[image: image1.emf]
	MAL ZMTP TRANSPORT
TEST PLAN AND REPORT

DRAFT CCSDS Record

CCSDS 000.0-Y-1
Draft Yellow Book

June 2017
FOREWORD

This document treats the tests and results of the MAL ZMTP transport binding prototype.
Through the process of normal evolution, it is expected that expansion, deletion, or modification of this document may occur. This document is therefore subject to CCSDS document management and change control procedures, which are defined in the Procedures Manual for the Consultative Committee for Space Data Systems. Current versions of CCSDS documents are maintained at the CCSDS Web site:

http://www.ccsds.org/

Questions relating to the contents or status of this document should be addressed to the CCSDS Secretariat at the address indicated on page i.

At time of publication, the active Member and Observer Agencies of the CCSDS were:

Member Agencies
· Agenzia Spaziale Italiana (ASI)/Italy.

· British National Space Centre (BNSC)/United Kingdom.

· Canadian Space Agency (CSA)/Canada.

· Centre National d’Etudes Spatiales (CNES)/France.

· China National Space Administration (CNSA)/People’s Republic of China.

· Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)/Germany.

· European Space Agency (ESA)/Europe.

· Federal Space Agency (FSA)/Russian Federation.

· Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.

· Japan Aerospace Exploration Agency (JAXA)/Japan.

· National Aeronautics and Space Administration (NASA)/USA.

Observer Agencies
· Austrian Space Agency (ASA)/Austria.

· Belgian Federal Science Policy Office (BFSPO)/Belgium.

· Central Research Institute of Machine Building (TsNIIMash)/Russian Federation.

· Centro Tecnico Aeroespacial (CTA)/Brazil.

· Chinese Academy of Sciences (CAS)/China.

· Chinese Academy of Space Technology (CAST)/China.

· Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia.

· Danish National Space Center (DNSC)/Denmark.

· European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)/Europe.

· European Telecommunications Satellite Organization (EUTELSAT)/Europe.

· Hellenic National Space Committee (HNSC)/Greece.

· Indian Space Research Organization (ISRO)/India.

· Institute of Space Research (IKI)/Russian Federation.

· KFKI Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.

· Korea Aerospace Research Institute (KARI)/Korea.

· MIKOMTEK: CSIR (CSIR)/Republic of South Africa.

· Ministry of Communications (MOC)/Israel.

· National Institute of Information and Communications Technology (NICT)/Japan.

· National Oceanic and Atmospheric Administration (NOAA)/USA.

· National Space Organization (NSPO)/Chinese Taipei.

· Naval Center for Space Technology (NCST)/USA.

· Space and Upper Atmosphere Research Commission (SUPARCO)/Pakistan.

· Swedish Space Corporation (SSC)/Sweden.

· United States Geological Survey (USGS)/USA.

DOCUMENT CONTROL

	Document
	Title and Issue
	Date
	Status

	CCSDS 524.2-Y-1
	MESSAGE ABSTRACTION LAYER PROTOTYPE TEST PLAN AND REPORT, Draft CCSDS Record, Issue 1
	November 2016
	Current draft

	
	
	
	

	
	
	
	

CONTENTS

Section
Page

iiiDOCUMENT CONTROL

ivCONTENTS

1-11
Introduction

1-11.1
Purpose

1-11.2
scope

1-11.3
structure of this report

1-11.4
References

32
OVERVIEW

32.1
TEST APPROACH

42.2
TESTS OVERViEW

52.3
test Results SUMMARY

83
Test Scenarios

93.1
IP test scenario

943.2
Data type test scenario

953.3
Error test scenario

973.4
Access control test scenario

1003.5
Transport test scenario

1064
MALPrototype Service Specification

1064.1
IPTest Service

1214.2
DataTest Service

1224.3
ErrorTest Service

1295
MALPrototype Data Types

1295.1
Data Structures

1295.2
IPTest Service Structures

1366
MALPrototype Errors

1377
Compliance matrix

1377.1
Message Abstraction Layer

1407.2
Data types

1407.3
Errors

1 Introduction

1.1 Purpose

This test report provides a record of the interoperability testing that occurred in support of the production of the CCSDS recommendation 0.0-R-1, MISSION OPERATIONS MESSAGE ABSTRACTION LAYER BINDING TO ZMTP TRANSPORT.
1.2 scope

This test report addresses primarily the formal prototype interoperations that occurred between the CNES developed prototype and the ESA developed prototype, against the formally released Red Book, Issue 1 of the Message Abstraction Layer recommendation identified in 1.1.

1.3 structure of this report

This test report is organized as follows:

a) Section 1 provides purpose and scope, definitions and references used throughout the report;

b) Section 2 gives an overview of the test report and a summary of the test results;

c) Section 3 defines the test scenarios;

d) Section 4 defines the test services;

e) Section 5 defines the test data structures;
f) Section 6 defines the test error codes;
g) Section 7 gives the compliance matrix.
1.4 References

The following documents are referenced in this document. At the time of publication, the editions indicated were valid. All documents are subject to revision, and users of this document are encouraged to investigate the possibility of applying the most recent editions of the documents indicated below. The CCSDS Secretariat maintains a register of currently valid CCSDS documents.

[1] Mission Operations—Message Abstraction Layer Binding to ZMTP Transport. Draft Recommendation for Space Data System Standards, CCSDS 0.0-R-1. Red Book. Issue 1. Washington, D.C.: CCSDS, May 2017.

[2] Spacecraft Monitor and Control—Message Abstraction Layer. Recommendation for Space Data System Standards, CCSDS 521.0-B-2. Blue Book. Issue 2. Washington, D.C.: CCSDS, March 2013.
2 OVERVIEW

This document provides a record of the prototype interoperations conducted in support of the development of the CCSDS recommendation for Mission Operations Message Abstraction Layer.

The European Space Agency (ESA), and the Centre National d’Etudes Spatiales (CNES) of France each developed prototype implementations of the draft CCSDS recommendation.
2.1 TEST APPROACH

The tests check that two independent implementations of the MAL interoperate as specified by the CCSDS recommendation.
Two distinct stacks are built by assembling the following components:
· Test application

· Service specific API

· Service stubs and skeletons

· MAL API

· MAL implementation

· Security API

· Security implementation

· Transport API

· Transport adapter implementation

· Message transport

The figure below presents the two stacks:
[image: image2.emf]Messaging Middleware

Message transport

Implementation #1

Transport Adapter

Implementation

Service Stub/Skeletons

MAL API

Test Application

MAL Implementation

Standard Transport API

Service Specific API

Sec API

Sec

Impl

Implementation #2

Transport Adapter

Implementation

MAL API

Test Application

MAL Implementation

Standard Transport API

Service Specific API

Sec API

Sec

Impl

Service Stub/Skeletons

Message transport

Transport Adapter

Service Stub/Skeletons

MAL Standard APIs

Test Code

MAL Implementation

Service Specific API

Figure 2‑1 Initial MAL prototype

The following components are separately produced by ESA and CNES:
· Service specific API

· Service stubs and skeletons

· MAL API

· MAL implementation

· Security API

· Transport API

The other components are shared by ESA and CNES:
· Test application

· Security implementation

· Transport adapter implementation

· Message transport
2.2 TESTS OVERViEW
Five test scenarios are developed each verifying one aspect of the MAL book:
· Interaction Patterns
· Data types
· Standard errors
· Access control
· Transport
2.3 test Results SUMMARY

The parts of the test bed are built as a set of Maven (http://maven.apache.org/) components and hosted in a shared component repository (no code only binaries shared). This permits not only automated build and dependency management or the two application stacks but also the use of automated test tools.
The tests are a set of FitNesse (http://fitnesse.org/) pages, tests are defined using a special Wiki language, and test output is HTML web pages. The top level test application provides a set of methods for performing the various tests and these are invoked by the Wiki pages, the output of which is formatted into a HTML report.
A total of 4757 individual tests were defined as outlined in the previous section and one transport was tested, a Java ZMTP point to point transport provided by ESA and CNES.
There are two separate implementations of the MAL and its APIs, ESA and CNES, which permitted a total of 4 configurations to be tested:

· ESA to ESA using ZMTP
· CNES to CNES using ZMTP
· ESA to CNES using ZMTP
· CNES to ESA using ZMTP
Therefore a total of 4 configuration by 4757 tests were performed, 19028 tests executed in total.

2.3.1 TEST RESULTS

2.3.1.1 Overview

Each of the sub-sections in section 3 outlines the test and includes the test result in the form of a table, an example of which is shown below:

	script
	data type scenario

	check
	explicit duration type works
	OK

	check
	explicit Fine Time type works
	OK

	check
	explicit Identifier type works
	OK

Each row of the table represents a test of the test, the first row being the test name. If the test step in completed with success the row will be highlighted green, if it fails then it is highlighted red. A row without highlighting is a step that does not produce a result.

2.3.1.2 Result summary

	4554 Interaction Pattern tests

	ESA to ESA using ZMTP
	All passed

	CNES to CNES using ZMTP
	All passed

	ESA to CNES using ZMTP
	All passed

	CNES to ESA using ZMTP
	All passed

	28 Data Type tests

	ESA to ESA using ZMTP
	All passed

	CNES to CNES using ZMTP
	All passed

	ESA to CNES using ZMTP
	All passed

	CNES to ESA using ZMTP
	All passed

	27 Error tests

	ESA to ESA using ZMTP
	All passed

	CNES to CNES using ZMTP
	All passed

	ESA to CNES using ZMTP
	All passed

	CNES to ESA using ZMTP
	All passed

	76 Access Control tests

	ESA to ESA using ZMTP
	All passed

	CNES to CNES using ZMTP
	All passed

	ESA to CNES using ZMTP
	All passed

	CNES to ESA using ZMTP
	All passed

	72 Transport tests

	ESA to ESA using ZMTP
	57 passed; 12 failed; 1 error

	CNES to CNES using ZMTP
	57 passed; 12 failed; 1 error

	ESA to CNES using ZMTP
	57 passed; 12 failed; 1 error

	CNES to ESA using ZMTP
	57 passed; 12 failed; 1 error

	Total of 4757 individual tests

	ESA to ESA using ZMTP
	4744 passed; 12 failed; 1 error

	CNES to CNES using ZMTP
	4744 passed; 12 failed; 1 error

	ESA to CNES using ZMTP
	4744 passed; 12 failed; 1 error

	CNES to ESA using ZMTP
	4744 passed; 12 failed; 1 error

3 Test Scenarios

A scenario is comprised of several test cases. Each test case launches several test procedures. Scenarios, test cases and procedures are uniquely identified by a name. The also have a status that can be RUN, DONE or FAIL.
All the scenarios are coordinated at the consumer side:
· They are started by a consumer initiating an interaction

· The status of scenarios, test cases and procedures is determined on the consumer side.

