is "included”, as opposed
to inherited, then the interpreting
implementation takes into account
the start bit position of the referring
container when finally assembling
the start bits for the post-processed
entry content. The default start bit
for any entry s 0 bits from the
previous entry, making the content
contiguous when this element is not

May be used when
this entry repeats
itself in the sequence
container. When an
entry repeats, it
effectively specifies
that the same entry
is reported more
than once in the
container and has the
same physical
meaning. This
should not be
construed to be
equivalent to arrays.

“This entry will only be
included in the sequence
‘when this condition is true,
otherwise itis always
included. When the
include condition evaluates
to false, it is as if the entry
does not exist such that
any start bit interpretations
cannot take into account
the space that would have
been occupied if this
included condition were

Optional timing
information associated
with this entry.

Optional ancillary data
associated with this
element.

Figure 4‑794 TC \f G "-45
Inside of ParameterRefEntries"
: Inside of ParameterRefEntries

a) Each entry contains an attribute for a NameReference (see 3.4.2) and then the elements LocationInContainerInBits, RepeatEntry, and IncludeCondition:

· LocationInContainerInBits allows for the explicit setting of an entry’s address (see 4.3.4.8.10.2);

· RepeatEntry allows the description of a multiple-sampled (‘super-sampled’ or ‘super-commutated’) parameter (see 4.3.4.8.10.3);

· IncludeCondition allows for the optional inclusion of an item in the EntryList given some condition (see 4.3.4.8.10.4).

b) By default (without any specification of LocationInContainerInBits), items in the EntryList are assumed to be ‘packed’ together based on their bit-widths.
c) Using this information, the size of the container can be derived. If also specified in the BinaryEncoding/SizeInBits element, then the two values should match.

Examples of EntryLists are shown in 5.2.

4.3.4.8.3 ParameterRefEntry Element

ParameterRefEntry specifies a parameter defined in a ParameterSet in SequenceContainer.

<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="myParameter1"/>

<xtce:ParameterRefEntry parameterRef="myParameter2"/>

</xtce:EntryList>
The bit-width of the parameter is not set here; it is taken from the ParameterType encoding area as has been shown in 4.3.2.
4.3.4.8.4 ParameterSegmentRefEntry

The segmented version of ParameterRefEntry is used to define the segment’s width.
[image: image101.png]xtce:ParameterSegmentRefEntry

Figure 80: ParameterSegmentRefEntry

If the actual width of the parameter underflows the width specified in the SegmentEntry, then an error or warning should be produced. The following example shows a 1024-bit BinaryParameter segmented to 116 bits.

<xtce:ParameterSegmentRefEntry parameterRef="P1_BLOB_1024" sizeInBits="116"/>
4.3.4.8.5 ContainerRefEntry

4.3.4.8.5.1 General

The ContainerRefEntry is used to include another container defined in ContainerSet.
[image: image102.png]xtce:AncillaryDataSet

Figure 81: ContainrRefEntry

The container being referred to should be treated as a single unit with its addresses resolved first. The ContainerRefEntry may have LocationInContainerInBits or Repeat elements set. If set, these should be treated against the entire container being inserted into the EntryList.

4.3.4.8.5.2 Dynamic Container Matching

Dynamic container matching is a special XTCE object-oriented case of ContainerRefEntry. It occurs when a container being referred to is an abstract container, and it has at least one derived concrete container.

a) If this occurs, then the derived container is inserted if its RestrictionCriteria matches during real-time processing of the incoming stream. Since it is part of the inheritance chain, its EntryList and its parent’s EntryList are inserted.

b) If no match occurs, and the original abstract container being referred to has content in its EntryList, then that container is treated as any other container and is included.
c) If multiple derived containers of that abstract container match, all will be dynamically included as a union.
Subsection 5.4.4 contains full explanation of this concept.

4.3.4.8.6 ContainerSegmentRefEntry

The segmented version of ContainerRefEntry is similar to the other segmented entries.
[image: image103.png]Hlattributes

xtce:ContainerSegmentRefEntry

Figure 82: ContainerSegmentRefEntry

The segment size is determined by reducing from the end of the referenced container. If the referenced container’s size underflows the specified segment, an error or warning should be produced. In the following example, the image is too large and will be segmented across more than one container. The optional order attribute can be used to mark the order of the segments.

<xtce:ContainerSegmentRefEntry containerRef="LARGE_CCD_IMAGE" sizeInBits="32768"/>
4.3.4.8.7 StreamSegmentRefEntry

A portion of a stream reference by a streamRef is included in the EntryList.

[image: image104.png]Hlattributes

xtce: Stream SegmentEntry

Figure 4‑834 TC \f G "-46
StreamSegmentEntry"
: StreamSegmentEntry

a) The order attribute is optional and is used to mark the order of the segments in several containers.
b) The sizeInBits attribute must be set.
<xtce:StreamSegmentEntry streamRef="VID_FRAME_22of1024" order="21" sizeInBits="1024"/>
4.3.4.8.8 IndirectParameterRefEntry

An IndirectParameterRefEntry reads a parameter instance that contains the name of the parameter to include in the container.
[image: image105.png]Hlattributes

iasName Space

xtce:IndirectParameterRefEntry C}

Figure 84: IndirectParameterRefEntry
This entry may be used to implement telemetry streams. The value of the parameter in parameter instance must use either the name of the parameter or its alias. If it is an alias, the alias namespace is supplied as an attribute.

<xtce:IndirectParameterRefEntry>
<xtce:ParameterInstance parameterRef="ParameterToLookupStatusParameter"/>

</xtce:IndirectParameterRefEntry>

The ParameterInstance should hold the name of a parameter that is a NameReference. This is the only location in the schema that states that an alias can be used in a NameReference. It implies the attribute @aliasNameSpace must be set and match the Alias attribute @nameSpace to the alias it references.

4.3.4.8.9 ArrayParameterRefEntry

4.3.4.8.9.1 General

An ArrayParameterRefEntry specifies both the array parameter to include in the container and the size of its dimensions.
[image: image106.png]xtce:ArrayParameterRefEntry C}

Figure 85: ArrayParameterRefEntry
The dimension list form is: Array[1stDim][2ndDim][lastDim]. The last dimension is assumed to be the least significant. The order must ascend, or the array will need to be broken out entry by entry.
Partial dimensions are supported. Usage will be similar to the following example that defines the dimension from zero to three (four items):

<xtce:ArrayParameterRefEntry parameterRef="OneDimArray">
<xtce:DimensionList>
<xtce:Dimension>
<xtce:StartingIndex>
<xtce:FixedValue>0</xtce:FixedValue>
</xtce:StartingIndex>
<xtce:EndingIndex>
<xtce:FixedValue>3</xtce:FixedValue>
</xtce:EndingIndex>
</xtce:Dimension>
</xtce:DimensionList>

</xtce:ArrayParameterRefEntry>

It is up to the implementations that exchange the data to designate whether the definitions refer to row major order or column major order.

The dimension start and end can also be supplied by a ParameterInstance. This makes them dynamic.

4.3.4.8.10 Modifying Entries Elements

4.3.4.8.10.1 General

There are three child elements that can be used to modify most entries: LocationInContainerInBits, RepeatEntry, and IncludeCondition.

4.3.4.8.10.2 LocationInContainerInBits

4.3.4.8.10.2.1 General

LocationInContainerInBits allows one to modify the address entry. There are several modifiers associated with this element; each is a form of relative addressing or absolute addressing relative to the container in which it is defined. (See 5.3 for a fuller discussion of calculating EntryList addresses.)
[image: image107.png]

Figure 4‑864 TC \f G "-47
The LocationInContainerInBits Element"
: The LocationInContainerInBits Element

4.3.4.8.10.2.2 referenceLocation Attribute

Two of these are forms of absolute addressing, and two are forms of relative addressing:
· containerStart: offset from the start of container;
· containerEnd: offset from the end of the container;
· prevEntry: offset from prevEntry (default if not specified);
· nextEntry: offset from the nextEntry.
The containerStart and prevEntry are intuitive and easy to implement. The containerStart address is calculated from zero. The prevEntry address is from the entry ahead of it. The default (unspecified) treats all entries as addressing from a prevEntry of zero. They are all placed ‘back to back’ without gap.

The use of both containerEnd and nextEntry depends on a known fixed size or range. It can be the end of the container or the location of a particular entry in that container.

4.3.4.8.10.3 RepeatEntry—Super-Sampling/Super-Commutated

4.3.4.8.10.3.1 General

RepeatEntries are super-sampled or ‘super-commutated’ values. They are samples of the same memory location over time.

In the EntryList area, every entry has the child element RepeatEntry, which may be used to describe super-sampled parameters or groups of parameters.

[image: image108.png]xtce:RepeatType

T
|
|
|
|
|
|
|

[xice FixedValue
xtce:DynamicValue
xtce:DiscreteLookupL

L

Figure 4‑874 TC \f G "-48
RepeatEntry Element"
: RepeatEntry Element

The RepeatEntry element specifies the count (or the number of repeats) of an item. The optional offsetSizeInBits specifies the offset between repeats (defaults to one).

4.3.4.8.10.3.2 Count Element

The Count element specifies the number of repeats. If the count is one, the entry repeats one time, resulting in two entries. A count of two means the entry repeats two additional times, resulting in three entries.

4.3.4.8.10.3.3 Offset Element

4.3.4.8.10.3.3.1
General
The Offset element specifies a gap between the entries.
4.3.4.8.10.4 IncludeCondition Element

The IncludeCondition conditionally includes the entry. It can be a parameter, container, or stream based on comparisons. The IncludeCondition uses MatchCriteria (see 3.4.3.6).
[image: image109.png]xtce:Space SystemType

xtce:TelemetryletaDataType

e
Chnons o

xtce:ContainerSetType

xtce:SequenceContainerType

[stce:EntryListrype

nerRefEntryType

Figure 4‑884 TC \f G "-49
IncludeCondition Element"
: IncludeCondition Element

4.3.4.9 BaseContainer Element—Container Inheritance

4.3.4.9.1 General

A container may extend another container in an object-oriented manner. The child container receives the parent’s EntryList, and that EntryList is exactly prefixed to the front of the child’s EntryList.
The main purpose of container inheritance is to build up a single EntryList from a set of containers.
Included with BaseContainer is a mechanism for specifying constraints. These are defined in the element RestrictionCriteria, which are conditional expressions for telemetry that identify specific locations in the raw packets or minor frames and their expected values. If the values are found, then the rest of the description can be used to fully decommutate the packet.

The RestrictionCriteria element is used to name the identification areas and their expected values in a telemetry format (such as certain fields in a header). The specific XTCE container description can then be matched and associated with it. Subsection 5.2 contains a full discussion of XTCE container inheritance. The basic rules are presented below.

[image: image110.png]erType

Battributes

xtce:BaseConts

.

Figure 4‑894 TC \f G "-50
BaseContainer Element"
: BaseContainer Element

a) A TelemetryMetaData/ContainerSet/SequenceContainer may extend another TelemetryMetaData/ContainerSet/SequenceContainer. Figure 4‑90 shows how a ContainerSet/SequenceContainer may be extended; in this case, a SequenceContainer extends another SequenceContainer.
[image: image111.emf]<<SequenceContainer>>

SequenceContainerType

<<SequenceContainer>>

User Construction

1-*

0-*

Figure 4‑904 TC \f G "-51
Extending SequenceContainers"
: Extending SequenceContainers

b) User-defined SequenceContainers may be extended any number of times to create new constructions as needed. It is often confusing to extend outside of a SequenceContainer, but this may be necessary for shared constructs such as headers.
4.3.4.9.2 containerRef Attribute

The containerRef attribute is the NameReference of a container that is extended by this container.

4.3.4.9.3 RestrictionCriteria Element

The RestrictionCriteria element is a MatchCriteriaType with the addition of NextContainer. (See 3.4.3.6 for discussion of MatchCriteria.) RestrictionCriteria is used to supply the identifying packet information for a CCSDS packet. The identifying information will be part of the comparison.
The parameters referenced in the RestrictionCriteria are ParameterInstanceRefs (see 3.4.4). In the example below, the following construction is legal, and ID is visible to the RestrictionCriteria comparisons.

<xtce:SequenceContainer name="SuperContainer" abstract="true">
<xtce:EntryList/>

</xtce:SequenceContainer>

<xtce:SequenceContainer name="DerivedContainer">
<xtce:EntryList>
<xtce:ParameterRefEntry parameterRef="ID"/>
<xtce:ParameterRefEntry parameterRef="BodyParameterP1"/>
</xtce:EntryList>
<xtce:BaseContainer containerRef="SuperContainer">
<xtce:RestrictionCriteria>
<xtce:Comparison parameterRef="ID" value="1"/>
</xtce:RestrictionCriteria>
</xtce:BaseContainer>

</xtce:SequenceContainer>

Here DerivedContainer is a SuperContainer, which is an abstraction in this example. All the items of interest are supplied in the DerivedContainer. The constraints refer to these items as well.

It is recommended to put only the primary identifying keys into the constraints to keep the expression simple. Any other items should be moved out of the constraints and into the AncillaryData.

4.3.4.9.4 NextContainer Element

The container that holds this NextContainer element (i.e., the SequenceContainer) is not processed unless the container specified in this element’s containerRef attribute is matched. It is used in conjunction with the other comparisons.

<xtce:SequenceContainer name="ValuesMayNotBeGoodUntilLatch">
<xtce:EntryList/>
<xtce:BaseContainer containerRef="CCSDSPacket">
<xtce:RestrictionCriteria>
<xtce:ComparisonList>
<xtce:Comparison parameterRef="APID" value="16"/>
<xtce:NextContainer containerRef="Latch"/>

</xtce:ComparisonList>
</xtce:RestrictionCriteria>
</xtce:BaseContainer>

</xtce:SequenceContainer>

<xtce:SequenceContainer name="Latch">
<xtce:EntryList/>
<xtce:BaseContainer containerRef="CCSDSPacket">
<xtce:RestrictionCriteria>
<xtce:Comparison parameterRef="APID" value="32"/>
</xtce:RestrictionCriteria>
</xtce:BaseContainer>

</xtce:SequenceContainer>
4.3.4.9.5 Container Inheritance As an Operation

4.3.4.9.5.1 General

Treating container inheritance as an operation means that the child acquires certain elements, attributes, and content from a parent. In some cases items may be overridden by the child if the information is set in the parent. The result is a new entity that has features of both.

4.3.4.9.5.2 Inheritance Rules

a) A container may extend another using the BaseContainer element.

b) The parent’s EntryList is copied to the beginning of the child’s EntryList.

c) If multiple levels of inheritance exist, all RestrictionCriteria must evaluate to ‘true’.

d) BaseContainers that form loops are illegal.

e) Abstract containers do not create concrete instances or new entities themselves.

f) Besides the basic rules above, various other elements and attributes form part of the inheritance process as shown in table 4‑19.

Table 4‑194 TC \f T "-19
Container Inheritance Rules"
: Container Inheritance Rules

	SequenceContainer Element or Attribute
	Inheritance Rule

	@name
	Not inherited by child.

	@abstract
	Not inherited by child.

	@idlePattern
	Not inherited by child.

	@shortDescription
	Not inherited by child.

	LongDescription
	Not inherited by child.

	AliasSet
	Not inherited by child.

	AncillaryDataSet
	Child’s content prefixed to parent’s content if present.

	DefaultRateInStream
	Child’s content will override parent’s content if present; otherwise, child gets parent’s content if it is specified.

	RateInStreamSet
	Child’s content prefixed to parent’s content if present, if RateInStream/@streamRef matches, the child’s RateInStream will override.

	BinaryEncoding/SizeInContainer
	Child’s content will override parent’s content if present; otherwise, child gets parent’s content if specified.

	EntryList
	Parent’s content prefixed to child’s, if present.

	BaseContainer/RestrictionCriteria
	Restrictions are scoped to their constructions. This means that a child’s restrictions apply to both its EntryList and any inherited entries.

4.3.4.9.5.3 Inheritance Example

This simple example shows the basic concept of the inheritance mechanism using a ‘MyPacket1’ that requires ID==10.
<xtce:SequenceContainer name="AllMyPackets" abstract="true">
<xtce:EntryList>
<xtce:ParameterRefEntry parameterRef="ID"/>
<xtce:ParameterRefEntry parameterRef="Length"/>
</xtce:EntryList>

</xtce:SequenceContainer>

<xtce:SequenceContainer name="MyPacket1" abstract="true">
<xtce:EntryList>
<xtce:ParameterRefEntry parameterRef="Volt"/>
</xtce:EntryList>

<xtce:BaseContainer containerRef="AllMyPackets">
<xtce:RestrictionCriteria>
<xtce:Comparison parameterRef="ID" value="10"/>
</xtce:RestrictionCriteria>
</xtce:BaseContainer>

</xtce:SequenceContainer>
This may also be represented in Unified Modelling Language (UML) as follows:

[image: image112.emf]<<AbstractSequenceContainer>>

AllMyPackets

ID

Length

<<SequenceContainer>>

MyPacket1

Volt

{ID==10}

Figure 4‑914 TC \f G "-52
UML Representation of Example Containers"
: UML Representation of Example Containers

The parameters in RestrictionCriteria are parameter instances, and they are not required by the specification to refer to parameters in the container being inherited. The default instance is ‘zero’ (the most recent instance) and default operator is ‘==’ (‘equals’).
The construction above builds one EntryList called the final EntryList. It constructs a packet with the three entries: ID, Length, and Volt, when ID is equal to 10.

A more detailed example is given in 5.4.2.3.

4.3.5 MessageSet

[image: image113.png]Hlattributes

xtce:LongDescription

[stce:MessageType

w3

[

e
|

‘

Figure 4‑924 TC \f G "-53
MessageSet"
: MessageSet

MessageSet/Messages are an association-based way for defining packets or minor frames.
The @name attribute associated with MessageSet is a typo and should be ignored.
The purpose of Message is to supply a mechanism to describe packets or minor frames without using inheritance. Message refers to a container, and that container is used to build up the final EntryList for a packet or minor frame.

MatchCriteria is used to identify the items of interest in a BaseContainer. The MatchCriteria supplies the identification areas for that particular packet or minor frame. It does not matter if the container is abstract or has a BaseContainer; those items should be ignored for Message.
To point to a container, the ContainRef and @containRef attributes are used.
4.3.6 StreamSet

[image: image114.png]

Figure 4‑934 TC \f G "-54
StreamSet"
: StreamSet

StreamSet allows definition of certain aspects of frames or bit streams (i.e., telemetry). It can also be used to define aspects of a ‘sub-stream’ within packets such as video or voice stream.
Once the frame information is defined, the items in the frame can be referenced using the child elements ContainerRef or ServiceRef:

· If the ContainerRef is the root container of the container hierarchy (has derived child containers), then all its child containers are included.
· If ServiceRef is used, the stream refers to a defined service that itself contains a set of containers (see 4.5).

<xtce:StreamSet>
<xtce:FixedFrameStream name="CCSDS" frameLengthInBits="8196" pcmType="NRZM">
<xtce:ServiceRef serviceRef="CCSDSServices"/>
<xtce:SyncStrategy>
<xtce:SyncPattern pattern="1ACFFC1D" patternLengthInBits="8"/>
</xtce:SyncStrategy>
</xtce:FixedFrameStream>

</xtce:StreamSet>
4.3.7 AlgorithmSet

4.3.7.1 General

AlgorithmSet may contain aspects of algorithm descriptions used within the telemetry process system.
[image: image115.png]| xtce:inputOutputTriggerAlgorithmType |

Hlattributes

xtce:CustomAlgorithm E}

|
|
|
|
|
|
|
|
L

e:MathAlgorithmType

Hlattributes

Figure 4‑944 TC \f G "-55
AlgorithmSet Element"
: AlgorithmSet Element

4.3.7.2 CustomAlgorithm Element

(See 3.4.3.5.)
4.3.7.3 MathAlgorithm Element

The MathAlgorithm element describes formulas using a postfix notation (‘reverse Polish notation’, i.e., 2 2 +). Prefix (i.e., 2 + 2) notation can be converted to postfix by using the well-known Shunting Yard Algorithm. The various available operands and operations are documented in the annotation of the element. (For an example see 5.4.4.)
4.4 CommandMetaData—Commanding

4.4.1 General

The CommandMetaData element captures command and command packet descriptions and other properties associated with commanding.

CommandMetaData shares many elements with TelemetryMetaData as can be seen in figure 4‑95. This subsection focuses on the differences between CommandMetaData and TelemetryMetaData. This subsection will not repeat explanations from the telemetry subsection.

Elements that are only for CommandMetaData are ArgumentTypeSet and MetaCommandSet. CommandContainerSet is derived from SequenceContainers and is identical in construction to TelemetryMetaData/ContainerSet.

[image: image116.png]xice:CommandMetaData

Figure 4‑954 TC \f G "-56
CommandMetaData Element"
: CommandMetaData Element

Parameters and ParameterTypes are constructed in the same manner as their TelemetryMetaData counterparts. They describe items supplied by the ground side to the fight destination – hence they are interepreted in a “reverse” send from the telemetry cousins. The remaining StreamSet and AlgorithmSet elements are also identical to their TelemetryMetaData counterparts. Again these are probably best considered in ground to spacecraft direction.
MetaCommandSet contains command description. The term “MetaCommand” is used in XTCE for this because it contains more than just the bit values for a command. Hence MetaCommands are then the individual commands descriptions.
Most organization use the term arguments to mean the operator supplied values to the command. XTCE command have argument which will be discussed below.

However at the top-level of CommandMetaData is ArgumentTypeSe. This area is similar to ParameterTypeSet and is used in similar way to Parameters by the command argument. More about that below.
So Arguments in XTCE are something an operator provides to a command (MetaCommand), but a command in XTCE may also haveparameters.

In XTCE the dividing line on when to use which one is somewhat subject but the Parameter is really meant to convey a sense that this part of the command is not something an operator would typically see or adjust but is then in some supplied by the system (or through RestrictionCriteria).
Once again though this may vary somewhat by organization who may consider all their command’s construction to be visible to the operator and in some sense set by them, or the operator is not a person necessarily but software or a system – and again the visibility of the exact construction of the command may be entirely in these systems hands. Even so, XTCE divides the work of command description in this area into arguments and parameters – and the end user of XTCE should consider this when building their command descriptions.

MetaCommands have their own local CommandContainer (MetaCommand/CommandContainer) to describe the actual data block (packet/minor frame) associated with a command. The EntryList is similar the other Containers but has a special entry for Arguments among other differencs. These are discussed in more detail below.
CommandMetaData allows both Container and MetaCommand inheritance which also discussed in more details in the next sections
4.4.2 Command ParameterTypeSet—PARAMETERTYPES

4.4.2.1 General

The CommandMetaData ParameterTypeSet holds command ParameterTypes. It makes use of the same schema types as TelemetryMetaData/ParameterTypeSet.

	source
	(optional)
	(optional)
	destination
	(optional)

[image: image117.emf]ValidRange

Check #1

Calibration

Check

ValidRange

Check #2

Encoded Link

Data Type

DataEncoding

-Integer

-Float

-String

-Binary

Host Data

Type

ParamterType

-String

-Enumerated

-Binary

-Integer

-Float

-Boolean

-Absolute/

RelativeTime

-Array

-Aggregate

Figure 4‑964 TC \f G "-57
Relationship of CommandMetaData ParameterType Elements (and ArgumentType)"
:
Relationship of CommandMetaData ParameterType Elements (and ArgumentType)

· ValidRange checks may be applied before calibration (units to raw) to the encoding data type or applied after reverse calibration.
· Command ParameterTypes can have alarm elements.

· Command ParameterType calibrators take values that are already in their proper units and convert them to an encoding for uplink.

4.4.2.2 Command ParameterType and Encoding Table

Tables 4‑5 and 4‑15 (4.3.2.5) are applicable to Command ParameterTypes; however, the ‘source’ and ‘destination’ are swapped: ParameterType represents the source data type, and DataEncoding represents the destination data type.

4.4.2.3 Alarms

The Alarm element is reused from TelemetryMetaData.
4.4.3 Command ParameterSet—Parameters

Command ParameterSet holds command parameters. The same rules apply for command parameters as telemetry. (See 4.3.2.5.4 for more information.)
Parameters included in a CommandContainerSet/CommandContainer EntryList or a MetaCommand/CommandContainer EntryList are used to construct a command packet.

4.4.4 ArgumentTypeSet—ArgumentTypes

4.4.4.1 General

ArgumentTypeSet holds ArgumentTypes. Legal ArgumentTypes follow the same rules as both command ParameterTypes and telemetry ParameterTypes. (See 4.4.2 and 4.3.2.3.7.5 for more information.) There are other differences – there are no alarms for example. In XTCE 1.2, the overall construction of the schema types has diverged from the ParameterTypes as well.
NOTE
–
Within ArgumentType, some child elements and attributes use the term ‘parameterRef’ or ‘argumentRef’.
4.4.4.2 ArgumentType Inheritance

ArgumentType inheritance behaves in a similar way to ParameterType inheritance (see 4.3.2.2.3). However, there are two minor differences to consider:

· ArgumentTypes do not have alarms.

· FloatArgumentType and IntegerArgument have a ValidRangeSet element. Child items are to be prefixed to any parent content, or the child gets the parent’s content if it is not specified.
4.4.4.3 ArgumentType Tables

The tables in 4.3.2.5 are applicable to command ArgumentTypes; however, the source and destination are swapped: ArgumentType is the source data type, and DataEncoding is the destination data type.

4.4.5 MetaCommandSet—MetacomMands, Command Descriptions

4.4.5.1 General

MetaCommand is part of the MetaCommandSet.

[image: image118.png]

Figure 97: MetaCommandSet Elements

It is used to describe commands. It has its own local CommandContainer that is different from but similar in name to the CommandContainerSet. The MetaCommand/CommandContainer should be used to describe the bulk of commands related to packets or minor frames.

MetaCommand is a large element, so its discussion is split into two parts.

4.4.5.2 MetaCommand -- Part 1

[image: image119.png]xice:MetaCommand L}

xtce:MetaCommandType

Hlattributes

Figure 4‑984 TC \f G "-58
The 1st Part of MetaCommand"
: The 1st Part of MetaCommand

4.4.5.2.1 NameDescription

Subsection 3.4.2 contains a description of the elements and attributes associated with name, shortDescription, LongDescription, AliasSet, and AncillaryDataSet.
4.4.5.2.2 abstract Attribute

A MetaCommand may be set to ‘abstract’. This is interpreted to mean that MetaCommand is not itself a concrete command, but that it is used to build other commands. If the MetaCommand abstract flag is ‘true’, its CommandContainer is assumed to be abstract also.
4.4.5.2.3 BaseMetaCommand Element

4.4.5.2.3.1 General

One MetaCommand may extend another in an object-oriented manner (see 4.4.5.2.3.4).

[image: image120.png]seletaCommandType

[
|
E
|
|
|

metaCommandRef

Battributes
argumentValue

xice:BaseMetaCommand

Figure 4‑994 TC \f G "-59
BaseMetaCommand"
: BaseMetaCommand

4.4.5.2.3.2 metaCommandRef Attribute

The metaCommandRef attribute extends the MetaCommand given as a NameReference.

4.4.5.2.3.3 ArgumentAssignmentList Element

Named arguments whose values are set during the inheritance process. The arguments specified should be in the inheritance chain to be valid.
<xtce:MetaCommandSet>
<xtce:MetaCommand name="Power">
<xtce:ArgumentList>
<xtce:Argument argumentTypeRef="PowerStateType" name="PowerState"/>
</xtce:ArgumentList>
</xtce:MetaCommand>
<xtce:MetaCommand name="PowerON">
<xtce:BaseMetaCommand metaCommandRef="Power">
<xtce:ArgumentAssignmentList>
<xtce:ArgumentAssignment argumentName="PowerState" argumentValue="ON"/>
</xtce:ArgumentAssignmentList>
</xtce:BaseMetaCommand>
</xtce:MetaCommand>

</xtce:MetaCommandSet>
4.4.5.2.3.4 MetaCommand Inheritance

MetaCommand inheritance is similar in concept to container inheritance (see 4.3.4.9.5), and the following rules apply:

a) A MetaCommand may extend another using the BaseMetaCommand element.

b) BaseMetaCommands that form loops are illegal.

c) Its CommandContainer is only inherited if the BaseContainer is explicitly set between the child and parent. The same rules apply to MetaCommand/CommandContainer inheritance as described in 4.3.4.9.

Besides the basic rules above, the following elements and attributes may form part of the inheritance process as shown in table 4‑20.

Table 4‑204 TC \f T "-20
MetaCommand Inheritance Rules"
: MetaCommand Inheritance Rules

	MetaCommand Element or Attribute
	Inheritance Rule

	@name
	Not inherited by child.

	@abstract
	Not inherited by child.

	@shortDescription
	Not inherited by child.

	LongDescription
	Not inherited by child.

	AliasSet
	Not inherited by child.

	AncillaryDataSet
	Child’s content prefixed to parent’s content if present.

	BaseMetaCommand
	Not applicable.

	BaseMetaCommand/ArgumentAssignment
	Child’s content will override parent’s content if present; otherwise, child gets parent’s content if it is specified. If argument is the same name, it overrides the parent’s ArgumentAssignment.

	SystemName
	Child’s content will override parent’s content if present; otherwise, child gets parent’s content if specified.

	ArgumentList
	Child’s content prefixed to parent’s content if present.

	CommandContainer
	Special Case: inherited like other containers if CommandContainer/BaseContainer set. Otherwise it is not inherited.

	TransmissionConstraintList
	Child’s content prefixed to parent’s content if present.

	DefaultSignificance
	Child’s content will override parent’s content if present; otherwise, child gets parent’s content if specified.

	ContextSignificanceList
	Child’s content prefixed to parent’s content if present.

	Interlock
	Child’s content will override parent’s content if present; otherwise, child gets parent’s content if specified.

	VerifierSet
	Child’s content prefixed to parent’s content if present but:

· Same verifiers are overridden by the child.
· CommandCompletes are accrued (child elements prefixed to parent’s).

· If the child’s CommandComplete has the same @name as parent’s, the child’s overrides it.

	ParameterToSetList
	Child’s content prefixed to parent’s content if present. If the @parameterRef is the same, the child’s overrides the parent’s.

	ParameterToSuspendAlarmsOnSet
	Child’s content prefixed to parent’s content if present. If the @parameterRef is the same, the child’s overrides the parent’s.

4.4.5.2.4 MetaCommand/CommandContainer—Command Packet

4.4.5.2.4.1 General

MetaCommand/CommandContainer is an inner container area similar to the other container elements. It includes ArgumentRefEntry, ArrayArgumentRefEntry, and FixedValueEntry. It is ‘invisible’ to the CommandContainerSet and ContainerSet. It is a ContainerRefEntry in the EntryList.
From within a MetaCommand/CommandContainer, a ContainerRefEntry to either a CommandContainerSet or ContainerSet is legal. A MetaCommand/CommandContainer can extend another MetaCommand/CommandContainer, CommandContainerSet, or ContainerSet container. When a MetaCommand extends another MetaCommand it is required by the XTCE syntax to specify MetaCommand/CommandContainer/BaseContainer to the other MetaCommand/CommandContainer. The example below shows this concept.

<xtce:MetaCommandSet>
<xtce:MetaCommand name="BaseCmd">
<xtce:CommandContainer name="BasePacket">
<xtce:EntryList/>
</xtce:CommandContainer>
</xtce:MetaCommand>
<xtce:MetaCommand name="DerivedCmd">
<xtce:BaseMetaCommand metaCommandRef="BaseCmd"/>
<xtce:CommandContainer name="DerivedPacket">
<xtce:EntryList/>
<xtce:BaseContainer containerRef="BasePacket"/>
</xtce:CommandContainer>
</xtce:MetaCommand>

</xtce:MetaCommandSet>
The BaseContainer/RestrictionCriteria element is optional in CommandContainer.

The EntryList for CommandContainer shown in figure 4‑100 is slightly different from the other containers. (See 4.3.4.)
[image: image121.png]xtce:ParameterRefEntry

xtce:ParameterSegmentRefEntry

xtce:ContainerRefEntry
xtce:ContainerSegmentRefEntry
xtce:IndirectParameterRefEntry
xtce:ArrayParameterRefEntry
xtce:ArgumentRefEntry

xtce:ArrayArgumentRefEntry

|
|
|
|
|
|
|
|
xice:StreamSegmentEntry |
|
|
|
|
|
|
xtceFixedValueEntry }

Figure 4‑1004 TC \f G "-60
MetaCommand/CommandContainer EntryList"
: MetaCommand/CommandContainer EntryList

4.4.5.2.4.2 ParameterRefEntry Element

ParameterRefEntry is the NameReference to a command parameter description or telemetry parameter description as is appropriate. If the reference is to a telemetry parameter, its description is used as if it were defined on the command side—meaning that it would be viewed as a ground side to spacecraft side .
4.4.5.2.4.3 ContainerRefEntry Element

ContainerRefEntry is the NameReference to a CommandContainerSet container or ContainerSet SequenceContainer as is appropriate. If the reference is to a telemetry container, its description is used as if it were defined on the command side. It is probably bad form to refer to another MetaCommand/CommandContainer here.

4.4.5.2.4.4 ArgumentRefEntry Element

ArgumentRefEntry is the NameReference to an Argument. In the final command construction (including inheritance), all the ArgumentRefEntries in the final EntryList construction must be matched to ArgumentList items.

4.4.5.2.4.5 FixedValueEntry Element

The FixedValueEntry element specifies a literal fixed value that specifies with a specific the sizeInBits. For XTCE 1.2, an optional name may be added.

An example follows:

<xtce:EntryList>

<xtce:FixedValueEntry binaryValue="5A" sizeInBits="7"/>

</xtce:EntryList>

4.4.5.2.4.6 BaseContainer

BaseContainer is used to extend another MetaCommand/CommandContainer. In some cases another SequenceContainer or CommandContainerSet/CommandContainer may be appropriate.
The containerRef to another MetaCommand/CommandContainer must be present if the MetaCommand is extending another MetaCommand to include the parent’s MetaCommand/CommandContainer/EntryList. It should not be included otherwise. (See 4.3.4.9 on Container Inheritance.)
[image: image122.png]xtce:Space SystemType

xtce:CommandMetaDataType

xtce:MetaCommandType

xtce:CommandContainerType

I'stce:CommandContainerEntryListType

type, ResticionC
one o e b i o s
io e the' susCantane

Figure 4‑1014 TC \f G "-61
The Base Element from CommandContainer"
: The Base Element from CommandContainer

Specifying a NameReference to either CommandMetaData/CommandContainerSet containers or TelemetryMetaData/ContainerSet is legal.
[image: image123.emf]<<MetaCommand/CommandContainer>>

CommandContainerType

<<MetaCommand/CommandContainer>>

User Construction

1-*

0-*

Figure 4‑1024 TC \f G "-62
Extending MetaCommand/CommandContainers"
: Extending MetaCommand/CommandContainers

MetaCommand/CommandContainers are very similar to SequenceContainers. It is legal to specify either a CommandContainerSet/CommandContainer or a TelemetryMetaData/ContainerSet/SequenceContainer in the BaseContainer. This is typically used for headers or other shared items.
4.4.5.2.4.7 containerRef Attribute

The containerRef attribute is a NameReference to another MetaCommand/CommandContainer. If one MetaCommand is extending another one, then the NameReference to the parent’s MetaCommand/CommandContainer must be included here to get the parent’s EntryList.

4.4.5.2.4.8 RestrictionCriteria Element

In CommandMetaData, RestrictionCriteria are assertions. The system processes the expressions to determine which values will make the expressions true. Those values are the values that go with the named parameters in the RestrictionCriteria.

This element is optional in MetaCommand/CommandContainer because many commands may make use of FixedValue to supply the values of interest instead of using parameters and assertions.
The RestrictionCriteria is a MatchCriteriaType. (See 3.4.3.6 for MatchCriteria information.)

4.4.5.2.4.9 Rules for MetaCommand/CommandContainer Inheritance

CommandContainer inheritance follows the same rules as other container inheritance. (See 4.3.4.9 for details.)
4.4.5.2.4.10 ArgumentList Element

Arguments to a specific command are listed in its ArgumentList. The argument references the ArgumentType that is appropriate and matches ArgumentRefs in its CommandContainer/EntryList.

[image: image124.png]

Figure 4‑1034 TC \f G "-63
Argument Element"
: Argument Element

Arguments may also be in an extended MetaCommand, as the following example shows:

<xtce:CommandMetaData>
<xtce:ArgumentTypeSet>
<xtce:IntegerArgumentType name="UINT32">
<xtce:UnitSet/>
<xtce:IntegerDataEncoding/>
</xtce:IntegerArgumentType>
</xtce:ArgumentTypeSet>
<xtce:MetaCommandSet>
<xtce:MetaCommand name="Cmd">
<xtce:ArgumentList>
<xtce:Argument argumentTypeRef="UINT32" name="MyArg"/>
</xtce:ArgumentList>
<xtce:CommandContainer name="CmdPacket">
<xtce:EntryList>
<xtce:ArgumentRefEntry argumentRef="MyArg"/>
</xtce:EntryList>
</xtce:CommandContainer>
</xtce:MetaCommand>

</xtce:MetaCommandSet>

</xtce:CommandMetaData>
4.4.5.3 MetaCommand -- Part 2, Additional Elements

4.4.5.3.1 General

MetaCommand contains a number of additional elements unique to commanding that are used to describe behaviors before or after sending a command. These elements are as follows:

a) TransmissionConstraintList: checks that the command may be sent in the current operating mode.

b) DefaultSignificance: used to define a default significance level that must be confirmed before the command is sent.

c) ContextSignifanceLevel: specifies significance levels by context.

d) Interlock: blocks the next command until this one has reached a certain stage.

e) VerifierSet: checks telemetry against the specified command phase.

f) ParameterToSetList: captures parameters to set after the command has been set, such as a command counter.
g) ParametersToSuspendAlarms: suspends the alarms checks on the telemetry specified for a certain period of time until the command has taken effect.

[image: image125.png]xice:TransmissionConstraintList

xtce:DefaultSignificance

xice:Interlock

xice:ParameterToSetList

Elkey ArgumentNameKey
T | [selector xtce:ArgumentList™
feld @name

Figure 4‑1044 TC \f G "-64
The 2nd Part of MetaCommand"
: The 2nd Part of MetaCommand

4.4.5.3.2 TransmissionConstraintList Element

TransmissionConstraintList checks that a command may be sent in the current operating mode. The ‘mode’ is defined as a MatchCriteria condition (see 3.4.3.6). For example, a mission phase could be defined as an enumerated session variable and used in this location.
[image: image126.png]

Figure 4‑1054 TC \f G "-65
TransmissionConstraintList Element"
: TransmissionConstraintList Element

The timeOut attribute specifies the relative time the constraint is valid. If it is marked as ‘suspendable’, then the constraint may be suspended (default value is ‘false’). In the example below, the command cannot be sent until operating orbit is achieved.

<xtce:MetaCommand name="MyCmd">

<xtce:TransmissionConstraintList>
<xtce:TransmissionConstraint>
<xtce:Comparison parameterRef="MissionPhase" value="OperatingOrbit"/>
</xtce:TransmissionConstraint>
</xtce:TransmissionConstraintList>

</xtce:MetaCommand>

4.4.5.3.3 DefaultSignificance Element

4.4.5.3.3.1 General

DefaultSignificance is used to define a default significance level that must be confirmed before the command is sent.

[image: image127.png]xtce:Space SystemType

= Long Descrption s e
oo
pons of the o

2 ROOT Eamant

r

xtce:CommandMetaDataType

[

xtce:MetaCommandType

Conseans b vt o

xtce:ParameterRefType (extension)

xtce:ParameterRefType (exiension)
i \

|
|
|

e v s

Figure 4‑1064 TC \f G "-66
DefaultSignificance Element"
: DefaultSignificance Element

4.4.5.3.3.2 spaceSystemAtRisk Attribute

The spaceSystemAtRisk attribute gives the NameReference of the SpaceSystem within the document that will be affected by this command.
4.4.5.3.3.3 reasonForWarning Attribute

The reasonForWarning attribute is a user-defined string that is appropriate for the issue.