Of course, assertions can be checked on both sides: consumer and provider.
A test procedure is in charge of checking a set of assertions. There are two possible results for an assertion: OK (the assertion succeeded) or ERROR (the assertion failed).
A test procedure is DONE if it completes and if all the assertions are OK. If it is not completed, its status is RUN. If it is completed and if at least one assertion is in ERROR then its status is FAIL.
A test case is DONE if all the test procedures complete with the status DONE. If at least one procedure is not completed, its status is RUN. If all the procedures have completed and if at least one of them is FAIL then the test case status is FAIL.
A scenario is DONE if all the test cases complete with the status DONE. If at least one test case is not completed, its status is RUN. If all the test cases have completed and if at least one of them is FAIL then the scenario status is FAIL.
Providers are implemented as specified in section 3.
Two processes are launched:
1. The first one is called the "TestCoordinator" process. It launches the test procedures.
2. The second one is called the "TestPeer" process.
The "TestPeer" process instantiates the following providers:
· IPTest provider with a private broker

· IPTest provider with a shared broker

· DataTest provider without broker

It writes the URIs of providers and brokers into a properties file that is read by the TestCoordinator process.
The TestCoordinator process is launched after the TestPeer started in order that:
· The providers are ready to be called

· The URIs properties file is ready to be read by the TestCoordinator

3.1 IP test scenario

Two test cases are defined:
· The first one tests every interaction pattern except the Pub/Sub pattern.

· The second one is dedicated to the Pub/Sub pattern which is different as it does not involve the provider in the same way and it is more complex. Several aspects of the Pub/Sub pattern need to be tested. One test procedure is done for each of them.

Pub/Sub tests are to be done with a private and a shared broker.
Two constraints are required in order to check the IP state charts:
· no message loss

· FIFO message ordering is required

As a consequence, the Best Effort QoS can only be used if the specific transport layer ensures in the context of the test bed that messages are delivered exactly once and according to a FIFO ordering.

3.1.1 Test case: all patterns except Pub/Sub

The consumer initiates the patterns by calling the following operations provided by the service IPTest:

· send

· submit

· request

· invoke

· progress

Those operations shall be called once for each QoS level and session type. It is not necessary to test each combination of QoS and session. One call for each QoS level and session type is enough.
The following parameters are used to make the calls:
	comment

	authenticationId
	{0x00, 0x01}

	qos
	Best Effort, Assured, Queued, Timely

	priority
	1

	domain
	{"Test", "Domain"}

	networkZone
	"TestNetwork"

	Session
	Live, Simulation, Replay

	session name
	Live

"LIVE"

Replay

"R1"

Simulation

"S1"

The consumer has to execute the following test procedure for every possible header values (QoS and session fields) and every possible transition. The name of the procedure is built from the parameters:

· ip: name of the tested IP

· qos: QoS level to be used

· session: session type to be used

· transition list id: identifier of the IPTestTransitionList that is expected by the consumer (see table above).

3.1.1.1 Test procedure: <ip>/<qos>/<session>/<transition list id>

The test procedure does the following actions:
1. Call the operation <ip> provided by the IPTest service with the parameters passed to the test procedures: 'ip', 'qos', 'session' and 'transition list id'.

2. Wait for the expected transitions to be done, except the faulty ones that are ignored.

3. Check the message headers

4. Check the transitions

It is necessary to go through all the transitions of the IP state charts, the faulty transitions are underlined. In the faulty case, the field 'errorCode' of the IPTestTransition is set to the value INCORRECT_STATE otherwise it is set to "-1". The field 'Transition list id' is used to identify the test procedure.
The transitions are checked by ensuring that the faulty messages are not received by the consumer.
	script
	pattern test

	note
	Submit pattern test

	test interaction pattern
	Submit
	with transitions
	[ACK]
	and behaviour id
	1

	scenario

test interaction pattern

interaction

with transitions

trans

and behaviour id

id

pattern

Submit

and session

Live

and transitions

[ACK]

and behaviour id

1

test

scenario

pattern

interaction

and session

sess

and transitions

trans

and behaviour id

id

test

pattern

Submit

with qos

Best Effort

and session

Live

and transitions

[ACK]

and behaviour id

1

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Best Effort

and session

Live

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Best Effort

and session

Live

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Best Effort

and session

Live

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Assured

and session

Live

and transitions

[ACK]

and behaviour id

1

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Assured

and session

Live

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Assured

and session

Live

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Assured

and session

Live

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Queued

and session

Live

and transitions

[ACK]

and behaviour id

1

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Queued

and session

Live

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Queued

and session

Live

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Queued

and session

Live

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Timely

and session

Live

and transitions

[ACK]

and behaviour id

1

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Timely

and session

Live

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Timely

and session

Live

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Timely

and session

Live

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

and session

Simulation

and transitions

[ACK]

and behaviour id

1

test

scenario

pattern

interaction

and session

sess

and transitions

trans

and behaviour id

id

test

pattern

Submit

with qos

Best Effort

and session

Simulation

and transitions

[ACK]

and behaviour id

1

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Best Effort

and session

Simulation

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Best Effort

and session

Simulation

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Best Effort

and session

Simulation

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Assured

and session

Simulation

and transitions

[ACK]

and behaviour id

1

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Assured

and session

Simulation

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Assured

and session

Simulation

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Assured

and session

Simulation

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Queued

and session

Simulation

and transitions

[ACK]

and behaviour id

1

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Queued

and session

Simulation

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Queued

and session

Simulation

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Queued

and session

Simulation

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Timely

and session

Simulation

and transitions

[ACK]

and behaviour id

1

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Timely

and session

Simulation

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Timely

and session

Simulation

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Timely

and session

Simulation

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

and session

Replay

and transitions

[ACK]

and behaviour id

1

test

scenario

pattern

interaction

and session

sess

and transitions

trans

and behaviour id

id

test

pattern

Submit

with qos

Best Effort

and session

Replay

and transitions

[ACK]

and behaviour id

1

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Best Effort

and session

Replay

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Best Effort

and session

Replay

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Best Effort

and session

Replay

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Assured

and session

Replay

and transitions

[ACK]

and behaviour id

1

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Assured

and session

Replay

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Assured

and session

Replay

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Assured

and session

Replay

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Queued

and session

Replay

and transitions

[ACK]

and behaviour id

1

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Queued

and session

Replay

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Queued

and session

Replay

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Queued

and session

Replay

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Timely

and session

Replay

and transitions

[ACK]

and behaviour id

1

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Timely

and session

Replay

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Timely

and session

Replay

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Timely

and session

Replay

and transistions

[ACK]

and behaviour id

1

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

	test interaction pattern
	Submit
	with transitions
	[ACK_ERROR]
	and behaviour id
	2

	scenario

test interaction pattern

interaction

with transitions

trans

and behaviour id

id

pattern

Submit

and session

Live

and transitions

[ACK_ERROR]

and behaviour id

2

test

scenario

pattern

interaction

and session

sess

and transitions

trans

and behaviour id

id

test

pattern

Submit

with qos

Best Effort

and session

Live

and transitions

[ACK_ERROR]

and behaviour id

2

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Best Effort

and session

Live

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Best Effort

and session

Live

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Best Effort

and session

Live

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Assured

and session

Live

and transitions

[ACK_ERROR]

and behaviour id

2

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Assured

and session

Live

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Assured

and session

Live

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Assured

and session

Live

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Queued

and session

Live

and transitions

[ACK_ERROR]

and behaviour id

2

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Queued

and session

Live

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Queued

and session

Live

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Queued

and session

Live

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Timely

and session

Live

and transitions

[ACK_ERROR]

and behaviour id

2

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Timely

and session

Live

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Timely

and session

Live

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Timely

and session

Live

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

and session

Simulation

and transitions

[ACK_ERROR]

and behaviour id

2

test

scenario

pattern

interaction

and session

sess

and transitions

trans

and behaviour id

id

test

pattern

Submit

with qos

Best Effort

and session

Simulation

and transitions

[ACK_ERROR]

and behaviour id

2

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Best Effort

and session

Simulation

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Best Effort

and session

Simulation

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Best Effort

and session

Simulation

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Assured

and session

Simulation

and transitions

[ACK_ERROR]

and behaviour id

2

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Assured

and session

Simulation

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Assured

and session

Simulation

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Assured

and session

Simulation

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Queued

and session

Simulation

and transitions

[ACK_ERROR]

and behaviour id

2

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Queued

and session

Simulation

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Queued

and session

Simulation

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Queued

and session

Simulation

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Timely

and session

Simulation

and transitions

[ACK_ERROR]

and behaviour id

2

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Timely

and session

Simulation

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Timely

and session

Simulation

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Timely

and session

Simulation

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

and session

Replay

and transitions

[ACK_ERROR]

and behaviour id

2

test

scenario

pattern

interaction

and session

sess

and transitions

trans

and behaviour id

id

test

pattern

Submit

with qos

Best Effort

and session

Replay

and transitions

[ACK_ERROR]

and behaviour id

2

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Best Effort

and session

Replay

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Best Effort

and session

Replay

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Best Effort

and session

Replay

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Assured

and session

Replay

and transitions

[ACK_ERROR]

and behaviour id

2

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Assured

and session

Replay

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Assured

and session

Replay

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Assured

and session

Replay

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Queued

and session

Replay

and transitions

[ACK_ERROR]

and behaviour id

2

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Queued

and session

Replay

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Queued

and session

Replay

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Queued

and session

Replay

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Timely

and session

Replay

and transitions

[ACK_ERROR]

and behaviour id

2

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Timely

and session

Replay

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Timely

and session

Replay

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Timely

and session

Replay

and transistions

[ACK_ERROR]

and behaviour id

2

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

	test interaction pattern
	Submit
	with transitions
	[ACK, _ACK_ERROR_]
	and behaviour id
	3

	scenario

test interaction pattern

interaction

with transitions

trans

and behaviour id

id

pattern

Submit

and session

Live

and transitions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

scenario

pattern

interaction

and session

sess

and transitions

trans

and behaviour id

id

test

pattern

Submit

with qos

Best Effort

and session

Live

and transitions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Best Effort

and session

Live

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Best Effort

and session

Live

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Best Effort

and session

Live

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Assured

and session

Live

and transitions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Assured

and session

Live

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Assured

and session

Live

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Assured

and session

Live

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Queued

and session

Live

and transitions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Queued

and session

Live

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Queued

and session

Live

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Queued

and session

Live

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Timely

and session

Live

and transitions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Timely

and session

Live

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Timely

and session

Live

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Timely

and session

Live

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

and session

Simulation

and transitions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

scenario

pattern

interaction

and session

sess

and transitions

trans

and behaviour id

id

test

pattern

Submit

with qos

Best Effort

and session

Simulation

and transitions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Best Effort

and session

Simulation

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Best Effort

and session

Simulation

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Best Effort

and session

Simulation

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Assured

and session

Simulation

and transitions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Assured

and session

Simulation

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Assured

and session

Simulation

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Assured

and session

Simulation

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Queued

and session

Simulation

and transitions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Queued

and session

Simulation

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Queued

and session

Simulation

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Queued

and session

Simulation

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Timely

and session

Simulation

and transitions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Timely

and session

Simulation

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Timely

and session

Simulation

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Timely

and session

Simulation

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

and session

Replay

and transitions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

scenario

pattern

interaction

and session

sess

and transitions

trans

and behaviour id

id

test

pattern

Submit

with qos

Best Effort

and session

Replay

and transitions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Best Effort

and session

Replay

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Best Effort

and session

Replay

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Best Effort

and session

Replay

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Assured

and session

Replay

and transitions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Assured

and session

Replay

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Assured

and session

Replay

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Assured

and session

Replay

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Queued

and session

Replay

and transitions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Queued

and session

Replay

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Queued

and session

Replay

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Queued

and session

Replay

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Timely

and session

Replay

and transitions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Timely

and session

Replay

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Timely

and session

Replay

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Timely

and session

Replay

and transistions

[ACK, _ACK_ERROR_]