4.4.5.3.3.4 consequenceLevel Attribute

The consequenceLevel attribute is an enumerated list of levels that includes none, watch, warning, distress, critical, and severe. For example:

<xtce:MetaCommand name="TestOverPressureCmd">

<xtce:DefaultSignificance consequenceLevel="watch" spaceSystemAtRisk="CrewModule" reasonForWarning="Temporary valve overpressure may occur"/>

</xtce:MetaCommand>

4.4.5.3.4 ContextSignificanceList Element

The ContextSignificanceList element specifies significances with contexts. The context is a MatchCriteria (see 3.4.3.6) and is user defined.

[image: image128.png]| xtce:ContextSig

g

Figure 4‑1074 TC \f G "-67
ContextSignificance Element"
: ContextSignificance Element

4.4.5.3.5 Interlock Element

4.4.5.3.5.1 General

The Interlock element prevents the next command from being sent until the current one reaches some verification state.

[image: image129.png]xtce:Space SystemType

= Long Descrption s e
oo
pons of the o

r

xtce:CommandMetaDataType

xtce:MetaCommandType

rificationProgressPercentac

o ik £ 2 ype of

Gorswai, bt ot on s e —
b e

[

xtce:ParameterRefType (extension)

xtce:ParameterRefType (exiension)
i \

|
|
|

e v s

2 ROOT Eamant

Figure 4‑1084 TC \f G "-68
Interlock"
: Interlock

4.4.5.3.5.2 scopeToSpaceSystem Attribute

The scopeToSpaceSystem attribute prevents the next command associated with the named SpaceSystem. It is given as a NameReference. If none is specified, this SpaceSystem is assumed.

4.4.5.3.5.3 verificationToWaitFor Attribute

The verificationToWaitFor attribute specifies the level of verification (see VerificationSet 4.4.5.3.6) to complete before sending the command (default value is ‘complete’).

4.4.5.3.5.4 verificationProgressPercentage Attribute

The verificationProgressPercentage attribute prevents the next command from being sent until this percentage of verification has completed.
4.4.5.3.5.5 suspendable Attribute

The suspendable attribute is used to set the interlock as suspendable (default is ‘false’). In the example below, all commands are blocked until the decouple stage has finished. This element is tied to a verifier.

<xtce:MetaCommand name="FireDecouple">

<xtce:Interlock scopeToSpaceSystem="EngineAssembly" verificationToWaitFor="complete" verificationProgressPercentage="100.0"/>
<xtce:VerifierSet>
<xtce:CompleteVerifier>
<xtce:ComparisonList>

<xtce:Comparison parameterRef="DecoupleTlmStatus" value="0xffff"/>
</xtce:ComparisonList>
<xtce:CheckWindow timeToStopChecking="PT100S"/>
</xtce:CompleteVerifier>
</xtce:VerifierSet>

</xtce:MetaCommand>
4.4.5.3.6 VerifierSet Element

4.4.5.3.6.1 General

Various command verification stages may be specified using the VerifierSet element. More than one CompleteVerifier may be specified.

[image: image130.png]xtce:Space SystemType

r

xtce:CommandMetaDataType

xtce:MetaCommandType

o apanatory
rone f o abpcs snd
1

Opsoral. Normaly
e e

[

xtce:ParameterRefType (extension)

xtce:ParameterRefType (exiension)
i \

|
|
|

e v s

Figure 4‑1094 TC \f G "-69
Verifiers"
: Verifiers

Each verifier follows a similar pattern. Two have slight additions: The ExecutionVerifier adds PercentageComplete; the CompleteVerifier adds a return for a ParameterRef that should be interpreted as the last recorded value for that Parameter.

Each verifier has the following elements:

[image: image131.png]xice:ArgumentList
Vary comranés hoveave o
o sors Thase e cand
o
oot ey be
F ry f e st 6o
e, MeGammand
Simens e sl e
=

CommandContainer

el how o package ths command

Some Command and Cano Symems
may reqire specaluser scess o
Confemaions oot varem g
Commands v canan v, The vel
e fom e eaee
TieCamerant

xt xtSignificanceL ist

Used when he sgncance possble
corsaquence)of a command vars by the
oparating comext.

xicednterlock B)

i i = 2 5 of
Constain, b rot on
Camand nsances of e
MeaCommand; Inocks
2pplysad o he re
Ermand, i ek vl
Sl msceemve commands
il commend hee
rescha s i e
(Bvough vercatons).
Inocks e scoped 3
‘Spacasymam base.

xice:AncillaryDataSet
[————
receved 1 the network hat connacts e ot xice:ComparisonList

‘
EEEEReTay

st coms from somathing ihe than the spacacaf.

xtce:CustomAlgorithm

xice:Compar

xtce:ParameterValueChange

xtce:CheckWindow

xtce:CheckWindowAlgorithms

'8 verber that smply mears the
‘SpaceSysam has recived e
omand

recazing
FareraroRanse.
T,
Recsived, Acceead,
Quesed, Brsason
‘Complee,and Faied
Thes may be it
o v
Complee verbers re
Pty
TieCammand Comple’
Vet e Al et
v < verber et
e et

P
command s beng o, An
optona Elament ndcates how far
e e
e ey e
Scled) Paramerrirtance vake.

4 xtce:CompleteVerifier

A possite st of verfrs that al
i b i o e comrnd 2

xtce:ParameterToSetList

[——
e e command 1o b en,
‘Appended o th Base Command st

xtce:ParametersToSuspendAlarmsOnSet

‘Sometimes 5 necesary o ispend lams - parsulry
range’Slrm o o ok i change e (2R o 2
-

‘Generated by XMLSpy

Figure 4‑1104 TC \f G "-70
CommandVerifiers"
: CommandVerifiers

4.4.5.3.6.2 NameDescription

Subsection 3.4.2 contains a description of the elements and attributes associated with name, shortDescription, LongDescription, AliasSet, and AncillaryDataSet.
4.4.5.3.6.3 ComparisonList Element

The verifier is a ComparisonList (see MatchCriteria 3.4.3.6).

4.4.5.3.6.4 ContainerRef Element

ContainerRef indicates the stage of verification that has been reached when the referenced container appears in the input stream. For CCSDS missions, it would be the last container in a definition making up an entire CCSDS packet container hierarchy.
4.4.5.3.6.5 ParameterValueChange Element

ParameterValueChange is used to compare the difference between the last recorded value of the specified parameter and the new one. The difference must be greater than or equal to the value stored in Change.

4.4.5.3.6.6 CustomAlgorithm Element

CustomAlgorithm is used to specify a custom algorithm as the verifier.

4.4.5.3.6.7 BooleanExpression Element

The BooleanExpression verifier is a more complex Boolean expression (see MatchCriteria 3.4.3.6).

4.4.5.3.6.8 Comparison Element

The Comparison verifier is a single comparison (see MatchCriteria 3.4.3.6).

4.4.5.3.6.9 CheckWindow Element

The CheckWindow verifier is tied to a time window. There are the following three attributes:

· timeToStartChecking: optional, xsd:duration (xtce:RelativeTimeType);
· timeToStopChecking: required, xsd:duration;
· timeWindowIsRelativeTo: optional, default: timeLastVerifierPassed, or commandReleased.
<xtce:CheckWindow timeToStartChecking="PT1S" timeToStopChecking="PT10S" timeWindowIsRelativeTo="commandRelease"/>

In the example above, the CheckWindow verifier starts to check 1 second after the command is released and continues checking for 10 seconds.

4.4.5.3.6.10 CheckWindowAlgorithm Element

The verifier is tied to a more complex algorithm-based time window.

<xtce:CompleteVerifier>
<xtce:ParameterValueChange>
<xtce:ParameterRef parameterRef="StrainGauge"/>
<xtce:Change value="15"/>
</xtce:ParameterValueChange>
<xtce:CheckWindow timeToStopChecking="PT10S"/>

</xtce:CompleteVerifier>
4.4.5.3.7 ParameterToSetList Element

The ParameterToSetList element captures parameters that will have their values adjusted once the setOnVerification command verification level has been reached for a MetaCommand. The default value for setOnVerification is ‘complete’. If one or more CompleteVerifiers is specified, then they should have evaluated to ‘true’; otherwise, the command is assumed to have completed successfully. The same would be true for any other specified setOnVerification value.

[image: image132.png]Battributes

Figure 4‑1114 TC \f G "-71
ParameterToSet Element"
: ParameterToSet Element

Once setOnVerification has been reached, either a fixed value from NewValue is set for the parameter in parameterRef, or a derived value is set using the MathOperations element in Derivation.
<xtce:ParameterToSetList>
<xtce:ParameterToSet parameterRef="CommandCounter">
<xtce:Derivation>
<xtce:ParameterInstanceRefOperand parameterRef="CommandCounter"/>
<xtce:ValueOperand>1</xtce:ValueOperand>
<xtce:Operator>+</xtce:Operator>
</xtce:Derivation>
</xtce:ParameterToSet>

</xtce:ParameterToSetList>

The example above increments the command counter once the command is completed.

4.4.5.3.8 ParametersToSuspendAlarmsOnSet Element

The ParametersToSuspendAlarmsOnSet element describes telemetry parameters whose alarms will be suspended for the given suspenseTime once the MetaCommand has reached a certain command verification level as specified in verifierToTriggerOn.

[image: image133.png]Battributes
parameterRef

Figure 4‑1124 TC \f G "-72
ParametersToSuspendAlarmsOnSet Element"
: ParametersToSuspendAlarmsOnSet Element

The default is to start the suspension when the verification release level returns ‘true’. If no verifiers are set, it would be assumed the command released. In the example below, once the command is released, alarm checking on telemetry parameter ‘P1LevelsThatAreNoisy’ is suspended.
<xtce:ParametersToSuspendAlarmsOnSet>

<xtce:ParameterToSuspendAlarmsOn parameterRef="P1LevelsThatAreNoisy" suspenseTime="PT30S" verifierToTriggerOn="release"/>

</xtce:ParametersToSuspendAlarmsOnSet>

4.4.5.4 MetaCommandSet – MetaCommandRef and BlockMetaCommand
4.4.5.4.1 General

There are two more sibling elements of MetaCommand to consider: MetaCommandRef and BlockMetaCommand.

[image: image134.png]xtce:Space SystemType

xtce:CommandMetaDataType

Figure 4‑1134 TC \f G "-73
MetaCommandSet Element"
: MetaCommandSet Element

4.4.5.4.2 MetaCommandRef Element

MetaCommandRef allows for the importation of a MetaCommand defined in another SpaceSystem. The SpaceSystem containing the MetaCommandRef acts as if the MetaCommand being referenced is in the MetaCommandSet.
4.4.5.4.3 BlockMetaCommand Element

BlockMetaCommand is used to capture the notion of command groupings.
[image: image135.png]xtce:BlockMetaCommandType

Figure 4‑1144 TC \f G "-74
BlockMetaCommand"
: BlockMetaCommand

When specifying that a particular MetaCommand is part of a block, the argument list and the necessary argument values may be specified as well.
Often block commands are sent as one unit. In the example below, ‘NOOP’ commands are known to take approximately 1ms to process. This block command then is constructed to open and close a valve after a 5ms delay time period.

<xtce:BlockMetaCommand name="TimedValveCmdFixed">

<xtce:MetaCommandStepList>
<xtce:MetaCommandStep metaCommandRef="ValveCmd">
<xtce:ArgumentList>
<xtce:Argument value="ON" name="ValveState"/>
</xtce:ArgumentList>
</xtce:MetaCommandStep>
<xtce:MetaCommandStep metaCommandRef="NOOP"/>
<xtce:MetaCommandStep metaCommandRef="NOOP"/>
<xtce:MetaCommandStep metaCommandRef="NOOP"/>
<xtce:MetaCommandStep metaCommandRef="NOOP"/>
<xtce:MetaCommandStep metaCommandRef="NOOP"/>
<xtce:MetaCommandStep metaCommandRef="ValveCmd">
<xtce:ArgumentList>
<xtce:Argument value="OFF" name="ValveState"/>
</xtce:ArgumentList>
</xtce:MetaCommandStep>

</xtce:MetaCommandStepList>

</xtce:BlockMetaCommand>

4.4.6 CommandContainerSet — CommandContainer

4.4.6.1 General

CommandContainerSet holds CommandContainers. It is identical to the ContainerSet area within the TelemetryMetaData (see 4.3.4).

4.4.6.2 CommandContainerSet Inheritance Rules

CommandContainerSet/CommandContainers may extend another CommandContainerSet/CommandContainer. This follows the same rules already established for container inheritance (see 4.3.4.9).

It is legal to use NameReference to extend either a TelemetryMetaData/ContainerSet container or a MetaCommand/CommandContainer Container.

[image: image136.emf]<<SequenceContainer>>

SequenceContainerType

<<CommandContainer>>

User Construction

1-*

0-*

Figure 4‑1154 TC \f G "-75
Extending CommandContainers"
: Extending CommandContainers

4.4.7 StreamSet

(See 4.3.6.)
4.4.8 AlgorithmSet

(See 4.3.7.)
4.5 ServiceSet Element — Services

4.5.1 General

Services are logical groupings of containers or messages under a common name. The meaning of such groupings is implementation dependent.

When using containerRefs, the container being referred to may be an abstract container. If it is, all its child containers are included in the service. If this is not the case, then only that specific container is included, and any other containers it has up the inheritance chain are not.

This is not an issue when using MessageRefSet since messages ignore BaseContainer.
[image: image137.png]xtce:Service SetType

Figure 4‑1164 TC \f G "-76
Services"
: Services

How containers or messages have been organized is left to the end user.
<xtce:ServiceSet>
<xtce:Service name="Imagers">
<xtce:ContainerRefSet>
<xtce:ContainerRef containerRef="ImagerID"/>
<xtce:ContainerRef containerRef="ResX"/>
<xtce:ContainerRef containerRef="ResY"/>
<xtce:ContainerRef containerRef="FOV"/>

<xtce:ContainerRef containerRef="Segments"/>

<xtce:ContainerRef containerRef="Status"/>
</xtce:ContainerRefSet>
</xtce:Service>

</xtce:ServiceSet>

4.5.2 MessageRefSet Element

MessageRefSet refers to a message rather than the container that will then be included in the service.

4.5.3 ContainerRefSet Element

This element contains a list of containers that are part of this service. Referring to an abstract container that has concrete child containers will include all of them in the service. Individual representations of things like packets should refer to the leaf container (which is nonabstract and has a baseContainer). Leaf containers are covered in section 5.

5 Advanced Topics

5.1 Overview

This section describes various concepts in XTCE and uses examples to reinforce them.

5.2 Abstract, Concrete, AND PLAIN Containers

5.2.1 General

Containers are defined in either the TelemetryMetaData/ContainerSet area, the CommandMetaData/CommandContainerSet area, or the MetaCommand/CommandContainer area.

A container can take three forms:
· abstract (sometimes called a generic container);
· plain; and
· concrete (sometimes called an instance container or container instances).

5.2.2 The Abstract Container

A container marked as abstract is often used to represent a more generic concept in the format being described.
Usually abstract containers are used by other containers to build a more complete definition that represents packet or minor frames. Often they are at the root of the container hierarchy; however, they may be at each level of a multi-level hierarchy until the last container. For example, an abstract container could be used as a header in a packet description.

It is legal for an abstract container to extend another container.
<xtce:SequenceContainer name="AbstractHeader" abstract="true">
<xtce:EntryList>
<xtce:ParameterRefEntry parameterRef="Version"/>
<xtce:ParameterRefEntry parameterRef="ID"/>
<xtce:ParameterRefEntry parameterRef="Length"/>
</xtce:EntryList>

</xtce:SequenceContainer>

5.2.3 The Plain Container

A plain container is not marked abstract and has no BaseContainer. Plain container definitions will be used in a ContainerRefEntry. A plain container is part of another construction and a complete entity such as a packet or minor frame. Plain containers are defined in either ContainerSet or CommandContainerSet.

A MetaCommand/CommandContainer is not a plain container; however, it is used to specify how to build a command packet. It may be an entity such as a packet or minor frame even if it has no BaseContainer.

<xtce:SequenceContainer name="Plain">
<xtce:EntryList>
<xtce:ParameterRefEntry parameterRef="P1"/>
<xtce:ParameterRefEntry parameterRef="P2"/>
<xtce:ParameterRefEntry parameterRef="P3"/>
</xtce:EntryList>

</xtce:SequenceContainer>

5.2.4 The Concrete Container

A concrete container or instance container is not abstract and has a BaseContainer element. Concrete containers extend other containers (which are probably abstract) and they represent a complete entity such as a packet or minor frame.

<xtce:SequenceContainer name="MyConcretePacket">
<xtce:EntryList>
<xtce:ParameterRefEntry parameterRef="P1"/>
<xtce:ParameterRefEntry parameterRef="P2"/>
<xtce:ParameterRefEntry parameterRef="P3"/>
</xtce:EntryList>
<xtce:BaseContainer containerRef="AbstractHeader">
<xtce:RestrictionCriteria>
<xtce:ComparisonList>
<xtce:Comparison parameterRef="Version" value="1"/>
<xtce:Comparison parameterRef="ID" value="100"/>
</xtce:ComparisonList>
</xtce:RestrictionCriteria>
</xtce:BaseContainer>

</xtce:SequenceContainer>
5.3 Modifying an Entry

5.3.1 General

Each entry has several child elements which can be modified in a variety of ways:
a) LocationInContainerInBits can change the entry’s address.
b) RepeatEntry can cause the entry to repeat more than one time.
c) IncludeCondition can cause the entry to be left out or included in the EntryList based on the evaluation of a set of expressions.

5.3.2 Addressing Using LocationInContainerInBits

5.3.2.1 General

Subsection 4.3.4.8.10 contains a discussion of the element LocationInContainerBits, its attributes, and child elements. The following diagram graphically shows the details of container addressing.

[image: image138.emf]SequenceContainer

P

r

e

v

E

n

t

r

y

T

h

i

s

E

n

t

r

y

N

e

x

t

E

n

t

r

y

l

o

c

a

t

i

o

n

r

e

f

l

o

c

a

t

i

o

n

r

e

f

l

o

c

a

t

i

o

n

r

e

f

ContainerStart

ContainerEnd

previousEntry nextEntry

Packaging Entries

Location of entry is an integer value from:

-the end of the previous entry (previousEntry –default)

-the beginning of next entry (nextEntry)

-the beginning of the container (containerStart)

-the end of the container (containerEnd)

Figure 5‑15 TC \f G "-1
EntryList Addressing"
: EntryList Addressing

If DynamicValue or DiscreteLookupList are used, the offset of the parameter and exact size of the container cannot be determined statically.

A range may be determined by looking at the:

· ValidRange;
· sizeInBits of the parameter DataEncoding;
· the maximum allowed size of container for the format; and
· container’s own sizeInBits.

5.3.2.2 With a ParameterRefEntry

5.3.2.2.1 General

The ParameterEntry’s address is adjusted by the offset, which is given in bits based on the ReferenceLocation.
5.3.2.2.2 Example #1—PrevEntry

PrevEntry with a value of zero is the default. This example shows a gap created using it explicitly.

<xtce:EntryList>
<xtce:ParameterRefEntry parameterRef="P1"/>
<xtce:ParameterRefEntry parameterRef="P2">
<xtce:LocationInContainerInBits referenceLocation="previousEntry">
<xtce:FixedValue>44</xtce:FixedValue>
</xtce:LocationInContainerInBits>
</xtce:ParameterRefEntry>

</xtce:EntryList>

Parameter P2 should be placed 44 bits past the end of P1. If P1 is 16-bits wide, then P2’s address is 50, while P1’s address is 0.

Table 5‑15 TC \f T "-1
PrevEntry Example"
: PrevEntry Example

	Name
	Bit-Width
	Offset
	Address

	P1
	16
	0
	0

	P2
	16
	44 from prevEntry
	50 = 44 + 16

5.3.2.2.3 Example #2—ContainerStart

ContainerStart is an absolute addressing from zero from the start of the container.

<xtce:EntryList>
<xtce:ParameterRefEntry parameterRef="P1"/>
<xtce:ParameterRefEntry parameterRef="P2">
<xtce:LocationInContainerInBits referenceLocation="containerStart">
<xtce:FixedValue>44</xtce:FixedValue>
</xtce:LocationInContainerInBits>
</xtce:ParameterRefEntry>

</xtce:EntryList>

In this example, P1’s address is again at zero, and P2 is at address 44.