and behaviour id

3

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

	test interaction pattern
	Submit
	with transitions
	[ACK_ERROR, _ACK_ERROR_]
	and behaviour id
	4

	scenario

test interaction pattern

interaction

with transitions

trans

and behaviour id

id

pattern

Submit

and session

Live

and transitions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

scenario

pattern

interaction

and session

sess

and transitions

trans

and behaviour id

id

test

pattern

Submit

with qos

Best Effort

and session

Live

and transitions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Best Effort

and session

Live

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Best Effort

and session

Live

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Best Effort

and session

Live

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Assured

and session

Live

and transitions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Assured

and session

Live

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Assured

and session

Live

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Assured

and session

Live

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Queued

and session

Live

and transitions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Queued

and session

Live

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Queued

and session

Live

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Queued

and session

Live

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Timely

and session

Live

and transitions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Timely

and session

Live

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Timely

and session

Live

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Timely

and session

Live

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

and session

Simulation

and transitions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

scenario

pattern

interaction

and session

sess

and transitions

trans

and behaviour id

id

test

pattern

Submit

with qos

Best Effort

and session

Simulation

and transitions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Best Effort

and session

Simulation

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Best Effort

and session

Simulation

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Best Effort

and session

Simulation

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Assured

and session

Simulation

and transitions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Assured

and session

Simulation

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Assured

and session

Simulation

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Assured

and session

Simulation

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Queued

and session

Simulation

and transitions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Queued

and session

Simulation

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Queued

and session

Simulation

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Queued

and session

Simulation

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Timely

and session

Simulation

and transitions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Timely

and session

Simulation

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Timely

and session

Simulation

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Timely

and session

Simulation

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

and session

Replay

and transitions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

scenario

pattern

interaction

and session

sess

and transitions

trans

and behaviour id

id

test

pattern

Submit

with qos

Best Effort

and session

Replay

and transitions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Best Effort

and session

Replay

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Best Effort

and session

Replay

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Best Effort

and session

Replay

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Assured

and session

Replay

and transitions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Assured

and session

Replay

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Assured

and session

Replay

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Assured

and session

Replay

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Queued

and session

Replay

and transitions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Queued

and session

Replay

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Queued

and session

Replay

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Queued

and session

Replay

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

pattern

Submit

with qos

Timely

and session

Replay

and transitions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

scenario

pattern

interaction

with qos

qos

and session

sess

and transitions

trans

and behaviour id

id

test

ensure
pattern initiation for

Submit

with multi

false

with empty body

false

and qos

Timely

and session

Replay

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

false

with empty body

true

and qos

Timely

and session

Replay

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

ensure
pattern initiation for

Submit

with multi

true

with empty body

false

and qos

Timely

and session

Replay

and transistions

[ACK_ERROR, _ACK_ERROR_]

and behaviour id

4

test

ensure
the consumer assertions are ok

ensure
the transitions are ok

3.1.2 Test case: Pub/Sub pattern

3.1.2.1 Test procedure: publish register

This test checks that the EntityKeyList contained in a Publish Register is correctly interpreted by the broker.
The consumer triggers a Publish Register initiated by the provider.
Then it triggers a Publish also initiated by the provider.
Finally it checks whether the provider receives a Publish Error or a Notify message is received by the subscriber.
	script
	publish register test procedure

	publish register
	false

	scenario

publish register

shared

ensure
use shared broker

false

ensure
publish with entity

A.[null].[null].[null]

and expect error

true

ensure
publish register with the entities

A.[null].[null].[null]

ensure
publish with entity

A.[null].[null].[null]

and expect error

false

ensure
publish with entity

A.2.[null].[null]

and expect error

true

ensure
publish register with the entities

A.*.[null].[null]

ensure
publish with entity

A.[null].[null].[null]

and expect error

false

ensure
publish with entity

A.2.[null].[null]

and expect error

false

ensure
publish with entity

A.2.3.[null]

and expect error

true

ensure
publish register with the entities

A.*.*.*

ensure
publish with entity

A.[null].[null].[null]

and expect error

false

ensure
publish with entity

A.2.[null].[null]

and expect error

false

ensure
publish with entity

A.2.3.[null]

and expect error

false

ensure
publish with entity

A.2.3.4

and expect error

false

ensure
publish with entity

Q.2.3.[null]

and expect error

true

ensure
publish register with the entities

A.2.[null].[null]

ensure
publish with entity

A.[null].[null].[null]

and expect error

true

ensure
publish with entity

A.2.[null].[null]

and expect error

false

ensure
publish with entity

A.2.3.[null]

and expect error

true

ensure
publish with entity

A.2.3.4

and expect error

true

ensure
publish with entity

Q.2.3.[null]

and expect error

true

ensure
publish register with the entities

A.2.*.[null]

ensure
publish with entity

A.[null].[null].[null]

and expect error

true

ensure
publish with entity

A.2.[null].[null]

and expect error

false

ensure
publish with entity

A.2.3.[null]

and expect error

false

ensure
publish with entity

A.2.3.4

and expect error

true

ensure
publish with entity

Q.2.3.[null]

and expect error

true

ensure
publish register with the entities

.2..[null]

ensure
publish with entity

A.[null].[null].[null]

and expect error

true

ensure
publish with entity

A.2.[null].[null]

and expect error

false

ensure
publish with entity

A.2.3.[null]

and expect error

false

ensure
publish with entity

A.2.3.4

and expect error

true

ensure
publish with entity

Q.2.3.[null]

and expect error

false

ensure
publish register with the entities

B.*.*.*

ensure
publish with entity

A.[null].[null].[null]

and expect error

true

ensure
publish with entity

A.2.[null].[null]

and expect error

true

ensure
publish with entity

A.2.3.[null]

and expect error

true

ensure
publish with entity

A.2.3.4

and expect error

true

ensure
publish with entity

Q.2.3.[null]

and expect error

true

ensure
publish with entity

B.[null].[null].[null]

and expect error

false

ensure
publish deregister

	publish register
	true

	scenario

publish register

shared

ensure
use shared broker

true

ensure
publish with entity

A.[null].[null].[null]

and expect error

true

ensure
publish register with the entities

A.[null].[null].[null]

ensure
publish with entity

A.[null].[null].[null]

and expect error

false

ensure
publish with entity

A.2.[null].[null]

and expect error

true

ensure
publish register with the entities

A.*.[null].[null]

ensure
publish with entity

A.[null].[null].[null]

and expect error

false

ensure
publish with entity

A.2.[null].[null]

and expect error

false

ensure
publish with entity

A.2.3.[null]

and expect error

true

ensure
publish register with the entities

A.*.*.*

ensure
publish with entity

A.[null].[null].[null]

and expect error

false

ensure
publish with entity

A.2.[null].[null]

and expect error

false

ensure
publish with entity

A.2.3.[null]

and expect error

false

ensure
publish with entity

A.2.3.4

and expect error

false

ensure
publish with entity

Q.2.3.[null]

and expect error

true

ensure
publish register with the entities

A.2.[null].[null]

ensure
publish with entity

A.[null].[null].[null]

and expect error

true

ensure
publish with entity

A.2.[null].[null]

and expect error

false

ensure
publish with entity

A.2.3.[null]

and expect error

true

ensure
publish with entity

A.2.3.4

and expect error

true

ensure
publish with entity

Q.2.3.[null]

and expect error

true

ensure
publish register with the entities

A.2.*.[null]

ensure
publish with entity

A.[null].[null].[null]

and expect error

true

ensure
publish with entity

A.2.[null].[null]

and expect error

false

ensure
publish with entity

A.2.3.[null]

and expect error

false

ensure
publish with entity

A.2.3.4

and expect error

true

ensure
publish with entity

Q.2.3.[null]

and expect error

true

ensure
publish register with the entities

.2..[null]

ensure
publish with entity

A.[null].[null].[null]

and expect error

true

ensure
publish with entity

A.2.[null].[null]

and expect error

false

ensure
publish with entity

A.2.3.[null]

and expect error

false

ensure
publish with entity

A.2.3.4

and expect error

true

ensure
publish with entity

Q.2.3.[null]

and expect error

false

ensure
publish register with the entities

B.*.*.*

ensure
publish with entity

A.[null].[null].[null]

and expect error

true

ensure
publish with entity

A.2.[null].[null]

and expect error

true

ensure
publish with entity

A.2.3.[null]

and expect error

true

ensure
publish with entity

A.2.3.4

and expect error

true

ensure
publish with entity

Q.2.3.[null]

and expect error

true

ensure
publish with entity

B.[null].[null].[null]

and expect error

false

ensure
publish deregister

3.1.2.2 Test procedure: entity request

This test checks that the entity requests are correctly interpreted by the broker, in particular the expression used to define the expected entities.

A list of entity keys is defined:

· A

· A.2

· A.2.3

· A.2.3.4

· B

· Q.2.3

A list of entity request expressions is defined:

· A

· A.[null]

· A.*

· A.2.[null]

· A.2.*

· [null].B.[null]

· *.2.*

· *

The consumer does the following actions:

· Creation of one subscription for each expression and registration.

· Trigger the publication of one TestUpdate for each entity key.

The consumer checks that the expected keys are received and only them (see table below).
	script
	entity request test procedure

	entity request
	false

	scenario

entity request

shared

ensure
initiate publisher with entities

A.[null].[null].[null],A.2.[null].[null],A.2.3.[null],A.2.3.4,B.[null].[null].[null],Q.2.3.[null]

and shared broker

false

ensure
subscribe to pattern

A.[null].[null].[null]

and expected entities

A.[null].[null].[null]

ensure
subscribe to pattern

A.*.[null].[null]

and expected entities

A.[null].[null].[null],A.2.[null].[null]

ensure
subscribe to pattern

A.*.*.*

and expected entities

A.[null].[null].[null],A.2.[null].[null],A.2.3.[null],A.2.3.4

ensure
subscribe to pattern

A.2.[null].[null]

and expected entities

A.2.[null].[null]

ensure
subscribe to pattern

A.2.*.[null]

and expected entities

A.2.[null].[null],A.2.3.[null]

ensure
subscribe to pattern

.2..[null]

and expected entities

A.2.[null].[null],A.2.3.[null],Q.2.3.[null]

ensure
subscribe to pattern

B.*.*.*

and expected entities

B.[null].[null].[null]

ensure
publish deregister

	entity request
	true

	scenario

entity request

shared

ensure
initiate publisher with entities

A.[null].[null].[null],A.2.[null].[null],A.2.3.[null],A.2.3.4,B.[null].[null].[null],Q.2.3.[null]

and shared broker

true

ensure
subscribe to pattern

A.[null].[null].[null]

and expected entities

A.[null].[null].[null]

ensure
subscribe to pattern

A.*.[null].[null]

and expected entities

A.[null].[null].[null],A.2.[null].[null]

ensure
subscribe to pattern

A.*.*.*

and expected entities

A.[null].[null].[null],A.2.[null].[null],A.2.3.[null],A.2.3.4

ensure
subscribe to pattern

A.2.[null].[null]

and expected entities

A.2.[null].[null]

ensure
subscribe to pattern

A.2.*.[null]

and expected entities

A.2.[null].[null],A.2.3.[null]

ensure
subscribe to pattern

.2..[null]

and expected entities

A.2.[null].[null],A.2.3.[null],Q.2.3.[null]

ensure
subscribe to pattern

B.*.*.*

and expected entities

B.[null].[null].[null]

ensure
publish deregister

3.1.2.3 Test procedure: header

This test procedure checks the MAL message header in every stage of the Pub/Sub interaction.