Table 5‑25 TC \f T "-2
ContainerStart Example"
: ContainerStart Example

	Name
	Bit-Width
	Offset
	Address

	P1
	16
	0
	0

	P2
	16
	44 from ContainerStart
	44

5.3.2.2.4 Example #3—ContainerEnd

ContainerEnd addresses are given as positive numbers relative to the actual container end.
<xtce:SequenceContainer name="ContainerEnd">
<xtce:BinaryEncoding>
<xtce:SizeInBits>
<xtce:FixedValue>100</xtce:FixedValue>
</xtce:SizeInBits>
</xtce:BinaryEncoding>
<xtce:EntryList>
<xtce:ParameterRefEntry parameterRef="P1"/>
<xtce:ParameterRefEntry parameterRef="P2">
<xtce:LocationInContainerInBits referenceLocation="containerEnd">
<xtce:FixedValue>44</xtce:FixedValue>
</xtce:LocationInContainerInBits>
</xtce:ParameterRefEntry>
</xtce:EntryList>

</xtce:SequenceContainer>
In this example P1 is still at zero, but P2 is 44 from containerEnd. In fact, the end of P2 is 44 bits from containerEnd. So if P2 is 16 bits in width, then P2’s address is at 100-(44+16) = 40.

Table 5‑35 TC \f T "-3
ContainerEnd Example"
: ContainerEnd Example

	Name
	Bit-Width
	Offset
	Address

	P1
	16
	0
	0

	P2
	16
	44 from containerEnd
	40 = 100-(44+16)

5.3.2.2.5 Example #4—NextEntry

NextEntry needs to be used in conjunction with a fixed address. This could be an item in the container’s EntryList or the known size of the container (or range).
<xtce:EntryList>
<xtce:ParameterRefEntry parameterRef="P1">
<xtce:LocationInContainerInBits referenceLocation="nextEntry">
<xtce:FixedValue>32</xtce:FixedValue>
</xtce:LocationInContainerInBits>
</xtce:ParameterRefEntry>
<xtce:ParameterRefEntry parameterRef="P2">
<xtce:LocationInContainerInBits referenceLocation="containerStart">
<xtce:FixedValue>100</xtce:FixedValue>
</xtce:LocationInContainerInBits>
</xtce:ParameterRefEntry>

</xtce:EntryList>
Here P2 is at offset 100, and the end of P1 is 32 bits before this location. If P1 is 16-bits wide, its starting address would be 100-(32+16) = 52.

Table 5‑45 TC \f T "-4
NextEntry Example"
: NextEntry Example

	Name
	Bit-Width
	Offset
	Address

	P1
	16
	32 from nextEntry
	52 = 100-(32+16)

	P2
	16
	100 from ContainerStart
	100

5.3.2.3 With a ContainerRefEntry

A ContainerRefEntry behaves in a similar way as a ParameterRefEntry (the container can be viewed as a large ParameterRefEntry). First, the entire referenced container’s EntryList should be treated as one cohesive unit and its EntryList addresses should be computed. The result as a block should then be inserted into the referencing container. This block may itself then be modified by its own LocationInContainerInBits and repeat. Overall, these are similar concepts as with ParameterRefEntry in 5.3.2.2.

<xtce:SequenceContainer name="Container">
<xtce:EntryList>
<xtce:ParameterRefEntry parameterRef="P1"/>
<xtce:ContainerRefEntry containerRef="ContainerAbsolute"/>
</xtce:EntryList>

</xtce:SequenceContainer>

<xtce:SequenceContainer name="ContainerAbsolute">
<xtce:EntryList>
<xtce:ParameterRefEntry parameterRef="P2">
<xtce:LocationInContainerInBits referenceLocation="containerStart">
<xtce:FixedValue>64</xtce:FixedValue>
</xtce:LocationInContainerInBits>
</xtce:ParameterRefEntry>
<xtce:ParameterRefEntry parameterRef="P3">
<xtce:LocationInContainerInBits referenceLocation="containerStart">
<xtce:FixedValue>128</xtce:FixedValue>
</xtce:LocationInContainerInBits>
</xtce:ParameterRefEntry>
</xtce:EntryList>

</xtce:SequenceContainer>

In this example, ContainerAbsolute should be resolved first. Its entries will be offset 64 and 128 bits from the beginning of ContainerAbsolute. Then these items will be inserted into the container’s EntryList. This will take place relative to the end of P1 as the LocationInContainerInBits of the ContainerRefEntry is set to ‘prevEntry’ with an address of ‘0’. Thus, when the addresses of P2 and P3 are inserted into the container, they are offset by the end of P1. So the addresses become P1=0, P2=(16 + 64)=80, and P3=(16+128)=144.

Table 5‑55 TC \f T "-5
ContainerAbsolute (SizeInBits = 144)"
: ContainerAbsolute (SizeInBits = 144)

	Name
	Bit-Width
	Offset
	Address

	P2
	16
	64 from containerStart
	64

	P3
	16
	128 from containerStart
	128

The container’s sizeInBits is calculated as 144 because the last Parameter (P3) is 128 bits from the containerStart and 16-bits long, making a total of 144 bits.

Table 5‑65 TC \f T "-6
Container (SizeInBits = 160)"
: Container (SizeInBits = 160)

	Name
	Bit-Width
	Offset
	Address

	P1
	16
	0
	0

	ContainerAbsolute
	144
	16
	16

The container referred to as ContainerAbsolute can be viewed as a single unit for the purposes of determining the overall start-bit location for its entries and the overall size. The containerRef’s entries would be further resolved to the locations shown in table 5‑7.
Table 5‑75 TC \f T "-7
Container: Resolved (SizeInBits = 160)"
: Container: Resolved (SizeInBits = 160)

	Name
	Bit-Width
	Offset
	Address

	P1
	16
	0
	0

	ContainerAbsolute:P2
	16
	64+16 (prevEntry)
	80

	ContainerAbsolute:P3
	16
	128+16
	144

5.3.3 RepeatEntry

RepeatEntry allows one to specify a repeating item. It may be a super-sampled or a super-commutated parameter or container (see 4.3.4.8.10.3).
A RepeatEntry is defined as the original entry + (the original entry × repeat count). A RepeatEntry of ‘0’ is the same as an entry without RepeatEntry, while a RepeatEntry of ‘1’ means the entry is duplicated.
In the following example, the entry repeats four times, meaning there are five entries. The offset between them is zero since they are ‘packed’ back to back.

<xtce:ParameterRefEntry parameterRef="P1">
<xtce:RepeatEntry>
<xtce:Count>
<xtce:FixedValue>4</xtce:FixedValue>
</xtce:Count>
<xtce:Offset>
<xtce:FixedValue>0</xtce:FixedValue>
</xtce:Offset>
</xtce:RepeatEntry>

</xtce:ParameterRefEntry>
5.3.4 IncludeCondition

IncludeCondition allows one to specify the optional inclusion of a parameter or container in an EntryList (see 4.3.4.8.10.4). If the conditions are true, the including container will change size to accommodate the container or parameter being referenced.

<xtce:ParameterRefEntry parameterRef="CheckSum">
<xtce:IncludeCondition>
<xtce:Comparison value="1" parameterRef="CSFlag"/>
</xtce:IncludeCondition>

</xtce:ParameterRefEntry>

Here, the parameter CheckSum is included if the parameter instance of CSFlag (instance 0) is set to ‘1’. In this example the CSFlag is a flag in the header.

5.3.5 In Combination

It is possible that a particular Entry will have some combination of LocationInContainerInBits, RepeatEntry, and IncludeCondition set. In general, IncludeCondition should be processed first, followed by RepeatEntry and finally by LocationInContainerInBits. Any RepeatEntry should be treated as a single unit.

<xtce:ParameterRefEntry parameterRef="P1">
<xtce:LocationInContainerInBits referenceLocation="containerStart">
<xtce:FixedValue>0</xtce:FixedValue>
</xtce:LocationInContainerInBits>
<xtce:RepeatEntry>
<xtce:Count>
<xtce:FixedValue>4</xtce:FixedValue>
</xtce:Count>
<xtce:Offset>
<xtce:FixedValue>0</xtce:FixedValue>
</xtce:Offset>
</xtce:RepeatEntry>
<xtce:IncludeCondition>
<xtce:Comparison value="1" parameterRef="ID"/>
</xtce:IncludeCondition>

</xtce:ParameterRefEntry>

In the example above, the Parameter P1 is only valid if ID (instance 0) is ‘1’. It also repeats for a total of five times and has an absolute address from containerStart.

The example below shows a ContainerRefEntry and IncludeCondition.

<xtce:SequenceContainer name="Included">
<xtce:EntryList>
<xtce:ParameterRefEntry parameterRef="CP1">
<xtce:LocationInContainerInBits referenceLocation="containerStart">
<xtce:FixedValue>100</xtce:FixedValue>
</xtce:LocationInContainerInBits>
</xtce:ParameterRefEntry>
<xtce:ParameterRefEntry parameterRef="CP2">
<xtce:LocationInContainerInBits referenceLocation="containerStart">
<xtce:FixedValue>200</xtce:FixedValue>
</xtce:LocationInContainerInBits>
</xtce:ParameterRefEntry>
<xtce:ParameterRefEntry parameterRef="CP3">
<xtce:LocationInContainerInBits referenceLocation="containerStart">
<xtce:FixedValue>300</xtce:FixedValue>
</xtce:LocationInContainerInBits>
</xtce:ParameterRefEntry>
</xtce:EntryList>

</xtce:SequenceContainer>

<xtce:SequenceContainer name="Plain">
<xtce:EntryList>
<xtce:ParameterRefEntry parameterRef="P1"/>
<xtce:ParameterRefEntry parameterRef="P2"/>
<xtce:ContainerRefEntry containerRef="Included"/>
<xtce:ParameterRefEntry parameterRef="P3"/>
</xtce:EntryList>

</xtce:SequenceContainer>

In the above example, the container ‘Included’ has entries within it that are offset from ContainerStart. Those addresses are relative to the container in which they are defined (i.e., Included), not the container that references Included (i.e., Plain). Thus container Included would be resolved first, and then its entries would be modified by the LocationInContainerInBits of the containerRef in question. In this example, the default applies, so the LocationInContainerInBits has a value of ‘prevEntry’ and an offset of ‘0’. That means each entry, when inserted into container Plain, is offset from the entry P2, not containerStart.

Table 5‑85 TC \f T "-8
Plain Container"
: Plain Container

	RefEntry
	Start Address
	Width

	P1
	0
	16

	P2
	16
	16

	Included
	RefEntry
	Start Addr+32
	Width
	32
	316

	
	CP1
	100 (+32)
	16
	
	

	
	CP2
	200 (+32)
	16
	
	

	
	CP3
	300 (+32)
	16
	
	

	P3
	348
	16

Subsection 5.4 contains more information on container addressing.

The other EntryList forms are simply variations of either ParameterRefEntry or ContainerRefEntry. All of them except array are segments which simply clip the size of the item being referred to from its inherent size. The ArrayParameterRefEntry is somewhat special because it is here that the dimension sizes are stored.

5.4 Using Abstract, Plain and Concrete Containers to Build Packaging Definitions

5.4.1 General

In XTCE the three container forms can be used to build packaging definitions for a format (such as a packet or minor frame). One simple approach uses a common root abstract container and a set of concrete containers extending it. The appropriate identification information is supplied in the RestrictionCriteria (as well as the entries for the packet bodies).
One level of inheritance may be enough to capture all packet constructions. Additional levels can be used depending on various requirements and the preferences of the designers of the descriptions.
5.4.2 Container Inheritance Concepts

5.4.2.1 General

The following subsections use an object-oriented-like mechanism to describe telemetry (and command) packaging (such as packet).
5.4.2.2 Processing a Conceptual Container Inheritance Tree

One way to think of container inheritance is in relation to a system that takes as input a set of telemetry packets and processes those against an inheritance tree of XTCE containers. Such a system must read the packets and match their contents to the tree of containers, starting at the root container and working down to leaf containers:

If the definitions consist of a root abstract container representing the header, a set of concrete containers is used to extend it and supply uniquely identifying information. In that context, the first packet’s byte (or bytes) would start at the root container.
If the container is abstract, no instance of it is created, and processing continues down the container inheritance chain until the leaf containers are processed. In this example, there is only one level of inheritance, so the container leaves are processed.
For each match that occurs, a concrete instance of that packet is created based on the container definitions. Every entry in the EntryList is processed as well as those in the parent container, and all parameters are used to decommutate the packet into the telemetry table.

From an exchange standpoint, it is likely that a given format does not have a container inheritance feature.
5.4.2.3 Treating BaseContainer As an Operation

5.4.2.3.1 General

Treating BaseContainer as an operation processes the container inheritance constructs away, possibly all the way to a single entry list per packet (or minor frame, etc.).
Along with these are the set of restrictions that must be met to uniquely identify those parameters in at least a conceptual set of input packets. Other information is held in the other elements (such as the descriptive information). This simplified description can then be transferred to another format with some ease.

When the BaseContainer is interpreted as an operation, the ContainerSet is looped through and all nonabstract containers with a BaseContainer are processed further. When this occurs, the container’s BaseContainer is recursively processed and a single EntryList is formed by adding the various entries into a single list.

The RestrictionCriteria are collected relative to where they are defined in each inheritance level so that the scope of the parameters used in them is maintained.

More details of this process are given below.

5.4.2.3.2 Container Inheritance: Building Up the EntryList

The containers below consists of a single abstract root container which represents a header. A second container is used to represent a secondary header (timestamp). A single concrete container extends them and then adds some entries, which makes up the packet body. Taken together, these represent a single packet description.

<xtce:SequenceContainer name="MyFormatHeader" abstract="true">
<xtce:EntryList>
<xtce:ParameterRefEntry parameterRef="Version"/>
<xtce:ParameterRefEntry parameterRef="Type"/>
<xtce:ParameterRefEntry parameterRef="ID"/>
<xtce:ParameterRefEntry parameterRef="Length"/>
</xtce:EntryList>

</xtce:SequenceContainer>

<xtce:SequenceContainer name="MyTimeStampHeader" abstract="true">
<xtce:EntryList>
<xtce:ParameterRefEntry parameterRef="TimeStamp"/>
</xtce:EntryList>
<xtce:BaseContainer containerRef="MyFormatHeader">
<xtce:RestrictionCriteria>
<xtce:ComparisonList>
<xtce:Comparison parameterRef="Version" value="1"/>
<xtce:Comparison parameterRef="Type" value="1"/>
</xtce:ComparisonList>
</xtce:RestrictionCriteria>
</xtce:BaseContainer>

</xtce:SequenceContainer>

<xtce:SequenceContainer name="MyConcretePacket">
<xtce:EntryList>
<xtce:ParameterRefEntry parameterRef="P1"/>
<xtce:ParameterRefEntry parameterRef="P2"/>
<xtce:ParameterRefEntry parameterRef="P3"/>
</xtce:EntryList>
<xtce:BaseContainer containerRef=" MyTimeStampHeader ">
<xtce:RestrictionCriteria>
<xtce:Comparison parameterRef="ID" value="100"/>
</xtce:RestrictionCriteria>
</xtce:BaseContainer>

</xtce:SequenceContainer>

Because the BaseContainer is treated as an operation, the result will be a singular object or entity. It is shown below as XML.
Step #1: If a BaseContainer is present in a nonabstract container, it is recursively processed until the root container is reached.

As the recursion unwinds, each container’s entries are added to a final EntryList construct. If its entries refer to other containers, the entries must be resolved to ParameterEntryRefs.

The various other items associated with container inheritance and the original container’s description should be processed into one object. For example, the AncillaryData should be accumulated according to the inheritance rules.

It is important to capture the RestrictionCriteria in such a way that each one’s scope is maintained relative to where it was defined in each container. In terms of implementation, one way to do this is to allow the restrictions to be added into the final EntryList itself after each container’s entries have been added. This can be done in a variety of ways in different programming languages. The assumption is it is possible to do so.

In the example below, the RestrictionCriteria conditions have been placed at the end of each container’s entries, maintaining their place relative to their original container definition. The XML illustrates that this has occurred, and then shows the result of the operation.
NOTE
–
Once again, the resulting processed construction shown below is not itself in XTCE syntax.

<ProcessedContainer name="MyConcretePacket">
<ObjectEntryList>
<ParameterRefEntry parameterRef="Version"/>
<ParameterRefEntry parameterRef="Type"/>
<ParameterRefEntry parameterRef="ID"/>
<ParameterRefEntry parameterRef="Length"/>

<ParameterRefEntry parameterRef="TimeStamp"/>

<RestrictionCriteria>
<ComparisonList>
<Comparison parameterRef="Version" value="1"/>
<Comparison parameterRef="Type" value="1"/>
</ComparisonList>
</RestrictionCriteria>
<ParameterRefEntry parameterRef="P1"/>
<ParameterRefEntry parameterRef="P2"/>
<ParameterRefEntry parameterRef="P3"/>

<RestrictionCriteria>
<Comparison parameterRef="ID" value="100"/>
</RestrictionCriteria>
</ObjectEntryList>

</ProcessedContainer>
Step #2: Now that all entries have been resolved into one object, another step might be to derive the addresses of the entries.
Deriving the addresses of the entries also means any Repeat, LocationInContainerInBits, and IncludeCondition must be considered as any of the other entry forms such as ArrayParameterRefEntry.
Each parameter associated with each ParameterRefEntry is found in a ParameterSet, and its ParameterTypes are then found in a ParameterTypeSet. Their DataEncodings provide the size of each as well other information such as alarms, calibrators, and so forth. Again, fixed-sized parameters are easiest to deal with, but ranges can be calculated for the other cases.

The following example is a simple case, where each parameter is fixed and 16 bits long.

<AddressContainer name="MyConcretePacketAddressesResolved" calculatedSizeInBits="0x80"/>
<ObjectEntryList>
<Parameter name="Version" address="0x00" sizeInBits="16" etc />
<Parameter name="Type" address="0x10" sizeInBits="16" etc />
<Parameter name="ID" address="0x20" sizeInBits="16" etc />
<Parameter name="Length" address="0x30" sizeInBits="16" etc />

<Parameter name="TimeStamp" address="0x40" sizeInBits="16" etc />

<RestrictionCriteria>
<ComparisonList>
<Comparison parameterName="Version" value="1"/>
<Comparison parameterName="Type" value="1"/>
</ComparisonList>
</RestrictionCriteria>
<Parameter name="P1" address="0x50" sizeInBits="16" etc />
<Parameter name="P2" address="0x60" sizeInBits="16" etc />
<Parameter name="P3" address="0x70" sizeInBits="16" etc />

<RestrictionCriteria>
<Comparison parameterName="ID" value="100"/>
</RestrictionCriteria>
</ObjectEntryList>

</AddressContainer>

The above XML is a representation of the final resolved construction (once again, it is not XTCE syntax). It is an address map of all the revolved BaseContainer and EntryList items including the set of conditions that must be true for an incoming packet match to occur.

If such a match occurs (that is, the restrictions are all true), then the remaining information associated with each parameter (such as calibrators and alarms) would be processed to derive instance values for each item. This additional information is not shown here.

NOTES

1 From an exchange standpoint, this type of processed container object removes the inheritance constructs, which should make transfer to another description format easier.
2 The RestrictionCriteria may still be an issue; e.g., complex expressions may not transfer easily to a format that expects one identification key per packet definition.
3 The recommended approach at this time is to constrain the form of the expressions so that processing a certain pattern is expected. If possible, the expressions only use the operator ‘==’.
5.4.3 Other items in Container Inheritance

Many of the other items in SequenceContainer take part in the inheritance process. (See 4.3.4.9.5 for the rules associated with container inheritance.)
Container size is affected by inheritance and BinaryEncoding/SizeInBits. It is easier to simply calculate the size from the description and leave off the BinaryEncoding/SizeInBits.

5.4.4 CommandContainerSet Inheritance

Container inheritance semantics are described in 4.3.4.9. CommandContainerSet is exactly the same as ContainerSet in TelemetryMetaData.

5.5 Dynamic Container Matching

Dynamic container matching is briefly described in 4.3.4.8.5.2. It occurs when a ContainerRefEntry in a container’s EntryList refers to an abstract container, and that abstract container has its own derived concrete child containers.
The following rules define dynamic container matching:

· The ContainerRefEntry refers to a container marked as abstract (i.e., an abstract container).