It is executed once for each QoS level, session.
The session name depends on the session type. If the session type is Live, the name is 'LIVE'. If the session type is Replay, the name is 'R1'. If the session type is Simulation, the name is 'S1'.

The consumer creates subscriptions from the following parameters:

· subscription identifier: 'sub1'

· authentication identifier: '0x00,0x01'

· priority: 1

· domain: 'Test,Domain'

· networkZone: 'NetworkZone'

· entity expression: 'A,null,null,null'

· only on change: false

All the tests are executed once with a private broker and a second time with a shared one.

The shared broker is created one the consumer side because. In this way, it enables the test to intercept the messages going out of the provider's publisher.

Some headers are only checked with a shared broker:

· Publish

· Publish Register

· Publish Register ack

· Publish Register Error

· Publish Deregister

· Publish Deregister ack

The Publish Error is triggered by publishing an entity that has not been registered: 'B,null,null,null'.
The Publish Register Error is triggered by registering an entity which key is recognized by the test transport.
The Notify Error is injected through the test transport module.
The provider assertions are described in the IPTest service specification (section 5.1).
The consumer assertions are described in annex B.
	script
	header test procedure

	note
	set up the test instance

	create fixture single instance

	script
	header test procedure

	note
	test publish register

	test publish register and shared broker
	false

	scenario

test publish register and shared broker

shared

publish register

Live

and shared broker

false

scenario

publish register

sess

and shared broker

shared

publish register

Best Effort

and session

Live

and shared broker

false

and domain

1

scenario

publish register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register with qos

Best Effort

and session

Live

and shared broker

false

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

publish register

Assured

and session

Live

and shared broker

false

and domain

2

scenario

publish register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register with qos

Assured

and session

Live

and shared broker

false

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

publish register

Queued

and session

Live

and shared broker

false

and domain

3

scenario

publish register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register with qos

Queued

and session

Live

and shared broker

false

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

publish register

Timely

and session

Live

and shared broker

false

and domain

4

scenario

publish register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register with qos

Timely

and session

Live

and shared broker

false

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

publish register

Simulation

and shared broker

false

scenario

publish register

sess

and shared broker

shared

publish register

Best Effort

and session

Simulation

and shared broker

false

and domain

1

scenario

publish register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register with qos

Best Effort

and session

Simulation

and shared broker

false

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

publish register

Assured

and session

Simulation

and shared broker

false

and domain

2

scenario

publish register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register with qos

Assured

and session

Simulation

and shared broker

false

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

publish register

Queued

and session

Simulation

and shared broker

false

and domain

3

scenario

publish register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register with qos

Queued

and session

Simulation

and shared broker

false

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

publish register

Timely

and session

Simulation

and shared broker

false

and domain

4

scenario

publish register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register with qos

Timely

and session

Simulation

and shared broker

false

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

publish register

Replay

and shared broker

false

scenario

publish register

sess

and shared broker

shared

publish register

Best Effort

and session

Replay

and shared broker

false

and domain

1

scenario

publish register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register with qos

Best Effort

and session

Replay

and shared broker

false

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

publish register

Assured

and session

Replay

and shared broker

false

and domain

2

scenario

publish register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register with qos

Assured

and session

Replay

and shared broker

false

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

publish register

Queued

and session

Replay

and shared broker

false

and domain

3

scenario

publish register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register with qos

Queued

and session

Replay

and shared broker

false

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

publish register

Timely

and session

Replay

and shared broker

false

and domain

4

scenario

publish register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register with qos

Timely

and session

Replay

and shared broker

false

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

	test publish register and shared broker
	true

	scenario

test publish register and shared broker

shared

publish register

Live

and shared broker

true

scenario

publish register

sess

and shared broker

shared

publish register

Best Effort

and session

Live

and shared broker

true

and domain

1

scenario

publish register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register with qos

Best Effort

and session

Live

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

publish register

Assured

and session

Live

and shared broker

true

and domain

2

scenario

publish register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register with qos

Assured

and session

Live

and shared broker

true

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

publish register

Queued

and session

Live

and shared broker

true

and domain

3

scenario

publish register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register with qos

Queued

and session

Live

and shared broker

true

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

publish register

Timely

and session

Live

and shared broker

true

and domain

4

scenario

publish register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register with qos

Timely

and session

Live

and shared broker

true

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

publish register

Simulation

and shared broker

true

scenario

publish register

sess

and shared broker

shared

publish register

Best Effort

and session

Simulation

and shared broker

true

and domain

1

scenario

publish register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register with qos

Best Effort

and session

Simulation

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

publish register

Assured

and session

Simulation

and shared broker

true

and domain

2

scenario

publish register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register with qos

Assured

and session

Simulation

and shared broker

true

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

publish register

Queued

and session

Simulation

and shared broker

true

and domain

3

scenario

publish register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register with qos

Queued

and session

Simulation

and shared broker

true

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

publish register

Timely

and session

Simulation

and shared broker

true

and domain

4

scenario

publish register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register with qos

Timely

and session

Simulation

and shared broker

true

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

publish register

Replay

and shared broker

true

scenario

publish register

sess

and shared broker

shared

publish register

Best Effort

and session

Replay

and shared broker

true

and domain

1

scenario

publish register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register with qos

Best Effort

and session

Replay

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

publish register

Assured

and session

Replay

and shared broker

true

and domain

2

scenario

publish register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register with qos

Assured

and session

Replay

and shared broker

true

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

publish register

Queued

and session

Replay

and shared broker

true

and domain

3

scenario

publish register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register with qos

Queued

and session

Replay

and shared broker

true

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

publish register

Timely

and session

Replay

and shared broker

true

and domain

4

scenario

publish register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register with qos

Timely

and session

Replay

and shared broker

true

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

	script
	header test procedure

	note
	test register

	test register and shared broker
	false

	scenario

test register and shared broker

shared

register

Live

and shared broker

false

scenario

register

sess

and shared broker

shared

register

Best Effort

and session

Live

and shared broker

false

and domain

1

scenario

register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register with qos

Best Effort

and session

Live

and shared broker

false

and domain

1

ensure
Call the operation getResult

ensure
the consumer assertions

register

Assured

and session

Live

and shared broker

false

and domain

2

scenario

register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register with qos

Assured

and session

Live

and shared broker

false

and domain

2

ensure
Call the operation getResult

ensure
the consumer assertions

register

Queued

and session

Live

and shared broker

false

and domain

3

scenario

register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register with qos

Queued

and session

Live

and shared broker

false

and domain

3

ensure
Call the operation getResult

ensure
the consumer assertions

register

Timely

and session

Live

and shared broker

false

and domain

4

scenario

register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register with qos

Timely

and session

Live

and shared broker

false

and domain

4

ensure
Call the operation getResult

ensure
the consumer assertions

register

Simulation

and shared broker

false

scenario

register

sess

and shared broker

shared

register

Best Effort

and session

Simulation

and shared broker

false

and domain

1

scenario

register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register with qos

Best Effort

and session

Simulation

and shared broker

false

and domain

1

ensure
Call the operation getResult

ensure
the consumer assertions

register

Assured

and session

Simulation

and shared broker

false

and domain

2

scenario

register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register with qos

Assured

and session

Simulation

and shared broker

false

and domain

2

ensure
Call the operation getResult

ensure
the consumer assertions

register

Queued

and session

Simulation

and shared broker

false

and domain

3

scenario

register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register with qos

Queued

and session

Simulation

and shared broker

false

and domain

3

ensure
Call the operation getResult

ensure
the consumer assertions

register

Timely

and session

Simulation

and shared broker

false

and domain

4

scenario

register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register with qos

Timely

and session

Simulation

and shared broker

false

and domain

4

ensure
Call the operation getResult

ensure
the consumer assertions

register

Replay

and shared broker

false

scenario

register

sess

and shared broker

shared

register

Best Effort

and session

Replay

and shared broker

false

and domain

1

scenario

register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register with qos

Best Effort

and session

Replay

and shared broker

false

and domain

1

ensure
Call the operation getResult

ensure
the consumer assertions

register

Assured

and session

Replay

and shared broker

false

and domain

2

scenario

register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register with qos

Assured

and session

Replay

and shared broker

false

and domain

2

ensure
Call the operation getResult

ensure
the consumer assertions

register

Queued

and session

Replay

and shared broker

false

and domain

3

scenario

register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register with qos

Queued

and session

Replay

and shared broker

false

and domain

3

ensure
Call the operation getResult

ensure
the consumer assertions

register

Timely

and session

Replay

and shared broker

false

and domain

4

scenario

register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register with qos

Timely

and session

Replay

and shared broker

false

and domain

4

ensure
Call the operation getResult

ensure
the consumer assertions

	test register and shared broker
	true

	scenario

test register and shared broker

shared

register

Live

and shared broker

true

scenario

register

sess

and shared broker

shared

register

Best Effort

and session

Live

and shared broker

true

and domain

1

scenario

register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register with qos

Best Effort

and session

Live

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the consumer assertions

register

Assured

and session

Live

and shared broker

true

and domain

2

scenario

register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register with qos

Assured

and session

Live

and shared broker

true

and domain

2

ensure
Call the operation getResult

ensure
the consumer assertions

register

Queued

and session

Live

and shared broker

true

and domain

3

scenario

register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register with qos

Queued

and session

Live

and shared broker

true

and domain

3

ensure
Call the operation getResult

ensure
the consumer assertions

register

Timely

and session

Live

and shared broker

true

and domain

4

scenario

register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register with qos

Timely

and session

Live

and shared broker

true

and domain

4

ensure
Call the operation getResult

ensure
the consumer assertions

register

Simulation

and shared broker

true

scenario

register

sess

and shared broker

shared

register

Best Effort

and session

Simulation

and shared broker

true

and domain

1

scenario

register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register with qos

Best Effort

and session

Simulation

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the consumer assertions

register

Assured

and session

Simulation

and shared broker

true

and domain

2

scenario

register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register with qos

Assured

and session

Simulation

and shared broker

true

and domain

2

ensure
Call the operation getResult

ensure
the consumer assertions

register

Queued

and session

Simulation

and shared broker

true

and domain

3

scenario

register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register with qos

Queued

and session

Simulation

and shared broker

true

and domain

3

ensure
Call the operation getResult

ensure
the consumer assertions

register

Timely

and session

Simulation

and shared broker

true

and domain

4

scenario

register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register with qos

Timely

and session

Simulation

and shared broker

true

and domain

4

ensure
Call the operation getResult

ensure
the consumer assertions

register

Replay

and shared broker

true

scenario

register

sess

and shared broker

shared

register

Best Effort

and session

Replay

and shared broker

true

and domain

1

scenario

register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register with qos

Best Effort

and session

Replay

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the consumer assertions

register

Assured

and session

Replay

and shared broker

true

and domain

2

scenario

register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register with qos

Assured

and session

Replay

and shared broker

true

and domain

2

ensure
Call the operation getResult

ensure
the consumer assertions

register

Queued

and session

Replay

and shared broker

true

and domain

3

scenario

register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register with qos

Queued

and session

Replay

and shared broker

true

and domain

3

ensure
Call the operation getResult

ensure
the consumer assertions

register

Timely

and session

Replay

and shared broker

true

and domain

4

scenario

register

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register with qos

Timely

and session

Replay

and shared broker

true

and domain

4

ensure
Call the operation getResult

ensure
the consumer assertions

	script
	header test procedure

	note
	test publish

	test publish and shared broker
	false

	scenario

test publish and shared broker

shared

publish

Live

and shared broker

false

scenario

publish

sess

and shared broker

shared

publish

Best Effort

and session

Live

and shared broker

false

and domain

1

scenario

publish

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish with qos

Best Effort

and session

Live

and shared broker

false

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

publish

Assured

and session

Live

and shared broker

false

and domain

2

scenario

publish

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish with qos

Assured

and session

Live

and shared broker

false

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

publish

Queued

and session

Live

and shared broker

false

and domain

3

scenario

publish

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish with qos

Queued

and session

Live

and shared broker

false

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

publish

Timely

and session

Live

and shared broker

false

and domain

4

scenario

publish

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish with qos

Timely

and session

Live

and shared broker

false

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

publish

Simulation

and shared broker

false

scenario

publish

sess

and shared broker

shared

publish

Best Effort

and session

Simulation

and shared broker

false

and domain

1

scenario

publish

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish with qos

Best Effort

and session

Simulation

and shared broker

false

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

publish

Assured

and session

Simulation

and shared broker

false

and domain

2

scenario

publish

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish with qos

Assured

and session

Simulation

and shared broker

false

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

publish

Queued

and session

Simulation

and shared broker

false

and domain

3

scenario

publish

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish with qos

Queued

and session

Simulation

and shared broker

false

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

publish

Timely

and session

Simulation

and shared broker

false

and domain

4

scenario

publish

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish with qos

Timely

and session

Simulation

and shared broker

false

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

publish

Replay

and shared broker

false

scenario

publish

sess

and shared broker

shared

publish

Best Effort

and session

Replay

and shared broker

false

and domain

1

scenario

publish

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish with qos

Best Effort

and session

Replay

and shared broker

false

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

publish

Assured

and session

Replay

and shared broker

false

and domain

2

scenario

publish

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish with qos

Assured

and session

Replay

and shared broker

false

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

publish

Queued

and session

Replay

and shared broker

false

and domain

3

scenario

publish

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish with qos

Queued

and session

Replay

and shared broker

false

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

publish

Timely

and session

Replay

and shared broker

false

and domain

4

scenario

publish

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish with qos

Timely

and session

Replay

and shared broker

false

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

	test publish and shared broker
	true

	scenario

test publish and shared broker

shared

publish

Live

and shared broker

true

scenario

publish

sess

and shared broker

shared

publish

Best Effort

and session

Live

and shared broker

true

and domain

1

scenario

publish

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish with qos

Best Effort

and session

Live

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

publish

Assured

and session

Live

and shared broker

true

and domain

2

scenario

publish

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish with qos

Assured

and session

Live

and shared broker

true

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

publish

Queued

and session

Live

and shared broker

true

and domain

3

scenario

publish

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish with qos

Queued

and session

Live

and shared broker

true

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

publish

Timely

and session

Live

and shared broker

true

and domain

4

scenario

publish

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish with qos

Timely

and session

Live

and shared broker

true

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

publish

Simulation

and shared broker

true

scenario

publish

sess

and shared broker

shared

publish

Best Effort

and session

Simulation

and shared broker

true

and domain

1

scenario

publish

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish with qos

Best Effort

and session

Simulation

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

publish

Assured

and session

Simulation

and shared broker

true

and domain

2

scenario

publish

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish with qos

Assured

and session

Simulation

and shared broker

true

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

publish

Queued

and session

Simulation

and shared broker

true

and domain

3

scenario

publish

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish with qos

Queued

and session

Simulation

and shared broker

true

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

publish

Timely

and session

Simulation

and shared broker

true

and domain

4

scenario

publish

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish with qos

Timely

and session

Simulation

and shared broker

true

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

publish

Replay

and shared broker

true

scenario

publish

sess

and shared broker

shared

publish

Best Effort

and session

Replay

and shared broker

true

and domain

1

scenario

publish

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish with qos

Best Effort

and session

Replay

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

publish

Assured

and session

Replay

and shared broker

true

and domain

2

scenario

publish

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish with qos

Assured

and session

Replay

and shared broker

true

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

publish

Queued

and session

Replay

and shared broker

true

and domain

3

scenario

publish

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish with qos

Queued

and session

Replay

and shared broker

true

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

publish

Timely

and session

Replay

and shared broker

true

and domain

4

scenario

publish

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish with qos

Timely

and session

Replay

and shared broker

true

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

	script
	header test procedure

	note
	test notify

	test notify and shared broker
	false

	scenario

test notify and shared broker

shared

notify

Live

and shared broker

false

scenario

notify

sess

and shared broker

shared

notify

Best Effort

and session

Live

and shared broker

false

and domain

1

scenario

notify

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
get notify with qos

Best Effort

and session

Live

and shared broker

false

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

ensure
the consumer assertions

notify

Assured

and session

Live

and shared broker

false

and domain

2

scenario

notify

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
get notify with qos

Assured

and session

Live

and shared broker

false

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

ensure
the consumer assertions

notify

Queued

and session

Live

and shared broker

false

and domain

3

scenario

notify

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
get notify with qos

Queued

and session

Live

and shared broker

false

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

ensure
the consumer assertions

notify

Timely

and session

Live

and shared broker

false

and domain

4

scenario

notify

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
get notify with qos

Timely

and session

Live

and shared broker

false

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

ensure
the consumer assertions

notify

Simulation

and shared broker

false

scenario

notify

sess

and shared broker

shared

notify

Best Effort

and session

Simulation

and shared broker

false

and domain

1

scenario

notify

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
get notify with qos

Best Effort

and session

Simulation

and shared broker

false

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

ensure
the consumer assertions

notify

Assured

and session

Simulation

and shared broker

false

and domain

2

scenario

notify

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
get notify with qos

Assured

and session

Simulation

and shared broker

false

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

ensure
the consumer assertions

notify

Queued

and session

Simulation

and shared broker

false

and domain

3

scenario

notify

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
get notify with qos

Queued

and session

Simulation

and shared broker

false

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

ensure
the consumer assertions

notify

Timely

and session

Simulation

and shared broker

false

and domain

4

scenario

notify

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
get notify with qos

Timely

and session

Simulation

and shared broker

false

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

ensure
the consumer assertions

notify

Replay

and shared broker

false

scenario

notify

sess

and shared broker

shared

notify

Best Effort

and session

Replay

and shared broker

false

and domain

1

scenario

notify

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
get notify with qos

Best Effort

and session

Replay

and shared broker

false

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

ensure
the consumer assertions

notify

Assured

and session

Replay

and shared broker

false

and domain

2

scenario

notify

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
get notify with qos

Assured

and session

Replay

and shared broker

false

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

ensure
the consumer assertions

notify

Queued

and session

Replay

and shared broker

false

and domain

3

scenario

notify

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
get notify with qos

Queued

and session

Replay

and shared broker

false

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

ensure
the consumer assertions

notify

Timely

and session

Replay

and shared broker

false

and domain

4

scenario

notify

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
get notify with qos

Timely

and session

Replay

and shared broker

false

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

ensure
the consumer assertions

	test notify and shared broker
	true

	scenario

test notify and shared broker

shared

notify

Live

and shared broker

true

scenario

notify

sess

and shared broker

shared

notify

Best Effort

and session

Live

and shared broker

true

and domain

1

scenario

notify

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
get notify with qos

Best Effort

and session

Live

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

ensure
the consumer assertions

notify

Assured

and session

Live

and shared broker

true

and domain

2

scenario

notify

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
get notify with qos

Assured

and session

Live

and shared broker

true

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

ensure
the consumer assertions

notify

Queued

and session

Live

and shared broker

true

and domain

3

scenario

notify

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
get notify with qos

Queued

and session

Live

and shared broker

true

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

ensure
the consumer assertions

notify

Timely

and session

Live

and shared broker

true

and domain

4

scenario

notify

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
get notify with qos

Timely

and session

Live

and shared broker

true

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

ensure
the consumer assertions

notify

Simulation

and shared broker

true

scenario

notify

sess

and shared broker

shared

notify

Best Effort

and session

Simulation

and shared broker

true

and domain

1

scenario

notify

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
get notify with qos

Best Effort

and session

Simulation

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

ensure
the consumer assertions

notify

Assured

and session

Simulation

and shared broker

true

and domain

2

scenario

notify

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
get notify with qos

Assured

and session

Simulation

and shared broker

true

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

ensure
the consumer assertions

notify

Queued

and session

Simulation

and shared broker

true

and domain

3

scenario

notify

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
get notify with qos

Queued

and session

Simulation

and shared broker

true

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

ensure
the consumer assertions

notify

Timely

and session

Simulation

and shared broker

true

and domain

4

scenario

notify

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
get notify with qos

Timely

and session

Simulation

and shared broker

true

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

ensure
the consumer assertions

notify

Replay

and shared broker

true

scenario

notify

sess

and shared broker

shared

notify

Best Effort

and session

Replay

and shared broker

true

and domain

1

scenario

notify

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
get notify with qos

Best Effort

and session

Replay

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

ensure
the consumer assertions

notify

Assured

and session

Replay

and shared broker

true

and domain

2

scenario

notify

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
get notify with qos

Assured

and session

Replay

and shared broker

true

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

ensure
the consumer assertions

notify

Queued

and session

Replay

and shared broker

true

and domain

3

scenario

notify

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
get notify with qos

Queued

and session

Replay

and shared broker

true

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

ensure
the consumer assertions

notify

Timely

and session

Replay

and shared broker

true

and domain

4

scenario

notify

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
get notify with qos

Timely

and session

Replay

and shared broker

true

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

ensure
the consumer assertions

	script
	header test procedure

	note
	test notify error

	test notify error and shared broker
	false

	scenario

test notify error and shared broker

shared

notify error

Live

and shared broker

false

scenario

notify error

sess

and shared broker

shared

notify error

Best Effort

and session

Live

and shared broker

false

and domain

1

scenario

notify error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate notify error with qos

Best Effort

and session

Live

and shared broker

false

and domain

1

ensure
Call the operation getResult

ensure
the consumer assertions

notify error

Assured

and session

Live

and shared broker

false

and domain

2

scenario

notify error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate notify error with qos

Assured

and session

Live

and shared broker

false

and domain

2

ensure
Call the operation getResult

ensure
the consumer assertions

notify error

Queued

and session

Live

and shared broker

false

and domain

3

scenario

notify error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate notify error with qos

Queued

and session

Live

and shared broker

false

and domain

3

ensure
Call the operation getResult

ensure
the consumer assertions

notify error

Timely

and session

Live

and shared broker

false

and domain

4

scenario

notify error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate notify error with qos