· The abstract container has one or more derived concrete child containers. If true, zero or more of the child containers (including the inherited EntryList from the abstract parent) may be placed in the original container’s EntryList (i.e., at the ContainerRefEntry location). If the expressions in their RestrictionCriteria evaluate to true, the following events occur:

· If more than one is true, the child containers form a union of the containers and the entire construct is placed in the EntryList.

· If no child matches occur, the abstract container itself is inserted. (Its EntryList is likely empty for most cases.)

· The ContainerRefEntry itself may have an IncludeCondition. If so, this is evaluated first, then the dynamic matching conditions (i.e., the RestrictionCriteria) are evaluated. If the IncludeCondition is true, the dynamic match proceeds.

· A union of two or more containers is defined as a block large enough to hold the largest EntryList among them. The EntryLists are not merged, but literally one container overlays the other.
· The order of evaluation of the conditions in each derived child are defined by the implementer.

· If the abstract container has a nonempty EntryList, then its content is included even if none of its derived child containers conditions is true.

· The derived child containers inherit the abstract container’s entries.

The construction is a choice of zero or more ContainerRefEntries. The example below illustrates the basic concepts outlined above, given the MainContainer with a ContainerRefEntry to an abstract container called ‘AbstractContainer’:

<xtce:SequenceContainer name="MainContainer">
<xtce:EntryList>
<xtce:ContainerRefEntry containerRef="AbstractContainer"/>
</xtce:EntryList>

</xtce:SequenceContainer>

The AbstractContainer then begins the dynamic match definition. In this example, its EntryList is empty. This is easy to implement as derived child containers.

<xtce:SequenceContainer name="AbstractContainer" abstract="true">
<xtce:EntryList/>

</xtce:SequenceContainer>
Each derived child container has some content that will be included depending on the value of an expression called ‘Condition’ in the two RestrictionCriteria.

<xtce:SequenceContainer name="ContainerA">
<xtce:EntryList>
<xtce:ParameterRefEntry parameterRef="A"/>
</xtce:EntryList>
<xtce:BaseContainer containerRef="AbstractContainer">
<xtce:RestrictionCriteria>
<xtce:Comparison parameterRef="Condition" value="1"/>
</xtce:RestrictionCriteria>
</xtce:BaseContainer>

</xtce:SequenceContainer>

<xtce:SequenceContainer name="ContainerB">
<xtce:EntryList>
<xtce:ParameterRefEntry parameterRef="B"/>
</xtce:EntryList>
<xtce:BaseContainer containerRef="AbstractContainer">
<xtce:RestrictionCriteria>
<xtce:Comparison parameterRef="Condition" value="2"/>
</xtce:RestrictionCriteria>
</xtce:BaseContainer>

</xtce:SequenceContainer>
The construct then is defined so that only one container (A or B) actually supplies any content into MainContainer. If Condition=‘1’, then container A is inserted into MainContainer. If Condition=‘2’, then container B is inserted into MainContainer. If Condition=‘3’, then only AbstractContainer is inserted, and it has no content.

As stated in the rules, the abstract container is always included, so care should be taken to define the various constructs properly to match the definition desired.

The following made-up construct ChoiceOfZeroOrMoreDerivedContainers illustrates the desired functionality. This is made up for the purposes of illustration; it is not XTCE syntax.

<SequenceContainer name="MainContainerIllustrated">
<EntryList>
<ChoiceOfZeroOrMoreDerivedContainers>
<ContainerRefEntry containerRef="AbstractContainer" default="alwaysInclude"/>
<ContainerRefEntry containerRef="ContainerA" condition="Condition" value="1"/>
<ContainerRefEntry containerRef="ContainerB" condition="Condition" value="2"/>
</ChoiceOfZeroOrMoreDerivedContainers>
</EntryList>

</SequenceContainer>

The order of the child entries is not explicitly defined by the rules:

<SequenceContainer name="MainContainerIllustrated">
<EntryList>
<ChoiceOfZeroOrMoreDerivedContainers>
<ContainerRefEntry containerRef="AbstractContainer" default="alwaysInclude"/>
<ContainerRefEntry containerRef="ContainerB" condition="Condition" value="1"/>
<ContainerRefEntry containerRef="ContainerA" condition="Condition" value="2"/>
</ChoiceOfZeroOrMoreDerivedContainers>
</EntryList>

</SequenceContainer>

The dynamic match mechanism can be used where holes in a container definition exist. For example, it may be that under normal conditions a telemetry packet has no timestamp, but in some cases a 32-bit timestamp is present, and in other cases, a higher-resolution, 48-bit timestamp is present.

One possible solution to this construction in XTCE would be to define a packet container with two consecutive ContainerRefEntries. They would have IncludeConditions for the two TimeStamp containers for each resolution time stamp.
The conditions need to be defined in such way as to ensure that the three cases desired are created, i.e., no timestamp, a 32-bit timestamp, or the 48-bit timestamp. Using this technique, such a construction is a sequence of optional entries in the packet container.

[image: image139.emf]Packet

TimeStamp32Ref

TimeStamp48Ref

BodyEntriesRef

TimeStamp32

TimeStamp48

{Cond1}

{Cond2}

Figure 5‑25 TC \f G "-2
Using IncludeConditions"
: Using IncludeConditions

They are optional in the sense that as shown above as ‘Cond1’ or ‘Cond2’ are IncludeConditions controlling their inclusion into the original container.
In the dynamic match variation, the packet container would have a ContainerRefEntry to an abstract TimeStamp container with no entries. Two derived containers form the TimeStamps, one for the 32-bit time stamp, and the other for the 48-bit variation. The conditions should evaluate so that either:

· no time stamp is included (in the example below, assume TimeStamp has an empty EntryList, and Cond1 and Cond2 are false);
· a 32-bit TimeStamp32 is included (Cond2 is true); or

· a 48-bit TimeStamp48 is included (Cond1 is true).

[image: image140.emf]Packet

TimeStampRef

BodyEntriesRef

TimeStamp32 TimeStamp48

{Cond2}

TimeStamp

{Cond1}

Figure 5‑35 TC \f G "-3
Using Dynamic Container Matching"
: Using Dynamic Container Matching

Example

The following example uses the one outlined above. A system defines telemetry with three possible secondary headers depending on a certain condition: none, a regular time stamp, or a hi-res time stamp. Dynamic container matching is used to describe this scenario.

<xtce:SequenceContainer name="Header" abstract="true">
<xtce:EntryList>
<xtce:ParameterRefEntry parameterRef="Version"/>
<xtce:ParameterRefEntry parameterRef="SecondaryHeaderFlag"/>
<xtce:ParameterRefEntry parameterRef="ID"/>
<xtce:ParameterRefEntry parameterRef="Length"/>
</xtce:EntryList>

</xtce:SequenceContainer>

<xtce:SequenceContainer name="MyPacket1">
<xtce:EntryList>
<xtce:ContainerRefEntry containerRef="MySecondaryHeader"/>
<xtce:ParameterRefEntry parameterRef="P1"/>
<xtce:ParameterRefEntry parameterRef="P2"/>
<xtce:ParameterRefEntry parameterRef="P3"/>
</xtce:EntryList>

</xtce:SequenceContainer>

<xtce:SequenceContainer name="MySecondaryHeader" abstract="true">
<xtce:EntryList/>

</xtce:SequenceContainer>

<xtce:SequenceContainer name="TimeStamp1">
<xtce:EntryList>
<xtce:ParameterRefEntry parameterRef="Seconds"/>
<xtce:ParameterRefEntry parameterRef="Milliseconds"/>
</xtce:EntryList>
<xtce:BaseContainer containerRef="MySecondaryHeader">
<xtce:RestrictionCriteria>
<xtce:ComparisonList>
<xtce:Comparison parameterRef="SecondaryHeaderFlag" value="1"/>
<xtce:Comparison parameterRef="ID" comparisonOperator="<" value="100"/>
</xtce:ComparisonList>
</xtce:RestrictionCriteria>
</xtce:BaseContainer>

</xtce:SequenceContainer>

<xtce:SequenceContainer name="TimeStamp2">
<xtce:EntryList>
<xtce:ParameterRefEntry parameterRef="Seconds"/>
<xtce:ParameterRefEntry parameterRef="Milliseconds"/>
<xtce:ParameterRefEntry parameterRef="Microseconds"/>
</xtce:EntryList>
<xtce:BaseContainer containerRef="MySecondaryHeader">
<xtce:RestrictionCriteria>
<xtce:ComparisonList>
<xtce:Comparison parameterRef="SecondaryHeaderFlag" value="1"/>
<xtce:Comparison parameterRef="ID" comparisonOperator=">=" value="100"/>
</xtce:ComparisonList>
</xtce:RestrictionCriteria>
</xtce:BaseContainer>

</xtce:SequenceContainer>

NOTES

1 In the example above, the MySecondaryHeader container is only included if SecondaryHeaderFlag is ‘1’.
2 If the IncludeCondition is true (SecondaryHeaderFlag == ‘1’), then dynamic container matching can be processed.
3 In the first case, if the ID of the packet is below 100, then TimeStamp1 will be included. But if ID is 100 or larger, then TimeStamp2 will be included.
4 If neither matches, no descriptive content is added.

[image: image141.emf]MyPacket1

MySecondaryHdrRef

PxEntryRefs

TimeStamp2

TimeStamp1

{ID >= 100}

MySecondaryHeader

{ID < 100}

{SecHdrFlg == 1}

Figure 5‑45 TC \f G "-4
Dynamic Container Match Example"
: Dynamic Container Match Example

5.6 MetaCommand Inheritance

5.6.1 General

While MetaCommand inheritance semantics are described in 4.4.5.2.3, this subsection focuses on the construction of concrete MetaCommands and their CommandContainers.
MetaCommand inheritance takes place using the BaseMetaCommand element. Through this inheritance mechanism, the child MetaCommand may inherit certain aspects of the parent MetaCommand. It can also optionally supply argument values to parent arguments.

5.6.2 MetaCommand/CommandContainer Inheritance

The MetaCommand/CommandContainer/BaseContainer must be supplied in order for the child command to inherit the EntryList of the parent.
The MetaCommand/CommandContainer/BaseContainer element behaves in a similar way to the other container forms of inheritance (see 4.3.4.9).

Examples

In this example a command is defined with MetaCommand. It takes one argument. Two commands are then defined from it. Both set the argument to ‘lock in’ the user input.

<xtce:MetaCommandSet>
<xtce:MetaCommand name="Power">
<xtce:ArgumentList>
<xtce:Argument argumentTypeRef="ONorOFFEnum" name="PowerState"/>
</xtce:ArgumentList>
<xtce:CommandContainer name="PowerPacket">
<xtce:EntryList>
<xtce:FixedValueEntry binaryValue="AA"/>
<xtce:ArgumentRefEntry argumentRef="PowerState"/>
</xtce:EntryList>
</xtce:CommandContainer>
</xtce:MetaCommand>
<xtce:MetaCommand name="PowerON">
<xtce:BaseMetaCommand metaCommandRef="Power">
<xtce:ArgumentAssignmentList>
<xtce:ArgumentAssignment argumentName="PowerState" argumentValue="1"/>
</xtce:ArgumentAssignmentList>
</xtce:BaseMetaCommand>
<xtce:CommandContainer name="PowerONPacket">
<xtce:EntryList/>
<xtce:BaseContainer containerRef="PowerPacket"/>
</xtce:CommandContainer>
</xtce:MetaCommand>
<xtce:MetaCommand name="PowerOFF">
<xtce:BaseMetaCommand metaCommandRef="Power">
<xtce:ArgumentAssignmentList>
<xtce:ArgumentAssignment argumentName="PowerState" argumentValue="0"/>
</xtce:ArgumentAssignmentList>
</xtce:BaseMetaCommand>
<xtce:CommandContainer name="PowerOFFPacket">
<xtce:EntryList/>
<xtce:BaseContainer containerRef="PowerPacket"/>
</xtce:CommandContainer>
</xtce:MetaCommand>

</xtce:MetaCommandSet>

In the above example, a simple ‘Power’ command is defined. It has an ‘opcode’ of ‘0xAA’ and takes one argument. It does not care if the power is ‘OFF’ or ‘ON’.
Two additional commands are defined from Power; each sets the argument to either PowerON or PowerOFF.
In both cases, the MetaCommand/CommandContainer of each derives from the Power/PowerPacket MetaCommand/CommandContainer. This reference must be set explicitly in XTCE. The EntryList is empty in each since it provides no additional items to the main command.

5.6.3 Treating BaseMetaCommand as an Operation

5.6.3.1 General

This subsection is similar to 5.4.2.3, which describes treating BaseContainer as operational.
This subsection presents an approach base around the idea of treating the inheritance as a processable operation. The result is an object or entity that has accumulated the various items defined into one entity.
In the case of MetaCommands, there is a ‘dual’ inheritance mechanism. First, the MetaCommand/BaseMetaCommand inheritance chain can be processed. Once complete, its CommandContainer/BaseContainer can be processed.
To determine which MetaCommands to process, the abstract attribute is used as the guide. Any nonabstract MetaCommand represents a real command instance. These can be processed and resolved to aggregated objects.

5.6.3.2 Extended Command Example

The first item shown is the CCSDS header container. This container is defined in ContainerSet, and in this particular implementation it is shared by both ‘sides’, telemetry and commanding.

<xtce:SequenceContainer abstract="true" name="CCSDSPacket">
<xtce:LongDescription>

Super-container for all CCSDS telemetry and command packets

</xtce:LongDescription>
<xtce:EntryList>
<xtce:ParameterRefEntry parameterRef="CCSDSVersion"/>
<xtce:ParameterRefEntry parameterRef="CCSDSType"/>
<xtce:ParameterRefEntry parameterRef="CCSDSSecH"/>
<xtce:ParameterRefEntry parameterRef="CCSDSAPID"/>
<xtce:ParameterRefEntry parameterRef="CCSDSGroupFlags"/>
<xtce:ParameterRefEntry parameterRef="CCSDSSourceSequenceCount"/>
<xtce:ParameterRefEntry parameterRef="CCSDSPacketLength"/>
</xtce:EntryList>

</xtce:SequenceContainer>

On the commanding side, first an ArgumentType is shown. It is used by all the commands being presented and is an enumeration that has three values: ‘On’, ‘Off’, or ‘NoChange’.

<xtce:ArgumentTypeSet>
<xtce:EnumeratedArgumentType name="RelayStateType">
<xtce:UnitSet/>
<xtce:IntegerDataEncoding sizeInBits="3"/>
<xtce:EnumerationList>
<xtce:Enumeration value="0" label="On"/>
<xtce:Enumeration value="1" label="Off"/>
<xtce:Enumeration value="2" label="NoChange"/>
</xtce:EnumerationList>
</xtce:EnumeratedArgumentType>

</xtce:ArgumentTypeSet>

In MetaCommandSet, a super or root command is described. This is an abstraction, and it conveys little real information (the EntryList is empty) except for certain values associated with some packet header fields that are true for all commands (in this conceptual system). It extends CCSDSPacket.

<xtce:MetaCommand abstract="true" name="CCSDSCommand">
<xtce:LongDescription>

Super-Command for all CCSDS commands.

</xtce:LongDescription>
<xtce:CommandContainer name="CCSDSCommandPacket">
<xtce:LongDescription>

Super-container for all CCSDS command packets.

</xtce:LongDescription>
<xtce:EntryList/>
<xtce:BaseContainer containerRef="CCSDSPacket">
<xtce:RestrictionCriteria>
<xtce:ComparisonList>
<xtce:Comparison value="0" parameterRef="CCSDSVersion"/>
<xtce:Comparison value="1" parameterRef="CCSDSType"/>
<xtce:Comparison value="0" parameterRef="CCSDSSecH"/>
<xtce:Comparison value="3" parameterRef="CCSDSGroupFlags"/>
</xtce:ComparisonList>
</xtce:RestrictionCriteria>
</xtce:BaseContainer>
</xtce:CommandContainer>

</xtce:MetaCommand>
After this, a SetRelay command is defined. Since it is not marked abstract, it is itself a command instance. The general form of the command is:

<xtce:MetaCommand abstract="false" name="SetRelays">
<xtce:BaseMetaCommand metaCommandRef="CCSDSCommand"/>
<xtce:SystemName>HRD</xtce:SystemName>
<xtce:ArgumentList>
<xtce:Argument argumentTypeRef="RelayStateType" name="RelayState1"/>
<xtce:Argument argumentTypeRef="RelayStateType" name="RelayState2"/>
<xtce:Argument argumentTypeRef="RelayStateType" name="RelayState3"/>
<xtce:Argument argumentTypeRef="RelayStateType" name="RelayState4"/>
</xtce:ArgumentList>
<xtce:CommandContainer name="SetRelaysPacket">
<xtce:AncillaryDataSet>
<xtce:AncillaryData name="VCID">0</xtce:AncillaryData>
</xtce:AncillaryDataSet>
<xtce:EntryList>
<xtce:ArgumentRefEntry argumentRef="RelayState1"/>
<xtce:ArgumentRefEntry argumentRef="RelayState2"/>
<xtce:ArgumentRefEntry argumentRef="RelayState3"/>
<xtce:ArgumentRefEntry argumentRef="RelayState4"/>
</xtce:EntryList>
<xtce:BaseContainer containerRef="CCSDSCommandPacket">
<xtce:RestrictionCriteria>
<xtce:Comparison value="179" parameterRef="CCSDSAPID"/>
</xtce:RestrictionCriteria>
</xtce:BaseContainer>
</xtce:CommandContainer>

</xtce:MetaCommand>

The command takes four arguments. Along with the header, it inherits through CCSDSCommandPacket. These arguments are used to make up the items in the actual packet.
After this, two derived commands are based on it. The first sets all the relays on. It does this by extending the SetRelay command and providing argument assignments to the various arguments as follows:

<xtce:MetaCommand name="SetAllRelaysOn">
<xtce:BaseMetaCommand metaCommandRef="SetRelays">
<xtce:ArgumentAssignmentList>
<xtce:ArgumentAssignment argumentValue="On" argumentName="RelayState1"/>
<xtce:ArgumentAssignment argumentValue="On" argumentName="RelayState2"/>
<xtce:ArgumentAssignment argumentValue="On" argumentName="RelayState3"/>
<xtce:ArgumentAssignment argumentValue="On" argumentName="RelayState4"/>
</xtce:ArgumentAssignmentList>
</xtce:BaseMetaCommand>
<xtce:SystemName>HRD</xtce:SystemName>
<xtce:CommandContainer name="SetAllRelaysOnPacket">
<xtce:EntryList/>
<xtce:BaseContainer containerRef="SetRelaysPacket"/>
</xtce:CommandContainer>

</xtce:MetaCommand>
The purpose of the construction is to completely reuse the general relay command packet. A new command is created by specifying and setting arguments to certain values.
In a real system, the SetRelay command itself may be set to ‘abstract’, and only the various derived command base on it would be accessible to the users. In this example they are all nonabstract.

The second derived command simply turns off all the relays by supplying the appropriate ‘Off’ flag to ArgumentAssignment.

<xtce:MetaCommand name="SetAllRelaysOff">
<xtce:BaseMetaCommand metaCommandRef="SetRelays">
<xtce:ArgumentAssignmentList>
<xtce:ArgumentAssignment argumentValue="Off" argumentName="RelayState1"/>
<xtce:ArgumentAssignment argumentValue="Off" argumentName="RelayState2"/>
<xtce:ArgumentAssignment argumentValue="Off" argumentName="RelayState3"/>
<xtce:ArgumentAssignment argumentValue="Off" argumentName="RelayState4"/>
</xtce:ArgumentAssignmentList>
</xtce:BaseMetaCommand>
<xtce:SystemName>HRD</xtce:SystemName>
<xtce:CommandContainer name="SetAllRelaysOffPacket">
<xtce:EntryList/>
<xtce:BaseContainer containerRef="SetRelaysPacket"/>
</xtce:CommandContainer>

</xtce:MetaCommand>

Three commands are created by using the inheritance mechanism.