Timely

and session

Live

and shared broker

false

and domain

4

ensure
Call the operation getResult

ensure
the consumer assertions

notify error

Simulation

and shared broker

false

scenario

notify error

sess

and shared broker

shared

notify error

Best Effort

and session

Simulation

and shared broker

false

and domain

1

scenario

notify error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate notify error with qos

Best Effort

and session

Simulation

and shared broker

false

and domain

1

ensure
Call the operation getResult

ensure
the consumer assertions

notify error

Assured

and session

Simulation

and shared broker

false

and domain

2

scenario

notify error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate notify error with qos

Assured

and session

Simulation

and shared broker

false

and domain

2

ensure
Call the operation getResult

ensure
the consumer assertions

notify error

Queued

and session

Simulation

and shared broker

false

and domain

3

scenario

notify error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate notify error with qos

Queued

and session

Simulation

and shared broker

false

and domain

3

ensure
Call the operation getResult

ensure
the consumer assertions

notify error

Timely

and session

Simulation

and shared broker

false

and domain

4

scenario

notify error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate notify error with qos

Timely

and session

Simulation

and shared broker

false

and domain

4

ensure
Call the operation getResult

ensure
the consumer assertions

notify error

Replay

and shared broker

false

scenario

notify error

sess

and shared broker

shared

notify error

Best Effort

and session

Replay

and shared broker

false

and domain

1

scenario

notify error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate notify error with qos

Best Effort

and session

Replay

and shared broker

false

and domain

1

ensure
Call the operation getResult

ensure
the consumer assertions

notify error

Assured

and session

Replay

and shared broker

false

and domain

2

scenario

notify error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate notify error with qos

Assured

and session

Replay

and shared broker

false

and domain

2

ensure
Call the operation getResult

ensure
the consumer assertions

notify error

Queued

and session

Replay

and shared broker

false

and domain

3

scenario

notify error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate notify error with qos

Queued

and session

Replay

and shared broker

false

and domain

3

ensure
Call the operation getResult

ensure
the consumer assertions

notify error

Timely

and session

Replay

and shared broker

false

and domain

4

scenario

notify error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate notify error with qos

Timely

and session

Replay

and shared broker

false

and domain

4

ensure
Call the operation getResult

ensure
the consumer assertions

	test notify error and shared broker
	true

	scenario

test notify error and shared broker

shared

notify error

Live

and shared broker

true

scenario

notify error

sess

and shared broker

shared

notify error

Best Effort

and session

Live

and shared broker

true

and domain

1

scenario

notify error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate notify error with qos

Best Effort

and session

Live

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the consumer assertions

notify error

Assured

and session

Live

and shared broker

true

and domain

2

scenario

notify error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate notify error with qos

Assured

and session

Live

and shared broker

true

and domain

2

ensure
Call the operation getResult

ensure
the consumer assertions

notify error

Queued

and session

Live

and shared broker

true

and domain

3

scenario

notify error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate notify error with qos

Queued

and session

Live

and shared broker

true

and domain

3

ensure
Call the operation getResult

ensure
the consumer assertions

notify error

Timely

and session

Live

and shared broker

true

and domain

4

scenario

notify error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate notify error with qos

Timely

and session

Live

and shared broker

true

and domain

4

ensure
Call the operation getResult

ensure
the consumer assertions

notify error

Simulation

and shared broker

true

scenario

notify error

sess

and shared broker

shared

notify error

Best Effort

and session

Simulation

and shared broker

true

and domain

1

scenario

notify error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate notify error with qos

Best Effort

and session

Simulation

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the consumer assertions

notify error

Assured

and session

Simulation

and shared broker

true

and domain

2

scenario

notify error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate notify error with qos

Assured

and session

Simulation

and shared broker

true

and domain

2

ensure
Call the operation getResult

ensure
the consumer assertions

notify error

Queued

and session

Simulation

and shared broker

true

and domain

3

scenario

notify error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate notify error with qos

Queued

and session

Simulation

and shared broker

true

and domain

3

ensure
Call the operation getResult

ensure
the consumer assertions

notify error

Timely

and session

Simulation

and shared broker

true

and domain

4

scenario

notify error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate notify error with qos

Timely

and session

Simulation

and shared broker

true

and domain

4

ensure
Call the operation getResult

ensure
the consumer assertions

notify error

Replay

and shared broker

true

scenario

notify error

sess

and shared broker

shared

notify error

Best Effort

and session

Replay

and shared broker

true

and domain

1

scenario

notify error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate notify error with qos

Best Effort

and session

Replay

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the consumer assertions

notify error

Assured

and session

Replay

and shared broker

true

and domain

2

scenario

notify error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate notify error with qos

Assured

and session

Replay

and shared broker

true

and domain

2

ensure
Call the operation getResult

ensure
the consumer assertions

notify error

Queued

and session

Replay

and shared broker

true

and domain

3

scenario

notify error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate notify error with qos

Queued

and session

Replay

and shared broker

true

and domain

3

ensure
Call the operation getResult

ensure
the consumer assertions

notify error

Timely

and session

Replay

and shared broker

true

and domain

4

scenario

notify error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate notify error with qos

Timely

and session

Replay

and shared broker

true

and domain

4

ensure
Call the operation getResult

ensure
the consumer assertions

	script
	header test procedure

	note
	test publishError

	test publishError and shared broker
	false

	scenario

test publishError and shared broker

shared

publishError

Live

and shared broker

false

scenario

publishError

sess

and shared broker

shared

publishError

Best Effort

and session

Live

and shared broker

false

and domain

1

scenario

publishError

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish error with qos

Best Effort

and session

Live

and shared broker

false

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

publishError

Assured

and session

Live

and shared broker

false

and domain

2

scenario

publishError

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish error with qos

Assured

and session

Live

and shared broker

false

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

publishError

Queued

and session

Live

and shared broker

false

and domain

3

scenario

publishError

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish error with qos

Queued

and session

Live

and shared broker

false

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

publishError

Timely

and session

Live

and shared broker

false

and domain

4

scenario

publishError

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish error with qos

Timely

and session

Live

and shared broker

false

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

publishError

Simulation

and shared broker

false

scenario

publishError

sess

and shared broker

shared

publishError

Best Effort

and session

Simulation

and shared broker

false

and domain

1

scenario

publishError

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish error with qos

Best Effort

and session

Simulation

and shared broker

false

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

publishError

Assured

and session

Simulation

and shared broker

false

and domain

2

scenario

publishError

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish error with qos

Assured

and session

Simulation

and shared broker

false

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

publishError

Queued

and session

Simulation

and shared broker

false

and domain

3

scenario

publishError

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish error with qos

Queued

and session

Simulation

and shared broker

false

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

publishError

Timely

and session

Simulation

and shared broker

false

and domain

4

scenario

publishError

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish error with qos

Timely

and session

Simulation

and shared broker

false

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

publishError

Replay

and shared broker

false

scenario

publishError

sess

and shared broker

shared

publishError

Best Effort

and session

Replay

and shared broker

false

and domain

1

scenario

publishError

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish error with qos

Best Effort

and session

Replay

and shared broker

false

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

publishError

Assured

and session

Replay

and shared broker

false

and domain

2

scenario

publishError

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish error with qos

Assured

and session

Replay

and shared broker

false

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

publishError

Queued

and session

Replay

and shared broker

false

and domain

3

scenario

publishError

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish error with qos

Queued

and session

Replay

and shared broker

false

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

publishError

Timely

and session

Replay

and shared broker

false

and domain

4

scenario

publishError

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish error with qos

Timely

and session

Replay

and shared broker

false

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

	test publishError and shared broker
	true

	scenario

test publishError and shared broker

shared

publishError

Live

and shared broker

true

scenario

publishError

sess

and shared broker

shared

publishError

Best Effort

and session

Live

and shared broker

true

and domain

1

scenario

publishError

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish error with qos

Best Effort

and session

Live

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

publishError

Assured

and session

Live

and shared broker

true

and domain

2

scenario

publishError

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish error with qos

Assured

and session

Live

and shared broker

true

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

publishError

Queued

and session

Live

and shared broker

true

and domain

3

scenario

publishError

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish error with qos

Queued

and session

Live

and shared broker

true

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

publishError

Timely

and session

Live

and shared broker

true

and domain

4

scenario

publishError

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish error with qos

Timely

and session

Live

and shared broker

true

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

publishError

Simulation

and shared broker

true

scenario

publishError

sess

and shared broker

shared

publishError

Best Effort

and session

Simulation

and shared broker

true

and domain

1

scenario

publishError

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish error with qos

Best Effort

and session

Simulation

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

publishError

Assured

and session

Simulation

and shared broker

true

and domain

2

scenario

publishError

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish error with qos

Assured

and session

Simulation

and shared broker

true

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

publishError

Queued

and session

Simulation

and shared broker

true

and domain

3

scenario

publishError

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish error with qos

Queued

and session

Simulation

and shared broker

true

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

publishError

Timely

and session

Simulation

and shared broker

true

and domain

4

scenario

publishError

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish error with qos

Timely

and session

Simulation

and shared broker

true

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

publishError

Replay

and shared broker

true

scenario

publishError

sess

and shared broker

shared

publishError

Best Effort

and session

Replay

and shared broker

true

and domain

1

scenario

publishError

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish error with qos

Best Effort

and session

Replay

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

publishError

Assured

and session

Replay

and shared broker

true

and domain

2

scenario

publishError

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish error with qos

Assured

and session

Replay

and shared broker

true

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

publishError

Queued

and session

Replay

and shared broker

true

and domain

3

scenario

publishError

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish error with qos

Queued

and session

Replay

and shared broker

true

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

publishError

Timely

and session

Replay

and shared broker

true

and domain

4

scenario

publishError

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish error with qos

Timely

and session

Replay

and shared broker

true

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

	script
	header test procedure

	note
	test deregister

	test deregister and shared broker
	false

	scenario

test deregister and shared broker

shared

deregister

Live

and shared broker

false

scenario

deregister

sess

and shared broker

shared

deregister

Best Effort

and session

Live

and shared broker

false

and domain

1

scenario

deregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate deregister with qos

Best Effort

and session

Live

and shared broker

false

and domain

1

ensure
Call the operation getResult

ensure
the consumer assertions

deregister

Assured

and session

Live

and shared broker

false

and domain

2

scenario

deregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate deregister with qos

Assured

and session

Live

and shared broker

false

and domain

2

ensure
Call the operation getResult

ensure
the consumer assertions

deregister

Queued

and session

Live

and shared broker

false

and domain

3

scenario

deregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate deregister with qos

Queued

and session

Live

and shared broker

false

and domain

3

ensure
Call the operation getResult

ensure
the consumer assertions

deregister

Timely

and session

Live

and shared broker

false

and domain

4

scenario

deregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate deregister with qos

Timely

and session

Live

and shared broker

false

and domain

4

ensure
Call the operation getResult

ensure
the consumer assertions

deregister

Simulation

and shared broker

false

scenario

deregister

sess

and shared broker

shared

deregister

Best Effort

and session

Simulation

and shared broker

false

and domain

1

scenario

deregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate deregister with qos

Best Effort

and session

Simulation

and shared broker

false

and domain

1

ensure
Call the operation getResult

ensure
the consumer assertions

deregister

Assured

and session

Simulation

and shared broker

false

and domain

2

scenario

deregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate deregister with qos

Assured

and session

Simulation

and shared broker

false

and domain

2

ensure
Call the operation getResult

ensure
the consumer assertions

deregister

Queued

and session

Simulation

and shared broker

false

and domain

3

scenario

deregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate deregister with qos

Queued

and session

Simulation

and shared broker

false

and domain

3

ensure
Call the operation getResult

ensure
the consumer assertions

deregister

Timely

and session

Simulation

and shared broker

false

and domain

4

scenario

deregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate deregister with qos

Timely

and session

Simulation

and shared broker

false

and domain

4

ensure
Call the operation getResult

ensure
the consumer assertions

deregister

Replay

and shared broker

false

scenario

deregister

sess

and shared broker

shared

deregister

Best Effort

and session

Replay

and shared broker

false

and domain

1

scenario

deregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate deregister with qos

Best Effort

and session

Replay

and shared broker

false

and domain

1

ensure
Call the operation getResult

ensure
the consumer assertions

deregister

Assured

and session

Replay

and shared broker

false

and domain

2

scenario

deregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate deregister with qos

Assured

and session

Replay

and shared broker

false

and domain

2

ensure
Call the operation getResult

ensure
the consumer assertions

deregister

Queued

and session

Replay

and shared broker

false

and domain

3

scenario

deregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate deregister with qos

Queued

and session

Replay

and shared broker

false

and domain

3

ensure
Call the operation getResult

ensure
the consumer assertions

deregister

Timely

and session

Replay

and shared broker

false

and domain

4

scenario

deregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate deregister with qos

Timely

and session

Replay

and shared broker

false

and domain

4

ensure
Call the operation getResult

ensure
the consumer assertions

	test deregister and shared broker
	true

	scenario

test deregister and shared broker

shared

deregister

Live

and shared broker

true

scenario

deregister

sess

and shared broker

shared

deregister

Best Effort

and session

Live

and shared broker

true

and domain

1

scenario

deregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate deregister with qos

Best Effort

and session

Live

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the consumer assertions

deregister

Assured

and session

Live

and shared broker

true

and domain

2

scenario

deregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate deregister with qos

Assured

and session

Live

and shared broker

true

and domain

2

ensure
Call the operation getResult

ensure
the consumer assertions

deregister

Queued

and session

Live

and shared broker

true

and domain

3

scenario

deregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate deregister with qos

Queued

and session

Live

and shared broker

true

and domain

3

ensure
Call the operation getResult

ensure
the consumer assertions

deregister

Timely

and session

Live

and shared broker

true

and domain

4

scenario

deregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate deregister with qos

Timely

and session

Live

and shared broker

true

and domain

4

ensure
Call the operation getResult

ensure
the consumer assertions

deregister

Simulation

and shared broker

true

scenario

deregister

sess

and shared broker

shared

deregister

Best Effort

and session

Simulation

and shared broker

true

and domain

1

scenario

deregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate deregister with qos

Best Effort

and session

Simulation

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the consumer assertions

deregister

Assured

and session

Simulation

and shared broker

true

and domain

2

scenario

deregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate deregister with qos

Assured

and session

Simulation

and shared broker

true

and domain

2

ensure
Call the operation getResult

ensure
the consumer assertions

deregister

Queued

and session

Simulation

and shared broker

true

and domain

3

scenario

deregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate deregister with qos

Queued

and session

Simulation

and shared broker

true

and domain

3

ensure
Call the operation getResult

ensure
the consumer assertions

deregister

Timely

and session

Simulation

and shared broker

true

and domain

4

scenario

deregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate deregister with qos

Timely

and session

Simulation

and shared broker

true

and domain

4

ensure
Call the operation getResult

ensure
the consumer assertions

deregister

Replay

and shared broker

true

scenario

deregister

sess

and shared broker

shared

deregister

Best Effort

and session

Replay

and shared broker

true

and domain

1

scenario

deregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate deregister with qos

Best Effort

and session

Replay

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the consumer assertions

deregister

Assured

and session

Replay

and shared broker

true

and domain

2

scenario

deregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate deregister with qos

Assured

and session

Replay

and shared broker

true

and domain

2

ensure
Call the operation getResult

ensure
the consumer assertions

deregister

Queued

and session

Replay

and shared broker

true

and domain

3

scenario

deregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate deregister with qos

Queued

and session

Replay

and shared broker

true

and domain

3

ensure
Call the operation getResult

ensure
the consumer assertions

deregister

Timely

and session

Replay

and shared broker

true

and domain

4

scenario

deregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate deregister with qos

Timely

and session

Replay

and shared broker

true

and domain

4

ensure
Call the operation getResult

ensure
the consumer assertions

	script
	header test procedure

	note
	test publishDeregister

	test publishDeregister and shared broker
	false

	scenario

test publishDeregister and shared broker

shared

publishDeregister

Live

and shared broker

false

scenario

publishDeregister

sess

and shared broker

shared

publishDeregister

Best Effort

and session

Live

and shared broker

false

and domain

1

scenario

publishDeregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publishDeregister with qos

Best Effort

and session

Live

and shared broker

false

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

publishDeregister

Assured

and session

Live

and shared broker

false

and domain

2

scenario

publishDeregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publishDeregister with qos

Assured

and session

Live

and shared broker

false

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

publishDeregister

Queued

and session

Live

and shared broker

false

and domain

3

scenario

publishDeregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publishDeregister with qos

Queued

and session

Live

and shared broker

false

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

publishDeregister

Timely

and session

Live

and shared broker

false

and domain

4

scenario

publishDeregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publishDeregister with qos

Timely

and session

Live

and shared broker

false

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

publishDeregister

Simulation

and shared broker

false

scenario

publishDeregister

sess

and shared broker

shared

publishDeregister

Best Effort

and session

Simulation

and shared broker

false

and domain

1

scenario

publishDeregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publishDeregister with qos

Best Effort

and session

Simulation

and shared broker

false

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

publishDeregister

Assured

and session

Simulation

and shared broker

false

and domain

2

scenario

publishDeregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publishDeregister with qos

Assured

and session

Simulation

and shared broker

false

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

publishDeregister

Queued

and session

Simulation

and shared broker

false

and domain

3

scenario

publishDeregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publishDeregister with qos

Queued

and session

Simulation

and shared broker

false

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

publishDeregister

Timely

and session

Simulation

and shared broker

false

and domain

4

scenario

publishDeregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publishDeregister with qos

Timely

and session

Simulation

and shared broker

false

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

publishDeregister

Replay

and shared broker

false

scenario

publishDeregister

sess

and shared broker

shared

publishDeregister

Best Effort

and session

Replay

and shared broker

false

and domain

1

scenario

publishDeregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publishDeregister with qos

Best Effort

and session

Replay

and shared broker

false

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

publishDeregister

Assured

and session

Replay

and shared broker

false

and domain

2

scenario

publishDeregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publishDeregister with qos

Assured

and session

Replay

and shared broker

false

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

publishDeregister

Queued

and session

Replay

and shared broker

false

and domain

3

scenario

publishDeregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publishDeregister with qos

Queued

and session

Replay

and shared broker

false

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

publishDeregister

Timely

and session

Replay

and shared broker

false

and domain

4

scenario

publishDeregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publishDeregister with qos

Timely

and session

Replay

and shared broker

false

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

	test publishDeregister and shared broker
	true

	scenario

test publishDeregister and shared broker

shared

publishDeregister

Live

and shared broker

true

scenario

publishDeregister

sess

and shared broker

shared

publishDeregister

Best Effort

and session

Live

and shared broker

true

and domain

1

scenario

publishDeregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publishDeregister with qos

Best Effort

and session

Live

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

publishDeregister

Assured

and session

Live

and shared broker

true

and domain

2

scenario

publishDeregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publishDeregister with qos

Assured

and session

Live

and shared broker

true

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

publishDeregister

Queued

and session

Live

and shared broker

true

and domain

3

scenario

publishDeregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publishDeregister with qos

Queued

and session

Live

and shared broker

true

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

publishDeregister

Timely

and session

Live

and shared broker

true

and domain

4

scenario

publishDeregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publishDeregister with qos

Timely

and session

Live

and shared broker

true

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

publishDeregister

Simulation

and shared broker

true

scenario

publishDeregister

sess

and shared broker

shared

publishDeregister

Best Effort

and session

Simulation

and shared broker

true

and domain

1

scenario

publishDeregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publishDeregister with qos

Best Effort

and session

Simulation

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

publishDeregister

Assured

and session

Simulation

and shared broker

true

and domain

2

scenario

publishDeregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publishDeregister with qos

Assured

and session

Simulation

and shared broker

true

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

publishDeregister

Queued

and session

Simulation

and shared broker

true

and domain

3

scenario

publishDeregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publishDeregister with qos

Queued

and session

Simulation

and shared broker

true

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

publishDeregister

Timely

and session

Simulation

and shared broker

true

and domain

4

scenario

publishDeregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publishDeregister with qos

Timely

and session

Simulation

and shared broker

true

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

publishDeregister

Replay

and shared broker

true

scenario

publishDeregister

sess

and shared broker

shared

publishDeregister

Best Effort

and session

Replay

and shared broker

true

and domain

1

scenario

publishDeregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publishDeregister with qos

Best Effort

and session

Replay

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

publishDeregister

Assured

and session

Replay

and shared broker

true

and domain

2

scenario

publishDeregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publishDeregister with qos

Assured

and session

Replay

and shared broker

true

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

publishDeregister

Queued

and session

Replay

and shared broker

true

and domain

3

scenario

publishDeregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publishDeregister with qos

Queued

and session

Replay

and shared broker

true

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

publishDeregister

Timely

and session

Replay

and shared broker

true

and domain

4

scenario

publishDeregister

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publishDeregister with qos

Timely

and session

Replay

and shared broker

true

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

	script
	header test procedure

	note
	test publish register error

	test publish register error and shared broker
	true

	scenario

test publish register error and shared broker

shared

publish register error

Live

and shared broker

true

scenario

publish register error

sess

and shared broker

shared

publish register error

Best Effort

and session

Live

and shared broker

true

and domain

1

scenario

publish register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register error with qos

Best Effort

and session

Live

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

publish register error

Assured

and session

Live

and shared broker

true

and domain

2

scenario

publish register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register error with qos

Assured

and session

Live

and shared broker

true

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

publish register error

Queued

and session

Live

and shared broker

true

and domain

3

scenario

publish register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register error with qos

Queued

and session

Live

and shared broker

true

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

publish register error

Timely

and session

Live

and shared broker

true

and domain

4

scenario

publish register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register error with qos

Timely

and session

Live

and shared broker

true

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

publish register error

Simulation

and shared broker

true

scenario

publish register error

sess

and shared broker

shared

publish register error

Best Effort

and session

Simulation

and shared broker

true

and domain

1

scenario

publish register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register error with qos

Best Effort

and session

Simulation

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

publish register error

Assured

and session

Simulation

and shared broker

true

and domain

2

scenario

publish register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register error with qos

Assured

and session

Simulation

and shared broker

true

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

publish register error

Queued

and session

Simulation

and shared broker

true

and domain

3

scenario

publish register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register error with qos