5.6.3.3 Processing the Example

Given the example above and the three commands, if the inheritance mechanisms are treated as operations, the result is as follows:

First the SetRelays command becomes the following:
<ProcessedMetaCommand name="SetRelays">
<SystemName>HRD</SystemName>
<ArgumentList>
<Argument argumentTypeRef="RelayStateType" name="RelayState1"/>
<Argument argumentTypeRef="RelayStateType" name="RelayState2"/>
<Argument argumentTypeRef="RelayStateType" name="RelayState3"/>
<Argument argumentTypeRef="RelayStateType" name="RelayState4"/>
</ArgumentList>
<ProcessedMetaCommandCommandContainer name="SetRelaysPacket">
<AncillaryDataSet>
<AncillaryData name="VCID">0</AncillaryData>
</AncillaryDataSet>
<EntryList>
<ParameterRefEntry parameterRef="CCSDSVersion"/>
<ParameterRefEntry parameterRef="CCSDSType"/>
<ParameterRefEntry parameterRef="CCSDSSecH"/>
<ParameterRefEntry parameterRef="CCSDSAPID"/>
<ParameterRefEntry parameterRef="CCSDSGroupFlags"/>
<ParameterRefEntry parameterRef="CCSDSSourceSequenceCount"/>
<ParameterRefEntry parameterRef="CCSDSPacketLength"/>
<Restriction>
<ComparisonList>
<Comparison value="0" parameterRef="CCSDSVersion"/>
<Comparison value="1" parameterRef="CCSDSType"/>
<Comparison value="0" parameterRef="CCSDSSecH"/>
<Comparison value="3" parameterRef="CCSDSGroupFlags"/>
</ComparisonList>
</Restriction>
<ArgumentRefEntry argumentRef="RelayState1"/>
<ArgumentRefEntry argumentRef="RelayState2"/>
<ArgumentRefEntry argumentRef="RelayState3"/>
<ArgumentRefEntry argumentRef="RelayState4"/>
<Restriction>
<Comparison value="179" parameterRef="CCSDSAPID"/>
</Restriction>
</EntryList>
</ProcessedMetaCommandCommandContainer>

</ProcessedMetaCommand>

NOTE
–
The Restrictions are placed relative to the now-processed-away containers in which they were defined. This helps to maintain their proper scope.

Next, the processed SetRelaysOn command has the following information in it:

<ProcessedMetaCommand name="SetAllRelaysOn">
<ArgumentAssignmentList>
<ArgumentAssignment argumentValue="On" argumentName="RelayState1"/>
<ArgumentAssignment argumentValue="On" argumentName="RelayState2"/>
<ArgumentAssignment argumentValue="On" argumentName="RelayState3"/>
<ArgumentAssignment argumentValue="On" argumentName="RelayState4"/>
</ArgumentAssignmentList>
<SystemName>HRD</SystemName>
<ArgumentList>
<Argument argumentTypeRef="RelayStateType" name="RelayState1"/>
<Argument argumentTypeRef="RelayStateType" name="RelayState2"/>
<Argument argumentTypeRef="RelayStateType" name="RelayState3"/>
<Argument argumentTypeRef="RelayStateType" name="RelayState4"/>
</ArgumentList>
<ProcessedMetaCommandCommandContainer name="SetAllRelaysOnPacket">
<AncillaryDataSet>
<AncillaryData name="VCID">0</AncillaryData>
</AncillaryDataSet>
<EntryList>
<ParameterRefEntry parameterRef="CCSDSVersion"/>
<ParameterRefEntry parameterRef="CCSDSType"/>
<ParameterRefEntry parameterRef="CCSDSSecH"/>
<ParameterRefEntry parameterRef="CCSDSAPID"/>
<ParameterRefEntry parameterRef="CCSDSGroupFlags"/>
<ParameterRefEntry parameterRef="CCSDSSourceSequenceCount"/>
<ParameterRefEntry parameterRef="CCSDSPacketLength"/>
<Restriction>
<ComparisonList>
<Comparison value="0" parameterRef="CCSDSVersion"/>
<Comparison value="1" parameterRef="CCSDSType"/>
<Comparison value="0" parameterRef="CCSDSSecH"/>
<Comparison value="3" parameterRef="CCSDSGroupFlags"/>
</ComparisonList>
</Restriction>
<ArgumentRefEntry argumentRef="RelayState1"/>
<ArgumentRefEntry argumentRef="RelayState2"/>
<ArgumentRefEntry argumentRef="RelayState3"/>
<ArgumentRefEntry argumentRef="RelayState4"/>
<Restriction>
<Comparison value="179" parameterRef="CCSDSAPID"/>
</Restriction>
</EntryList>
</ProcessedMetaCommandCommandContainer>

</ProcessedMetaCommand>
It should be the same as the basic SetRelays command except for the ArgumentAssignments.

The same should be true for the SetRelaysOff command which is as follows:

<ProcessedMetaCommand name="SetAllRelaysOff">
<ArgumentAssignmentList>
<ArgumentAssignment argumentValue="Off" argumentName="RelayState1"/>
<ArgumentAssignment argumentValue="Off" argumentName="RelayState2"/>
<ArgumentAssignment argumentValue="Off" argumentName="RelayState3"/>
<ArgumentAssignment argumentValue="Off" argumentName="RelayState4"/>
</ArgumentAssignmentList>
<SystemName>HRD</SystemName>
<ArgumentList>
<Argument argumentTypeRef="RelayStateType" name="RelayState1"/>
<Argument argumentTypeRef="RelayStateType" name="RelayState2"/>
<Argument argumentTypeRef="RelayStateType" name="RelayState3"/>
<Argument argumentTypeRef="RelayStateType" name="RelayState4"/>
</ArgumentList>
<ProcessedMetaCommandCommandContainer name="SetAllRelaysOffPacket">
<AncillaryDataSet>
<AncillaryData name="VCID">0</AncillaryData>
</AncillaryDataSet>
<EntryList>
<ParameterRefEntry parameterRef="CCSDSVersion"/>
<ParameterRefEntry parameterRef="CCSDSType"/>
<ParameterRefEntry parameterRef="CCSDSSecH"/>
<ParameterRefEntry parameterRef="CCSDSAPID"/>
<ParameterRefEntry parameterRef="CCSDSGroupFlags"/>
<ParameterRefEntry parameterRef="CCSDSSourceSequenceCount"/>
<ParameterRefEntry parameterRef="CCSDSPacketLength"/>
<Restriction>
<ComparisonList>
<Comparison value="0" parameterRef="CCSDSVersion"/>
<Comparison value="1" parameterRef="CCSDSType"/>
<Comparison value="0" parameterRef="CCSDSSecH"/>
<Comparison value="3" parameterRef="CCSDSGroupFlags"/>
</ComparisonList>
</Restriction>
<ArgumentRefEntry argumentRef="RelayState1"/>
<ArgumentRefEntry argumentRef="RelayState2"/>
<ArgumentRefEntry argumentRef="RelayState3"/>
<ArgumentRefEntry argumentRef="RelayState4"/>
<Restriction>
<Comparison value="179" parameterRef="CCSDSAPID"/>
</Restriction>
</EntryList>

</ProcessedMetaCommandCommandContainer>

</ProcessedMetaCommand>

Further processing could take place to fully resolve all the references and gather all the information into one aggregate object. This may then change to some other format as is necessary.

5.7 Referencing that Crosses Sides

Items defined on one ‘side’ of XTCE (TelemetryMetaData or CommandMetaData) can be referenced to items on the other side. In this case, only the construction is used on the referring side. The values represented by those constructions are not copied.

The exception is ParameterInstanceRefs which refer to both constructions and values.

5.8 Reference Scope

5.8.1 General

The scope of items associated with NameReferences is important in a variety of locations in XTCE. The subsections below explain the details.

5.8.2 In SpaceSystem Hierarchies

SpaceSystem hierarchies have already been discussed in 4.2; however, one area needs further consideration. If an item is defined in a particular SpaceSystem and it refers to another item in another SpaceSystem, care should be taken that any NameReferences it has are resolved relative to the second SpaceSystem. This is particularly true for NameReferences that are either unqualified or have a relative path.

For example, if a ParameterType called SizeType is defined in SpaceSystem A, then in SpaceSystem B, Size Parameter, SizeType, and ParameterType are defined. SizeType is then an unqualified NameReference.

Care should be taken to find SpaceSystem B’s Size parameter’s SizeType in B, not in A by mistake.

[image: image142.emf]SpaceSystem A

ParameterRef: /B/SIze

ParameterType: SIzeType

SpaceSystem B

Parameter: SIze

ParameterType: SIzeType

Figure 5‑55 TC \f G "-5
NameReferences Should Not ‘Move’ Inadvertently through Processing"
: NameReferences Should Not ‘Move’ Inadvertently through Processing

Items are associated with the SpaceSystem in which they are defined, not with the SpaceSystem in which they are used.

[image: image143.emf]SpaceSystem A

ParameterRef: /B/SIze

ParameterType: SIzeType

SpaceSystem B

Parameter: SIze

ParameterType: SIzeType

Figure 5‑65 TC \f G "-6
Definitions Are Sticky"
: Definitions Are Sticky

5.8.3 In RestrictionCriteria

ParameterInstanceRefs that are unqualified in a container’s RestrictionCriteria and have an instance of zero first refer to the entries in that container. If no matching parameter is found, then it refers to a conceptual received telemetry table. It is also legal for the parameter to be a session variable.

ParameterInstanceRefs in RestrictionCriteria cannot refer to items in child containers.

5.8.4 In IncludeCondition

The scope of instances defined in IncludeCondition is similar to RestrictionCriteria. The instance cannot refer ‘forward’ in the container past the point in the EntryList in which the IncludeCondition has been defined. For example:

<xtce:SequenceContainer name="IncludeScope">
xtce:EntryList>
<xtce:ParameterRefEntry parameterRef="P0"/>
<xtce:ParameterRefEntry parameterRef="P1">
<xtce:IncludeCondition>
<xtce:ComparisonList>
<xtce:Comparison parameterRef="P0" value="1"/>
<xtce:Comparison parameterRef="P2" value="1"/>
</xtce:ComparisonList>
</xtce:IncludeCondition>
</xtce:ParameterRefEntry>
<xtce:ParameterRefEntry parameterRef="P2"/>
</xtce:EntryList>

</xtce:SequenceContainer>
5.9 Array Parameters

An ArrayParameterType defines the number of dimensions in an array – and for XTCE1.2 the size of dimension directly. This differs from XTCE 1.2 in which the size of each dimension is defined at the ‘point of use’ in a container.

ArrayParameterType can refer to any other ParameterType, and a member of an Aggregate can refer to an ArrayParameterType in XTCE 1.2 now.
5.10 Defining Session Variables

Session variables or parameters are parameters with a ParameterType that has no DataEncoding element. They are used to represent items supplied by the processing system. The method of delivery is not specified in XTCE; however, some session variables may be associated in an algorithm, as shown below.

<xtce:TelemetryMetaData>
<xtce:ParameterTypeSet>
<xtce:IntegerParameterType name="VCIDType">
<xtce:UnitSet/>
</xtce:IntegerParameterType>
</xtce:ParameterTypeSet>
<xtce:ParameterSet>
<xtce:Parameter parameterTypeRef="VCIDType" name="VCID">

<xtce:ParameterProperties dataSource="local"/>
</xtce:Parameter>
</xtce:ParameterSet>

</xtce:TelemetryMetaData>

In the example above, the VCID Parameter has an IntegerParameterType with no encoding. Since there is no encoding, the VCID Parameter is a session variable.

5.11 Defining Pseudo-Parameters

Pseudo-parameters (also known as derived parameters) may be defined using parameters, ParameterTypes, and algorithms. Pseudo-parameters are session parameters (variables) associated with an algorithm used to produce them. MathOperation and CustomAlgorithm are available to describe the implementations; for example:

<xtce:TelemetryMetaData>
<xtce:ParameterTypeSet>
<xtce:FloatParameterType name="FahrenheitType">
<xtce:UnitSet>
<xtce:Unit>Fahrenheit</xtce:Unit>
</xtce:UnitSet>
<xtce:FloatDataEncoding encoding="IEEE754_1985" sizeInBits="32"/>
</xtce:FloatParameterType>
<xtce:FloatParameterType name="CelsiusType">
<xtce:UnitSet>
<xtce:Unit>Celsius</xtce:Unit>
</xtce:UnitSet>
</xtce:FloatParameterType>
</xtce:ParameterTypeSet>
<xtce:ParameterSet>
<xtce:Parameter parameterTypeRef="FahrenheitType" name="Fahrenheit"/>

<xtce:Parameter parameterTypeRef="CelsiusType" name="Celsius">
<xtce:ParameterProperties dataSource="derived"/>
</xtce:Parameter>
</xtce:ParameterSet>
<xtce:AlgorithmSet>
<xtce:MathAlgorithm name="FahrenheitToCelsius">
<xtce:MathOperation outputParameterRef="Celsius">

<xtce:ParameterInstanceRefOperand parameterRef="Fahrenheit"/>
<xtce:ValueOperand>32</xtce:ValueOperand>

<xtce:Operator>-</xtce:Operator>

<xtce:ValueOperand>5</xtce:ValueOperand>
<xtce:Operator>*</xtce:Operator>

<xtce:ValueOperand>9</xtce:ValueOperand>
<xtce:Operator>/</xtce:Operator>
<xtce:TriggerSet>
<xtce:OnParameterUpdateTrigger parameterRef="Fahrenheit"/>
</xtce:TriggerSet>
</xtce:MathOperation>
</xtce:MathAlgorithm>
</xtce:AlgorithmSet>

</xtce:TelemetryMetaData>

The example describes how the parameter Celsius is derived from the parameter Fahrenheit. The algorithm used for the conversion is given as a MathOperation. It uses postfix notation, i.e., ‘reverse Polish notation’.

The above example specifies the conversion formula for Fahrenheit to Celsius that is given in infix notation as:
Celsius = (Fahrenheit – 32) * 5/9

To convert infix to postfix notation, the Shunting Yard Algorithm is used and produces this result:

Celsius = Fahrenheit 32 – 5 * 9 /

The postfix notation eliminates the need for parentheses and therefore simplifies the XML description.

6 Telemetry Container Patterns

6.1 Overview

As can be seen from the proceeding sections, there is flexibility in using containers to describe packaging. This section provides some basic guidance for telemetry containers.
6.2 Telemetry Packet Patterns

6.2.1 General
The patterns outlined here use UML-like class diagrams. The labels are given as ‘<<stereotypes>>’ which describe the XTCE element being diagrammed.
6.2.2 Basic Pattern

[image: image144.emf]<<AbstractSequenceContainer>>

Header as “Generic Packet”

<<SequenceContainer>>

Specific Packet Body

{RestrictionCriteria/Constraints}

1-*

Figure 6‑16 TC \f G "-1
Basic Container Inheritance Pattern"
: Basic Container Inheritance Pattern

The basic pattern defines an abstract container for a given format and then derives all telemetry packets from it. For many missions, one level of inheritance is all that is needed to describe every package element in the system.

6.2.3 Pattern with An Optional Secondary Header

[image: image145.emf]<<AbstractSequenceContainer>>

Header as “Generic Packet”

<<SequenceContainer>>

Specific Packet Body

{RestrictionCriteria/Constraints}

1-*

<<SequenceContainer>>

SecondaryHeader

{IncludeCondition}

Figure 6‑26 TC \f G "-2
Including a Secondary Header"
: Including a Secondary Header

Here an optional SecondaryHeader is using a ContainerEntryRef with an IncludeCondition in the Generic Packet’s EntryList. A condition would check a flag to indicate if it is present.

It may be easier to simply hard code the secondary header in the packet body containers that have them.

6.2.4 A More Complex Pattern

Additional levels of inheritance might be desired. Perhaps each telemetry packet has a common root, or represents a common service. In the pattern below, the telemetry packets have a common container.
[image: image146.emf]<<AbstractSequenceContainer>>

Header as “Generic Packet”

<<AbstractSequenceContainer>>

Shared by all Telemetry Packets

{RestrictionCriteria/Constraints}

<<SequenceContainer>>

SecondaryHeader

{IncludeCondition}

<<SequenceContainer>>

Specific Telemetry Packet

{RestrictionCriteria/Constraints}

1-*

Figure 6‑36 TC \f G "-3
Common Telemetry Root Container"
: Common Telemetry Root Container

6.2.5 Pattern With Dynamic SecondaryHeader Matching

[image: image147.emf]<<AbstractSequenceContainer>>

Header as “Generic Packet”

<<AbstractSequenceContainer>>

Shared by all Telemetry Packets

{RestrictionCriteria/Constraints}

<<AbsSequenceContainer>>

SecondaryHeader

{IncludeCondition}

<<SequenceContainer>>

Specific Telemetry Packet

{RestrictionCriteria/Constraints}

1-*

<<SeqContainer>>

TimeFormat1

<<SeqContainer>>

TimeFormatN

{RestrictionCriteria} {RestrictionCriteria}

Figure 6‑46 TC \f G "-4
Dynamic Container Matching of Secondary Headers"
: Dynamic Container Matching of Secondary Headers

Dynamic container matching could be used for the secondary header. In this example, the time stamp format changes depending on local condition.

7 Commands and Command Container Patterns

7.1 General

There are several ways to build commands in XTCE depending on end-user needs and requirements. This section shows three basic patterns for building commands.
7.2 Command Patterns

7.2.1 General

UML-like class diagrams are again used to show the relationships for both the MetaCommands and their CommandContainers.

7.2.2 Simple Pattern

The simplest form of a command uses individual MetaCommands that define their entire packet in their CommandContainer only (MetaCommand/CommandContainer). The form uses FixedValueEntry to supply hard-coded information such as opcodes. Arguments easily can be added to this simple construction.

[image: image148.emf]<<MetaCommand>>

Command

<<CommandContainer>>

FixedValueEntries

Figure 7‑17 TC \f G "-1
Simple Command Pattern"
: Simple Command Pattern

7.2.3 Complex Pattern

The next level of complexity starts with an abstract MetaCommand that supplies some common portions of all mission commands in its CommandContainer. This ‘generic command’ is then derived into concrete commands.

[image: image149.emf]<<AbstractMetaCommand>>

MissionCommand Template

<<CommandContainer>>

MissionEntries

<<MetaCommand>>

Specific Command

<<CommandContainer>>

Specific Cmd Entries

1-* 1-*

{RestrictionCriteria/Constraints}

Figure 7‑27 TC \f G "-2
Basic Command Inheritance Pattern"
: Basic Command Inheritance Pattern

What is not shown is that MissionEntries may share a common header defined in TelemetryMetaData.

7.2.4 Generic Pattern

This version defines a root Mission MetaCommand and associated Mission CommandContainer for a given mission. It derives them from a common set of constructions.

[image: image150.emf]<<MetaCommand>>

Specific Command

<<CommandContainer>>

Specific Cmd Entries

1-*

1-*

{RestrictionCriteria/Constraints}

<<AbstractMetaCommand>>

MissionCommand Template

<<CommandContainer>>

MissionEntries

<<AbstractMetaCommand>>

Generic Command Template

<<CommandContainer>>

Header Entries

{RestrictionCriteria/Constraints}

{RestrictionCriteria/Constraints}

{RestrictionCriteria/Constraints}

1-*

1-*

Figure 7‑37 TC \f G "-3
Mission MetaCommand"
: Mission MetaCommand

In some systems derived commands may be further defined. These can be added by deriving them from the Specific Command and its CommandContainer.

8 Suggestions for Creating and Parsing XTCE documents

8.1 General

XTCE documents can be created in a variety of ways: manually with a text editor or tool such as XMLSpy, or programmatically.
The following tools and technologies have proven helpful in this regard:

a) XML Technologies:
· XPath 1.0 and 2.0: look up nodes in an XML file;
· XSLT: script-based transformations;
· XQuery: query a file somewhat similar to SQL query concepts;
b) Low-Level Parsers (programming libraries):
· SAX: event-driven parsing;
· DOM: tree-based parsing;
c) Schema-Type Mappings to Programming Languages:
· XMLSpy or other commercial products: C++, Java, C#, etc.;
· Eclipse IDE EMF: Java;
· XMLBeans: Java;
· JAXB: Java (part of Java distribution);
· Castor and others.
The schema-type mappings to programming languages deserves additional discussion. These mapping programs (sometimes called XML data binding) read in any XML Schema and then produce a program mapping of the schema types used to create it as classes in the programming language. These classes can then be used to parse or create XML files in the XML Schema language. The mapping created is convenient because artifacts in the programming language match familiar schema types.

8.2 JAXB Case Study

8.2.1 Overview

The following subsection briefly looks at a JAXB XTCE mapping. Many of the other XML data-binding tools listed above will produce similar results.

All of these tools work in a similar fashion. They allow one to read in an XML Schema (such as XTCE) and then in a programming language (such as Java) produce a set of classes that represent the simple types, the complex types, the elements, and the attributes in that XML Schema.

One can then read an XML file into these objects created from the classes; this is referred to as ‘unmarshalling’. By creating objects from these and supplying the information of interest, one can produce XML files by serializing the objects to XML; this is known as ‘marshalling’.
For example, JAXB maps the XML Schema xsd:string type to a java.lang.String or the SpaceSystem in XTCE to a class called SpaceSystemType. The result is a high-level API which varies from something like DOM that offers a lower level of access to XML files using a generic API.

JAXB is currently included as part of the official Java distribution.

8.2.2 XJC

The xjc tool is the JAXB supplied to read in the XML Schema and map it into Java classes. JAXB follows some basic rules and maps the XML simple data types to certain included Java classes (i.e., the simple data type string to String). It then implements classes for items that have been defined in the XML Schema. This process is highly configurable to improve the mapping in various ways.

8.2.3 XJC Configuration File

A configuration file can be used to manipulate xjc in numerous ways. However it is recommendated to use the default mappings.

8.2.4 Marshalling and Unmarshalling

The basic usage of JAXB from the programmer standpoint is reading in an existing XML file and binding that into the proper JAXB-generated Java class objects representing the information in the file. For XTCE this means reading in an XTCE file and returning a set of objects representing the XTCE elements and attributes in the file starting with an object for the SpaceSystem root.

In JAXB this is called unmarshalling, and the converse is called marshalling. Marshalling produces XML output from the objects that have been created from the classes generated representing the schema (such as XTCE).

Simple examples of these two processes are given below.

8.2.5 Unmarshalling Example

import java.io.File;
import java.util.List;

import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBElement;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Unmarshaller;

import org.omg.spec.xtce._20180204.SpaceSystemType;
import org.omg.spec.xtce._20180204.ParameterType;

public class ReadXTCEDoc {

public static void main(String[] args) {
try {
JAXBContext jc =
JAXBContext.newInstance("org.omg.spec.xtce._20180204");
Unmarshaller unmarshaller = jc.createUnmarshaller();
Object temp = unmarshaller.unmarshal(new File(args[0]));
JAXBElement jaxbElement = ((JAXBElement) temp);
SpaceSystemType spaceSystem =
(SpaceSystemType)jaxbElement.getValue();
System.out.println("Read: " + spaceSystem.getName());
List<Object> params =
spaceSystem.

getTelemetryMetaData().

getParameterSet().

getParameterOrParameterRef();
for (Object p : params) {
 if (p instanceof ParameterType)
 System.out.println("p: " + ((ParameterType)p).getName());
}
} catch (JAXBException e) {
e.printStackTrace();
}
}
}
As can be seen, the program unmarshalls a pre-existing XTCE XML file as given in the command-line arguments. From there it simply gets the first SpaceSystem and prints out the name of any Parameters found.

The imports show that the JAXB-generated classes are in org.omg.space.xtce. This was done by the xjc program but can be overridden by the user.

8.2.6 Marshalling Example

import java.math.BigInteger;
import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBElement;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Marshaller;
import org.omg.spec.xtce._20180204.IntegerDataEncodingType;
import org.omg.spec.xtce._20180204.NameDescriptionType;
import org.omg.spec.xtce._20180204.ObjectFactory;
import org.omg.spec.xtce._20180204.ParameterSetType;
import org.omg.spec.xtce._20180204.SpaceSystemType;
import org.omg.spec.xtce._20180204.IntegerParameterType;
public class WriteXTCEDoc {

JAXBElement<SpaceSystemType> spaceRoot;

JAXBContext jc;

Marshaller marshaller;

ObjectFactory factory;

public WriteXTCEDoc() throws JAXBException {

jc = JAXBContext.newInstance("org.omg.spec.xtce._20180204");

marshaller = jc.createMarshaller();
 marshaller.setProperty(

 "com.sun.xml.internal.bind.namespacePrefixMapper",
 new XTCEPrefixMapper());

marshaller.setProperty(

 Marshaller.JAXB_SCHEMA_LOCATION," http://www.omg.org/spec/XTCE/20180204
 XTCE12.xsd");

marshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT,

 new Boolean(true));

factory = new ObjectFactory();

}

public void buildCxSpaceSystem(String name) {

SpaceSystemType space = factory.createSpaceSystemType();

space.setName(name);

spaceRoot = factory.createSpaceSystem(space);

}

public void buildCxTelemetry() {

SpaceSystemType space = spaceRoot.getValue();

space.setTelemetryMetaData(factory.createTelemetryMetaDataType());

space.getTelemetryMetaData().setParameterSet(

 factory.createParameterSetType());

space.getTelemetryMetaData().setParameterTypeSet(

 factory.createParameterTypeSetType());

}

public void addParameter(String name, NameDescriptionType type) {

SpaceSystemType space = spaceRoot.getValue();

ParameterSetType parameterSet = space.getTelemetryMetaData()

 .getParameterSet();

ParameterSetType.Parameter parameter = factory

 .createParameterSetTypeParameter();

parameter.setName(name);

parameter.setParameterTypeRef(type.getName());

parameterSet.getParameters().add(parameter);

space.getTelemetryMetaData().getParameterTypeSet()

 .getParameterTypes().add(type);

}

public void addParameter(String name, String typeName) {

SpaceSystemType space = spaceRoot.getValue();

ParameterSetType parameterSet = space.getTelemetryMetaData()

 .getParameterSet();

ParameterSetType.Parameter parameter = factory

 .createParameterSetTypeParameter();

parameter.setName(name);

parameter.setParameterTypeRef(typeName);

parameterSet.getParameters().add(parameter);

}

public NameDescriptionType int16(String name) {

IntegerParameterType i = factory

 .createParameterTypeSetTypeIntegerParameterType();

i.setName(name);

IntegerDataEncodingType idenc = factory

 .createIntegerDataEncodingType();

idenc.setSizeInBits(BigInteger.valueOf(16));

i.setIntegerDataEncoding(idenc);

return i;

}

public void out() throws JAXBException {

marshaller.marshal(spaceRoot, System.out);

}

public static void main(String[] args) {

try {

WriteXTCEDoc XTCEDoc = new WriteXTCEDoc();

// the basic boilerplace - placeholder now

XTCEDoc.buildCxSpaceSystem("Test");

XTCEDoc.buildCxTelemetry();

//build some parameters

XTCEDoc.addParameter("P1", XTCEDoc.int16("Int16Type"));

XTCEDoc.addParameter("P2", "Int16Type");

XTCEDoc.addParameter("P3", "Int16Type");

XTCEDoc.out();

} catch (Exception e) {

e.printStackTrace();

}

}
}
import com.sun.xml.internal.bind.marshaller.NamespacePrefixMapper;
public class XTCEPrefixMapper extends NamespacePrefixMapper {

@Override

public String getPreferredPrefix(String namespaceUri,
 String suggestion, boolean requiredPrefix) {

if ("http://www.w3.org/2001/XMLSchema-instance".equals(namespaceUri))

return "xsi";

if ("http://www.omg.org/spec/XTCE/20180204".equals(namespaceUri))

return "xtce";

return suggestion;

}

@Override

public String[] getPreDeclaredNamespaceUris2() {

return new String[] {"xsi", "http://www.w3.org/2001/XMLSchema-instance"};

}
}

8.2.7 Marshaller XML Output eXAMPLE

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<xtce:SpaceSystem name="SpaceVehicle" xsi:schemaLocation="http://www.omg.org/spec/XTCE/20180204 XTCE12.xsd" xmlns:xtce="http://www.omg.org/spec/XTCE/20180204" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <xtce:TelemetryMetaData>

 <xtce:ParameterTypeSet>

 <xtce:IntegerParameterType name="Int16Type">

 <xtce:IntegerDataEncoding sizeInBits="16"/>

 </xtce:IntegerParameterType>

 </xtce:ParameterTypeSet>

 <xtce:ParameterSet>

 <xtce:Parameter parameterTypeRef="Int16Type" name="P1"/>

 <xtce:Parameter parameterTypeRef="Int16Type" name="P2"/>

 <xtce:Parameter parameterTypeRef="Int16Type" name="P3"/>

 </xtce:ParameterSet>

 </xtce:TelemetryMetaData>

</xtce:SpaceSystem>
8.2.8 Other Data-Binding Issues
Two issues seem to come up consistently with all of the various XML data-binding tools. The first is the Condition element that has two elements in it with the same name (ParameterInstanceRef). The second is the MetaCommand/CommandContainer that has both an ArrayParameterRefEntry and ArrayArgumentRefEntry constructed using the same schema type.

The way to solve these problems in terms of reading the information out or creating it is to interact more directly with the XML. So far the various data-binding tools used have all provided this mechanism in some manner, and these two more difficult cases can be handled.

8.3 A Basic Roundtrip Conversion Process

Many new users of XTCE will have a pre-existing source of telemetry and command description information that they wish to map to XTCE. Part of that process is to verify the result by converting the created XTCE file back to its original description format, and then comparing the original files to the converted XTCE files. This process is called roundtrip conversion.
These convertors or translators seem to follow a rather basic process that is outlined here and can be tuned for local needs:

a) The parser or software needed to read the information in the original telemetry and command descriptions is acquired.

· In some cases it may not be possible to acquire such software. If not, one option is to convert the files to XML. Depending on the format, this can be a fairly easy process.
· Once this process has been completed, the new XML version of the original file can be read into a program like XMLSpy. XMLSpy will derive an XML Schema from it.
b) The original format is taken and its keywords are listed in a column. This can be done using a program such as Excel.

c) A second column is created and next to each item is placed the XTCE elements and attributes that most correspond in concept to them. There are several suggestions to take into account at this step:

1) An attempt should be made to map like concepts to like concepts.
2) AncillaryData should not be overused.

3) An element should not be ‘misused’ to hold something it was never intended to hold.

4) Items that simply do not fit anywhere need to be described.

5) Areas that may require a more creative interpretation of an element or attribute need to be marked.

These suggestions are subjective. Typically the mapping will be direct, although some will require updates (minor, major).
d) A container and command-inheritance patterns should be chosen. The way the format describes telemetry packaging and commanding needs to be considered. Diagrams to map out a basic pattern for telemetry and commands should be used.

e) The mapping is produced. The mapping table and the container and command patterns are used to produce software that will read in the original files and convert them to XTCE. The XTCE files need to be validated.
f) The mapping is then reversed. The XTCE files are brought back to the original format and the results compared to the original.
g) The mapping is iteratively improved.

h) The mapping should be documented. Since it is desirable to share the mapping with others, the mapping table and the container and command inheritance patterns should be captured in documentation for distribution.

9 Complete Example

9.1 Overview

The following is a full example of a single telemetry packet. To save space, pattern #1 is used from 6.2.2.

9.2 Telemetry Packet Example

Table 9‑19 TC \f T "-1
Telemetry Packet Example"
: Telemetry Packet Example

	Name: HealthSafety1
	Byte Offset
	Bit Length
	Mnemonic
	Comments

	Channel
	N/A
	8
	Channel
	0x05—packets are associated with channel. The channel is supplied by the system and not held in the packet itself. It is not part of header.

	
	
	
	
	

	HEADER
	
	
	
	3 bytes

	ID
	0
	6
	ID
	0x18 (24)

	Type
	
	1
	Type
	0—command, 1—telemetry

	SecondaryHeader
	
	1
	SecH
	none, 1—yes

	Length
	2
	16
	Length
	Bytes—does not include header
– no secondary = 8
– w/secondary = 14

	Secondary Header
	
	
	
	6 bytes, secs/millis

	timestamp(seconds)
	4
	32
	Seconds
	Combined with below to form MissionTime -

	timestamp(milliseconds)
	8
	16
	MilliSeconds
	Part of MissionTime

	battery module temp
	10
	16
	PBATMTMP
	Convert to Float -- 12 lsb’s raw A/D read value
deg C = 5th order polynomial, coefficients:
(-7459.23273708, 8.23643519148,
-3.02185061876e-3, 2.33422429056e-7,
5.67189556173e-11)

	wheel timer flag
	12
	16
	PSWHLTIMFLG
	0—default
0 = Timer OFF
1 = Timer ON
2 = Timer Completed

	PseudoTelemetry
	
	
	
	Also known as derived; not part of header but part of parameter set

	MissionTime
	N/A
	48
	MissionTime
	Combined STIME and MSTIME

9.2.1 XTCE Representation

9.2.1.1 Overview

In this example, assume each packet is mapped to a singular ID.

9.2.1.2 The Parameters

<xtce:Parameter name="SecH" parameterTypeRef="SecHType"/>
<xtce:Parameter name="Type" parameterTypeRef="TypeType"/>
<xtce:Parameter name="ID" parameterTypeRef="IDType"/>
<xtce:Parameter name="Length" parameterTypeRef="LengthType"/>
<xtce:Parameter name="Seconds" parameterTypeRef="SecondsType"/>
<xtce:Parameter name="MilliSeconds" parameterTypeRef="MilliSecondsType"/>
<xtce:Parameter name="PBATMTEMP" parameterTypeRef="PBATMTEMPType"/>
<xtce:Parameter name="PSWHLTIMFLG" parameterTypeRef="PSWHLTIMFLGType"/>
<xtce:Parameter name="MissionTime" parameterTypeRef="MissionTimeType">

<xtce:ParameterProperties dataSource="derived"/>
</xtce:Parameter>
The MissionTime Parameter is an AbsoluteTimeParameterType composed of the two telemetry time values: Seconds and MilliSeconds. It is a derived Parameter.

9.2.1.3 The ParameterTypes

<xtce:ParameterTypeSet>

<xtce:IntegerParameterType signed="false" name="ChannelType">

<xtce:UnitSet/>

</xtce:IntegerParameterType>

<xtce:IntegerParameterType signed="false" name="IDType">

<xtce:UnitSet/>

<xtce:IntegerDataEncoding sizeInBits="8"/>

</xtce:IntegerParameterType>

<xtce:IntegerParameterType signed="false" name="SecHType">

<xtce:UnitSet/>

<xtce:IntegerDataEncoding sizeInBits="1"/>

</xtce:IntegerParameterType>

<xtce:IntegerParameterType signed="false" name="TypeType">

<xtce:UnitSet/>

<xtce:IntegerDataEncoding sizeInBits="1"/>

</xtce:IntegerParameterType>

<xtce:IntegerParameterType signed="false" name="LengthType">

<xtce:UnitSet/>

<xtce:IntegerDataEncoding sizeInBits="16"/>

</xtce:IntegerParameterType>

<xtce:EnumeratedParameterType name="PSWHLTIMFLGType" initialValue="TIMER_OFF">

<xtce:UnitSet/>

<xtce:IntegerDataEncoding sizeInBits="16"/>

<xtce:EnumerationList>

<xtce:Enumeration label="TIMER_OFF" value="0"/>

<xtce:Enumeration label="TIMER_ON" value="1"/>

<xtce:Enumeration label="TIMER_COMPLETED" value="2"/>

</xtce:EnumerationList>

</xtce:EnumeratedParameterType>

<xtce:FloatParameterType sizeInBits="64" name="PBATMTEMPType">

<xtce:UnitSet>

<xtce:Unit description="Bq">units:Becquerel</xtce:Unit>

</xtce:UnitSet>

<xtce:IntegerDataEncoding sizeInBits="16" encoding="twosComplement">

<xtce:DefaultCalibrator>

<xtce:PolynomialCalibrator>

<xtce:Term coefficient="-7459.23273708" exponent="0"/>

<xtce:Term coefficient="8.23643519148" exponent="1"/>

<xtce:Term coefficient="-3.02185061876e-3" exponent="2"/>

<xtce:Term coefficient="2.33422429056e-7" exponent="3"/>

<xtce:Term coefficient="5.67189556173e-11" exponent="4"/>

</xtce:PolynomialCalibrator>

</xtce:DefaultCalibrator>

</xtce:IntegerDataEncoding>

</xtce:FloatParameterType>

<xtce:AbsoluteTimeParameterType name="MissionTimeType">

<xtce:ReferenceTime>

<xtce:OffsetFrom parameterRef="Seconds"/>

</xtce:ReferenceTime>

</xtce:AbsoluteTimeParameterType>

<xtce:AbsoluteTimeParameterType name="SecondsType">

<xtce:Encoding units="seconds">

<xtce:IntegerDataEncoding sizeInBits="32"/>

</xtce:Encoding>

<xtce:ReferenceTime>

<xtce:OffsetFrom parameterRef="MilliSeconds"/>

</xtce:ReferenceTime>

</xtce:AbsoluteTimeParameterType>

<xtce:AbsoluteTimeParameterType name="MilliSecondsType">

<xtce:Encoding scale="0.001" units="seconds">

<xtce:IntegerDataEncoding sizeInBits="16"/>

</xtce:Encoding>

<xtce:ReferenceTime>

<xtce:Epoch>TAI</xtce:Epoch>

</xtce:ReferenceTime>

</xtce:AbsoluteTimeParameterType>
The header-based ParameterTypes are IntegerParameterTypes with unsigned IntegerDataEncodings. These are either flags or small integer values like ID or Length. The battery temperature-related parameter is a ‘count’ to a float polynomial conversion. The calibration produces a 64-bit or double-precision type. The timer-related value is coded as an enumeration. The remaining telemetry items are time related. The two time types, SecondsType and MilliSecondsType, are in the SecondaryHeader and are combined to create a pseudo-telemetry type called MissionTime.

9.2.1.4 The Containers

<xtce:SequenceContainer abstract="true" name="Header">

<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="ID"/>

<xtce:ParameterRefEntry parameterRef="SecH"/>

<xtce:ParameterRefEntry parameterRef="Type"/>

<xtce:ParameterRefEntry parameterRef="Length"/>

<xtce:ContainerRefEntry containerRef="SecondaryHeader">

<xtce:IncludeCondition>

<xtce:Comparison parameterRef="SecH" value="1"/>

</xtce:IncludeCondition>

</xtce:ContainerRefEntry>

</xtce:EntryList>
</xtce:SequenceContainer>
<xtce:SequenceContainer name="SecondaryHeader">

<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="Seconds"/>

<xtce:ParameterRefEntry parameterRef="MilliSeconds"/>

</xtce:EntryList>
</xtce:SequenceContainer>
<xtce:SequenceContainer name="HealthSafety1">

<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="PBATMTEMP"/>

<xtce:ParameterRefEntry parameterRef="PSWHLTIMFLG"/>

</xtce:EntryList>

<xtce:BaseContainer containerRef="Header">

<xtce:RestrictionCriteria>

<xtce:ComparisonList>

<xtce:Comparison value="1" parameterRef="Type"/>

<xtce:Comparison value="24" parameterRef="ID"/>

</xtce:ComparisonList>

</xtce:RestrictionCriteria>

</xtce:BaseContainer>
</xtce:SequenceContainer>
The above construction describes the HealthSafety1 packet. It derives from a Header that itself optionally includes the SecondaryHeader that has the time stamp. The conditions supplied indicate for HealthSafety1 to be present in the incoming byte stream; it must be telemetry (Type=1) and its ID must be 24. The length of the packet is determined using a discrete lookup that returns a different value depending on whether the SecondaryHeader is included. Most telemetry systems time stamp their packets.

9.2.1.5 Entire Example

The entire example is in annex A.

9.3 Command Example

9.3.1 General

Table 9‑29 TC \f T "-2
Command and Command Packet Example"
: Command and Command Packet Example

	Command Name
	Wheel Timer

	Mnemonic
	PWHTMR

	ID
	0x100
	CHANNEL
	9

	Op Code
	0x1e

	Data Field Length
	4 bytes

	Packet Format
	[Header] 1eCS aaaa
	Packet Name
	PWHTMRPacket

	Argument Fields

	Offset from Header
	Name
	Data Type
	Data Range

	2
	TimerStartStop
	Unsigned 16-bit integer, enumeration
	0 = stops the wheel SW timer (STOP)
1 = starts the wheel SW timer (START)

	Parameter Fields

	Offset from Header
	Name
	Data Type
	Data Range

	0
	OpCode
	Unsigned 8-bit integer
	0x1e

	1
	Checksum
	Unsigned 8-bit integer
	0x00-0xff

	Operation
	This command starts or stops the SW timer that turns on the reaction wheels at wheel_timer_alarm seconds

	Criticality
	Yes

	Telemetry Verification
	Command counter gets incremented.
The wheel_timer_flag in the slow HealthSafety1 will be set to data field (a).

	Error Conditions
	None reported.
return value: 0 if command did not execute; 0x0055 otherwise

9.3.2 XTCE Representation

9.3.2.1 Overview

In the following example it is assumed the ID is unique for each command packet.

9.3.2.2 The Parameters

<xtce:Parameter name="CommandCounter" parameterTypeRef="CommandCounterType">

<xtce:ParameterProperties dataSource="local"/>
</xtce:Parameter>
<xtce:Parameter name="CheckSum" parameterTypeRef="CheckSumType">

<xtce:ParameterProperties dataSource="derived"/>
</xtce:Parameter>
<xtce:Parameter name="CommandReturn" parameterTypeRef="CommandReturnType">

<xtce:ParameterProperties dataSource="local"/>
</xtce:Parameter>
The CheckSum is calculated by the system and inserted into the EntryList. The CommandCounter is maintained by the system. The parameters associated with the Header remain defined in the telemetry area.

9.3.2.3 The ParameterTypes

<xtce:IntegerParameterType name="CommandReturnType" signed="false">

<xtce:UnitSet/>
</xtce:IntegerParameterType>
<xtce:IntegerParameterType name="CommandCounterType" signed="false">

<xtce:UnitSet/>
</xtce:IntegerParameterType>
<xtce:IntegerParameterType name="CheckSumType" signed="false">

<xtce:UnitSet/>
<xtce:IntegerDataEncoding/>
</xtce:IntegerParameterType>
The default IntegerDataEncoding is 8 bits.

9.3.2.4 The ArgumentTypes

<xtce:EnumeratedArgumentType name="TimerStartStopType">

<xtce:UnitSet/>

<xtce:IntegerDataEncoding sizeInBits="16"/>

<xtce:EnumerationList>

<xtce:Enumeration label="TIMER_STOP" value="0"/>

<xtce:Enumeration label="TIMER_START" value="1"/>

</xtce:EnumerationList>
</xtce:EnumeratedArgumentType>
The argument is very similar to its telemetry cousin.

9.3.2.5 MetaCommand

<xtce:MetaCommand name="PWHTMR">

<xtce:ArgumentList>

<xtce:Argument name="TimerStartStop" argumentTypeRef="TimerStartStopType"/>

</xtce:ArgumentList>

<xtce:CommandContainer name="PWHTMRPacket">

<xtce:BinaryEncoding>

<xtce:SizeInBits>

<xtce:FixedValue>32</xtce:FixedValue>

</xtce:SizeInBits>

</xtce:BinaryEncoding>

<xtce:EntryList>

<xtce:FixedValueEntry binaryValue="1e"/>

<xtce:ParameterRefEntry parameterRef="CheckSum"/>

<xtce:ArgumentRefEntry argumentRef="TimerStartStop"/>

</xtce:EntryList>

<xtce:BaseContainer containerRef="Header">

<xtce:RestrictionCriteria>

<xtce:ComparisonList>

<xtce:Comparison parameterRef="ID" value="256"/>

<xtce:Comparison parameterRef="Type" value="0"/>

<xtce:Comparison parameterRef="SecH" value="0"/>

</xtce:ComparisonList>

</xtce:RestrictionCriteria>

</xtce:BaseContainer>

</xtce:CommandContainer>

<!-- Verifier and others shown below -->

</xtce:MetaCommand>
The MetaCommand (command description) has one argument called opcode. The opcode is supplied as a FixedEntryValue, and the rest are ParameterRefEntries.
9.3.2.6 Significance

<xtce:DefaultSignificance consequenceLevel="critical"/>
The command is marked as ‘critical’. This matches the description that uses the term in the table: ‘Criticality—yes’. One interpretation is that the mission must be in a ‘critical’ state in order for this command to be sent.

9.3.2.7 Verifier—Command Complete Test

<xtce:CompleteVerifier>
<xtce:ContainerRef containerRef="HealthSafety1"/>
<xtce:CheckWindow timeToStopChecking="PT10M"/>
<xtce:ReturnParmRef parameterRef="CommandReturn"/>

</xtce:CompleteVerifier>
The command CompleteVerifier starts its check for 10 minutes. The verifier is ‘kicked off’ by the receipt of the telemetry packet HealthSafety1. The ReturnParmRef is defined as a local parameter supplied by the system.
9.3.2.8 Verifier—Failed Verifier Test

<xtce:FailedVerifier>
<xtce:Comparison parameterRef="CommandReturn" value="0"/>
<xtce:CheckWindow timeToStopChecking="PT10M"/>

</xtce:FailedVerifier>
The failed verifier tests the value of CommandReturn. If zero, the command has failed.

9.3.2.9 ParameterToSet

<xtce:ParameterToSet parameterRef="CommandReturn" setOnVerification="release">
<xtce:NewValue>0x00</xtce:NewValue>

</xtce:ParameterToSet>
This code initializes the CommandReturn value before the command is sent.

<xtce:ParameterToSet parameterRef="CommandReturn">
<xtce:NewValue>0x55</xtce:NewValue>

</xtce:ParameterToSet>
Here, upon VerifierComplete, the CommandReturn is updated with the success value 0x55.

9.3.2.10 Full Example

The complete example is given in annex A.

ANNEX A

FULL EXAMPLE

<?xml version="1.0" encoding="UTF-8"?>
<!--Sample XML file generated by XMLSpy v2011 rel. 3 sp1 (x64) (http://www.altova.com)-->
<xtce:SpaceSystem name="SpaceVehicle" xsi:schemaLocation="http://www.omg.org/spec/XTCE/20180204 XTCE12.xsd" xmlns:xtce="http://www.omg.org/spec/XTCE/20180204" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<xtce:TelemetryMetaData>

<xtce:ParameterTypeSet>

<xtce:IntegerParameterType signed="false" name="IDType">

<xtce:UnitSet/>

<xtce:IntegerDataEncoding sizeInBits="8"/>

</xtce:IntegerParameterType>

<xtce:IntegerParameterType signed="false" name="SecHType">

<xtce:UnitSet/>

<xtce:IntegerDataEncoding sizeInBits="1"/>

</xtce:IntegerParameterType>

<xtce:IntegerParameterType signed="false" name="TypeType">

<xtce:UnitSet/>

<xtce:IntegerDataEncoding sizeInBits="1"/>

</xtce:IntegerParameterType>

<xtce:IntegerParameterType signed="false" name="LengthType">

<xtce:UnitSet/>

<xtce:IntegerDataEncoding sizeInBits="16"/>

</xtce:IntegerParameterType>

<xtce:EnumeratedParameterType name="PSWHLTIMFLGType" initialValue="TIMER_OFF">

<xtce:UnitSet/>

<xtce:IntegerDataEncoding sizeInBits="16"/>

<xtce:EnumerationList>

<xtce:Enumeration label="TIMER_OFF" value="0"/>

<xtce:Enumeration label="TIMER_ON" value="1"/>

<xtce:Enumeration label="TIMER_COMPLETED" value="2"/>

</xtce:EnumerationList>

</xtce:EnumeratedParameterType>

<xtce:FloatParameterType sizeInBits="64" name="PBATMTEMPType">

<xtce:UnitSet>

<xtce:Unit description="Bq">units:Becquerel</xtce:Unit>

</xtce:UnitSet>

<xtce:IntegerDataEncoding sizeInBits="16" encoding="twosComplement">

<xtce:DefaultCalibrator>

<xtce:PolynomialCalibrator>

<xtce:Term coefficient="-7459.23273708" exponent="0"/>

<xtce:Term coefficient="8.23643519148" exponent="1"/>

<xtce:Term coefficient="-3.02185061876e-3" exponent="2"/>

<xtce:Term coefficient="2.33422429056e-7" exponent="3"/>

<xtce:Term coefficient="5.67189556173e-11" exponent="4"/>

</xtce:PolynomialCalibrator>

</xtce:DefaultCalibrator>

</xtce:IntegerDataEncoding>

</xtce:FloatParameterType>

<xtce:AbsoluteTimeParameterType name="MissionTimeType">

<xtce:ReferenceTime>

<xtce:OffsetFrom parameterRef="Seconds"/>

</xtce:ReferenceTime>

</xtce:AbsoluteTimeParameterType>

<xtce:AbsoluteTimeParameterType name="SecondsType">

<xtce:Encoding units="seconds">

<xtce:IntegerDataEncoding sizeInBits="32"/>

</xtce:Encoding>

<xtce:ReferenceTime>

<xtce:OffsetFrom parameterRef="MilliSeconds"/>

</xtce:ReferenceTime>

</xtce:AbsoluteTimeParameterType>

<xtce:AbsoluteTimeParameterType name="MilliSecondsType">

<xtce:Encoding scale="0.001" units="seconds">

<xtce:IntegerDataEncoding sizeInBits="16"/>

</xtce:Encoding>

<xtce:ReferenceTime>

<xtce:Epoch>TAI</xtce:Epoch>

</xtce:ReferenceTime>

</xtce:AbsoluteTimeParameterType>

</xtce:ParameterTypeSet>

<xtce:ParameterSet>

<xtce:Parameter name="SecH" parameterTypeRef="SecHType"/>

<xtce:Parameter name="Type" parameterTypeRef="TypeType"/>

<xtce:Parameter name="ID" parameterTypeRef="IDType"/>

<xtce:Parameter name="Length" parameterTypeRef="LengthType"/>

<xtce:Parameter name="Seconds" parameterTypeRef="SecondsType"/>

<xtce:Parameter name="MilliSeconds" parameterTypeRef="MilliSecondsType"/>

<xtce:Parameter name="PBATMTEMP" parameterTypeRef="PBATMTEMPType"/>

<xtce:Parameter name="PSWHLTIMFLG" parameterTypeRef="PSWHLTIMFLGType"/>

<xtce:Parameter name="MissionTime" parameterTypeRef="MissionTimeType">

<xtce:ParameterProperties dataSource="derived"/>

</xtce:Parameter>

</xtce:ParameterSet>

<xtce:ContainerSet>

<xtce:SequenceContainer abstract="true" name="Header">

<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="ID"/>

<xtce:ParameterRefEntry parameterRef="SecH"/>

<xtce:ParameterRefEntry parameterRef="Type"/>

<xtce:ParameterRefEntry parameterRef="Length"/>

<xtce:ContainerRefEntry containerRef="SecondaryHeader">

<xtce:IncludeCondition>

<xtce:Comparison parameterRef="SecH" value="1"/>

</xtce:IncludeCondition>

</xtce:ContainerRefEntry>

</xtce:EntryList>

</xtce:SequenceContainer>

<xtce:SequenceContainer name="SecondaryHeader">

<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="Seconds"/>

<xtce:ParameterRefEntry parameterRef="MilliSeconds"/>

</xtce:EntryList>

</xtce:SequenceContainer>

<xtce:SequenceContainer name="HealthSafety1">

<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="PBATMTEMP"/>

<xtce:ParameterRefEntry parameterRef="PSWHLTIMFLG"/>

</xtce:EntryList>

<xtce:BaseContainer containerRef="Header">

<xtce:RestrictionCriteria>

<xtce:ComparisonList>

<xtce:Comparison value="1" parameterRef="Type"/>

<xtce:Comparison value="24" parameterRef="ID"/>

</xtce:ComparisonList>

</xtce:RestrictionCriteria>

</xtce:BaseContainer>

</xtce:SequenceContainer>

</xtce:ContainerSet>

</xtce:TelemetryMetaData>

<xtce:CommandMetaData>

<xtce:ParameterTypeSet>

<xtce:IntegerParameterType name="CommandReturnType" signed="false">

<xtce:UnitSet/>

</xtce:IntegerParameterType>

<xtce:IntegerParameterType name="CommandCounterType" signed="false">

<xtce:UnitSet/>

</xtce:IntegerParameterType>

<xtce:IntegerParameterType name="CheckSumType" signed="false">

<xtce:UnitSet/>

<xtce:IntegerDataEncoding/>

</xtce:IntegerParameterType>

</xtce:ParameterTypeSet>

<xtce:ParameterSet>

<xtce:Parameter name="CommandCounter" parameterTypeRef="CommandCounterType">

<xtce:ParameterProperties dataSource="local"/>

</xtce:Parameter>

<xtce:Parameter name="CheckSum" parameterTypeRef="CheckSumType">

<xtce:ParameterProperties dataSource="derived"/>

</xtce:Parameter>

<xtce:Parameter name="CommandReturn" parameterTypeRef="CommandReturnType">

<xtce:ParameterProperties dataSource="local"/>

</xtce:Parameter>

</xtce:ParameterSet>

<xtce:ArgumentTypeSet>

<xtce:EnumeratedArgumentType name="TimerStartStopType">

<xtce:UnitSet/>

<xtce:IntegerDataEncoding sizeInBits="16"/>

<xtce:EnumerationList>

<xtce:Enumeration label="TIMER_STOP" value="0"/>

<xtce:Enumeration label="TIMER_START" value="1"/>

</xtce:EnumerationList>

</xtce:EnumeratedArgumentType>

</xtce:ArgumentTypeSet>

<xtce:MetaCommandSet>

<xtce:MetaCommand name="PWHTMR">

<xtce:ArgumentList>

<xtce:Argument name="TimerStartStop" argumentTypeRef="TimerStartStopType"/>

</xtce:ArgumentList>

<xtce:CommandContainer name="PWHTMRPacket">

<xtce:BinaryEncoding>

<xtce:SizeInBits>

<xtce:FixedValue>32</xtce:FixedValue>

</xtce:SizeInBits>

</xtce:BinaryEncoding>

<xtce:EntryList>

<xtce:FixedValueEntry binaryValue="1e" sizeInBits="8"/>

<xtce:ParameterRefEntry parameterRef="CheckSum"/>

<xtce:ArgumentRefEntry argumentRef="TimerStartStop"/>

</xtce:EntryList>

<xtce:BaseContainer containerRef="Header">

<xtce:RestrictionCriteria>

<xtce:ComparisonList>

<xtce:Comparison parameterRef="ID" value="256"/>

<xtce:Comparison parameterRef="Type" value="0"/>

<xtce:Comparison parameterRef="SecH" value="0"/>

</xtce:ComparisonList>

</xtce:RestrictionCriteria>

</xtce:BaseContainer>

</xtce:CommandContainer>

<xtce:DefaultSignificance consequenceLevel="critical"/>

<xtce:VerifierSet>

<xtce:CompleteVerifier>

<xtce:ContainerRef containerRef="HealthSafety1"/>

<xtce:CheckWindow timeToStopChecking="PT10M"/>

</xtce:CompleteVerifier>

<xtce:FailedVerifier>

<xtce:Comparison parameterRef="CommandReturn" value="0"/>

<xtce:CheckWindow timeToStopChecking="PT10M"/>

</xtce:FailedVerifier>

</xtce:VerifierSet>

<xtce:ParameterToSetList>

<xtce:ParameterToSet parameterRef="CommandReturn" setOnVerification="release">

<xtce:NewValue>0x00</xtce:NewValue>

</xtce:ParameterToSet>

<xtce:ParameterToSet parameterRef="CommandReturn">

<xtce:NewValue>0x55</xtce:NewValue>

</xtce:ParameterToSet>

</xtce:ParameterToSetList>

</xtce:MetaCommand>

</xtce:MetaCommandSet>

</xtce:CommandMetaData>
</xtce:SpaceSystem>
ANNEX B

KEYS

The following keys properly enforce XTCE1.2’s @name uniqueness policy. These have been updated from XTCE 1.1’s version which in many cases were broken.
…

<element name="SpaceSystem" type="xtce:SpaceSystemType" nillable="true">

<annotation>

<documentation xml:lang="en">The top-level SpaceSystem is the root element for the set of metadata necessary to monitor and command a space device, such as a satellite. A SpaceSystem defines a namespace. Metadata areas include: packets/minor frames layout, telemetry, calibration, alarm, algorithms, streams and commands. A SpaceSystem may have child SpaceSystems, forming a SpaceSystem tree. See SpaceSystemType.</documentation>

</annotation>

<key name="parameterNameKey">

<annotation>

<documentation xml:lang="en">This key ensures a unique parameter name at the system level.</documentation>

</annotation>

<selector xpath="xtce:TelemetryMetaData/xtce:ParameterSet/xtce:Parameter|xtce:CommandMetaData/xtce:ParameterSet/xtce:Parameter"/>

<field xpath="@name"/>

</key>

<key name="parameterTypeNameKey">

<annotation>

<documentation xml:lang="en">This key ensures a unique parameter type name at the system level.</documentation>

</annotation>

<selector xpath="xtce:TelemetryMetaData/xtce:ParameterTypeSet/*|xtce:CommandMetaData/xtce:ParameterTypeSet/*"/>

<field xpath="@name"/>

</key>

<key name="metaCommandNameKey">

<annotation>

<documentation xml:lang="en">This key ensures a unique metaCommand name at the system level.</documentation>

</annotation>

<selector xpath="xtce:CommandMetaData/xtce:MetaCommandSet/xtce:MetaCommand"/>

<field xpath="@name"/>

</key>

<key name="algorithmNameKey">

<annotation>

<documentation xml:lang="en">This key ensures a unique algorithm name at the system level.</documentation>

</annotation>

<selector xpath="xtce:TelemetryMetaData/xtce:AlgorithmSet/*|xtce:CommandMetaData/xtce:AlgorithmSet/*"/>

<field xpath="@name"/>

</key>

<key name="streamNameKey">

<annotation>

<documentation xml:lang="en">This key ensures a unique stream name at the system level.</documentation>

</annotation>

<selector xpath="xtce:TelemetryMetaData/xtce:StreamSet/*|xtce:CommandMetaData/xtce:StreamSet/*"/>

<field xpath="@name"/>

</key>

<key name="serviceNameKey">

<annotation>

<documentation xml:lang="en">This key ensures a unique service name at the system level.</documentation>

</annotation>

<selector xpath="xtce:ServiceSet/*"/>

<field xpath="@name"/>

</key>

<key name="containerNameKey">

<annotation>

<documentation xml:lang="en">This key ensures a container stream name at the system level.</documentation>

</annotation>

<selector xpath="xtce:TelemetryMetaData/xtce:ContainerSet/*|xtce:CommandMetaData/xtce:CommandContainerSet/*"/>

<field xpath="@name"/>

</key>

<key name="messageNameKey">

<selector xpath="xtce:TelemetryMetaData/xtce:MessageSet/*"/>

<field xpath="@name"/>

</key>

<key name="argumentTypeNameKey">

<annotation>

<documentation xml:lang="en">This key ensures a unique argument type name at the system level.</documentation>

</annotation>

<selector xpath="xtce:CommandMetaData/xtce:ArgumentTypeSet/*|xtce:CommandMetaData/xtce:ParameterTypeSet/*"/>

<field xpath="@name"/>

</key>

<key name="blockMetaCommandNameKey">

<annotation>

<documentation xml:lang="en">This key ensures a unique BlockMetaCommand name at the system level.</documentation>

</annotation>

<selector xpath="xtce:CommandMetaData/xtce:MetaCommandSet/xtce:BlockMetaCommand"/>

<field xpath="@name"/>

</key>

</element>
Theirs is a key in another locations as well:
<element name="MetaCommand" type="xtce:MetaCommandType">

<annotation>

<documentation xml:lang="en">All atomic commands to be sent on this mission are listed here. In addition this area has verification and validation information.</documentation>

</annotation>

<key name="ArgumentNameKey">

<selector xpath="xtce:ArgumentList/*"/>

<field xpath="@name"/>

</key>

</element>
ANNEX C

ACRONYMS AND TERMINOLOGY
Term
Meaning
BCD
Binary Coded Decimal

CCSDS
Consultative Committee for Space Data Systems

CRC
Cyclic Redundancy Check

LRV
last reported value OR last recorded value

LSB
least significant bit; least significant byte
MSB
most significant bit; most significant byte
OMG
Object Management Group, Inc.

TAI
International Atomic Time
UML
Unified Modelling Language

W3C
World Wide Web Consortium
XML
Extensible Markup Language
XSD
XML Schema Definition
XTCE
XML Telemetric and Command Exchange

Source Data Type

Destination Data Type

_1389296697.xls
Chart1

		0

		2.25

		3

		5.75

Input Value

Output Value

0

50

200

255

Sheet1

				0		2.25		3		5.75

				0		50		200		255