Queued

and session

Simulation

and shared broker

true

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

publish register error

Timely

and session

Simulation

and shared broker

true

and domain

4

scenario

publish register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register error with qos

Timely

and session

Simulation

and shared broker

true

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

publish register error

Replay

and shared broker

true

scenario

publish register error

sess

and shared broker

shared

publish register error

Best Effort

and session

Replay

and shared broker

true

and domain

1

scenario

publish register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register error with qos

Best Effort

and session

Replay

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

publish register error

Assured

and session

Replay

and shared broker

true

and domain

2

scenario

publish register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register error with qos

Assured

and session

Replay

and shared broker

true

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

publish register error

Queued

and session

Replay

and shared broker

true

and domain

3

scenario

publish register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register error with qos

Queued

and session

Replay

and shared broker

true

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

publish register error

Timely

and session

Replay

and shared broker

true

and domain

4

scenario

publish register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register error with qos

Timely

and session

Replay

and shared broker

true

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

	test publish register error and shared broker
	true

	scenario

test publish register error and shared broker

shared

publish register error

Live

and shared broker

true

scenario

publish register error

sess

and shared broker

shared

publish register error

Best Effort

and session

Live

and shared broker

true

and domain

1

scenario

publish register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register error with qos

Best Effort

and session

Live

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

publish register error

Assured

and session

Live

and shared broker

true

and domain

2

scenario

publish register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register error with qos

Assured

and session

Live

and shared broker

true

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

publish register error

Queued

and session

Live

and shared broker

true

and domain

3

scenario

publish register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register error with qos

Queued

and session

Live

and shared broker

true

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

publish register error

Timely

and session

Live

and shared broker

true

and domain

4

scenario

publish register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register error with qos

Timely

and session

Live

and shared broker

true

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

publish register error

Simulation

and shared broker

true

scenario

publish register error

sess

and shared broker

shared

publish register error

Best Effort

and session

Simulation

and shared broker

true

and domain

1

scenario

publish register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register error with qos

Best Effort

and session

Simulation

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

publish register error

Assured

and session

Simulation

and shared broker

true

and domain

2

scenario

publish register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register error with qos

Assured

and session

Simulation

and shared broker

true

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

publish register error

Queued

and session

Simulation

and shared broker

true

and domain

3

scenario

publish register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register error with qos

Queued

and session

Simulation

and shared broker

true

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

publish register error

Timely

and session

Simulation

and shared broker

true

and domain

4

scenario

publish register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register error with qos

Timely

and session

Simulation

and shared broker

true

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

publish register error

Replay

and shared broker

true

scenario

publish register error

sess

and shared broker

shared

publish register error

Best Effort

and session

Replay

and shared broker

true

and domain

1

scenario

publish register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register error with qos

Best Effort

and session

Replay

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

publish register error

Assured

and session

Replay

and shared broker

true

and domain

2

scenario

publish register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register error with qos

Assured

and session

Replay

and shared broker

true

and domain

2

ensure
Call the operation getResult

ensure
the provider assertions

publish register error

Queued

and session

Replay

and shared broker

true

and domain

3

scenario

publish register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register error with qos

Queued

and session

Replay

and shared broker

true

and domain

3

ensure
Call the operation getResult

ensure
the provider assertions

publish register error

Timely

and session

Replay

and shared broker

true

and domain

4

scenario

publish register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate publish register error with qos

Timely

and session

Replay

and shared broker

true

and domain

4

ensure
Call the operation getResult

ensure
the provider assertions

	script
	header test procedure

	note
	test register error

	test register error and shared broker
	false

	scenario

test register error and shared broker

shared

register error

Live

and shared broker

false

scenario

register error

sess

and shared broker

shared

register error

Best Effort

and session

Live

and shared broker

false

and domain

1

scenario

register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register error with qos

Best Effort

and session

Live

and shared broker

false

and domain

1

ensure
Call the operation getResult

ensure
the consumer assertions

register error

Assured

and session

Live

and shared broker

false

and domain

2

scenario

register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register error with qos

Assured

and session

Live

and shared broker

false

and domain

2

ensure
Call the operation getResult

ensure
the consumer assertions

register error

Queued

and session

Live

and shared broker

false

and domain

3

scenario

register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register error with qos

Queued

and session

Live

and shared broker

false

and domain

3

ensure
Call the operation getResult

ensure
the consumer assertions

register error

Timely

and session

Live

and shared broker

false

and domain

4

scenario

register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register error with qos

Timely

and session

Live

and shared broker

false

and domain

4

ensure
Call the operation getResult

ensure
the consumer assertions

register error

Simulation

and shared broker

false

scenario

register error

sess

and shared broker

shared

register error

Best Effort

and session

Simulation

and shared broker

false

and domain

1

scenario

register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register error with qos

Best Effort

and session

Simulation

and shared broker

false

and domain

1

ensure
Call the operation getResult

ensure
the consumer assertions

register error

Assured

and session

Simulation

and shared broker

false

and domain

2

scenario

register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register error with qos

Assured

and session

Simulation

and shared broker

false

and domain

2

ensure
Call the operation getResult

ensure
the consumer assertions

register error

Queued

and session

Simulation

and shared broker

false

and domain

3

scenario

register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register error with qos

Queued

and session

Simulation

and shared broker

false

and domain

3

ensure
Call the operation getResult

ensure
the consumer assertions

register error

Timely

and session

Simulation

and shared broker

false

and domain

4

scenario

register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register error with qos

Timely

and session

Simulation

and shared broker

false

and domain

4

ensure
Call the operation getResult

ensure
the consumer assertions

register error

Replay

and shared broker

false

scenario

register error

sess

and shared broker

shared

register error

Best Effort

and session

Replay

and shared broker

false

and domain

1

scenario

register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register error with qos

Best Effort

and session

Replay

and shared broker

false

and domain

1

ensure
Call the operation getResult

ensure
the consumer assertions

register error

Assured

and session

Replay

and shared broker

false

and domain

2

scenario

register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register error with qos

Assured

and session

Replay

and shared broker

false

and domain

2

ensure
Call the operation getResult

ensure
the consumer assertions

register error

Queued

and session

Replay

and shared broker

false

and domain

3

scenario

register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register error with qos

Queued

and session

Replay

and shared broker

false

and domain

3

ensure
Call the operation getResult

ensure
the consumer assertions

register error

Timely

and session

Replay

and shared broker

false

and domain

4

scenario

register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register error with qos

Timely

and session

Replay

and shared broker

false

and domain

4

ensure
Call the operation getResult

ensure
the consumer assertions

	test register error and shared broker
	true

	scenario

test register error and shared broker

shared

register error

Live

and shared broker

true

scenario

register error

sess

and shared broker

shared

register error

Best Effort

and session

Live

and shared broker

true

and domain

1

scenario

register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register error with qos

Best Effort

and session

Live

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the consumer assertions

register error

Assured

and session

Live

and shared broker

true

and domain

2

scenario

register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register error with qos

Assured

and session

Live

and shared broker

true

and domain

2

ensure
Call the operation getResult

ensure
the consumer assertions

register error

Queued

and session

Live

and shared broker

true

and domain

3

scenario

register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register error with qos

Queued

and session

Live

and shared broker

true

and domain

3

ensure
Call the operation getResult

ensure
the consumer assertions

register error

Timely

and session

Live

and shared broker

true

and domain

4

scenario

register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register error with qos

Timely

and session

Live

and shared broker

true

and domain

4

ensure
Call the operation getResult

ensure
the consumer assertions

register error

Simulation

and shared broker

true

scenario

register error

sess

and shared broker

shared

register error

Best Effort

and session

Simulation

and shared broker

true

and domain

1

scenario

register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register error with qos

Best Effort

and session

Simulation

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the consumer assertions

register error

Assured

and session

Simulation

and shared broker

true

and domain

2

scenario

register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register error with qos

Assured

and session

Simulation

and shared broker

true

and domain

2

ensure
Call the operation getResult

ensure
the consumer assertions

register error

Queued

and session

Simulation

and shared broker

true

and domain

3

scenario

register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register error with qos

Queued

and session

Simulation

and shared broker

true

and domain

3

ensure
Call the operation getResult

ensure
the consumer assertions

register error

Timely

and session

Simulation

and shared broker

true

and domain

4

scenario

register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register error with qos

Timely

and session

Simulation

and shared broker

true

and domain

4

ensure
Call the operation getResult

ensure
the consumer assertions

register error

Replay

and shared broker

true

scenario

register error

sess

and shared broker

shared

register error

Best Effort

and session

Replay

and shared broker

true

and domain

1

scenario

register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register error with qos

Best Effort

and session

Replay

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the consumer assertions

register error

Assured

and session

Replay

and shared broker

true

and domain

2

scenario

register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register error with qos

Assured

and session

Replay

and shared broker

true

and domain

2

ensure
Call the operation getResult

ensure
the consumer assertions

register error

Queued

and session

Replay

and shared broker

true

and domain

3

scenario

register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register error with qos

Queued

and session

Replay

and shared broker

true

and domain

3

ensure
Call the operation getResult

ensure
the consumer assertions

register error

Timely

and session

Replay

and shared broker

true

and domain

4

scenario

register error

qos

and session

sess

and shared broker

shared

and domain

domain

ensure
initiate register error with qos

Timely

and session

Replay

and shared broker

true

and domain

4

ensure
Call the operation getResult

ensure
the consumer assertions

	script
	header test procedure

	note
	first publish register

	test first publish register and shared broker
	false

	scenario

test first publish register and shared broker

shared

first publish register

Live

and shared broker

false

scenario

first publish register

sess

and shared broker

shared

ensure
initiate publish register with qos

Best Effort

and session

Live

and shared broker

false

and domain

1

ensure
initiate publish register with qos

Assured

and session

Live

and shared broker

false

and domain

1

ensure
initiate publish register with qos

Queued

and session

Live

and shared broker

false

and domain

1

ensure
initiate publish register with qos

Timely

and session

Live

and shared broker

false

and domain

1

ensure
initiate register with qos

Best Effort

and session

Live

and shared broker

false

and domain

1

ensure
initiate register with qos

Assured

and session

Live

and shared broker

false

and domain

1

ensure
initiate register with qos

Queued

and session

Live

and shared broker

false

and domain

1

ensure
initiate register with qos

Timely

and session

Live

and shared broker

false

and domain

1

ensure
initiate publish with qos

Best Effort

and session

Live

and shared broker

false

and domain

1

ensure
initiate publish with qos

Assured

and session

Live

and shared broker

false

and domain

1

ensure
initiate publish with qos

Queued

and session

Live

and shared broker

false

and domain

1

ensure
initiate publish with qos

Timely

and session

Live

and shared broker

false

and domain

1

ensure
initiate publish error with qos

Best Effort

and session

Live

and shared broker

false

and domain

1

ensure
initiate publish error with qos

Assured

and session

Live

and shared broker

false

and domain

1

ensure
initiate publish error with qos

Queued

and session

Live

and shared broker

false

and domain

1

ensure
initiate publish error with qos

Timely

and session

Live

and shared broker

false

and domain

1

ensure
initiate deregister with qos

Best Effort

and session

Live

and shared broker

false

and domain

1

ensure
initiate deregister with qos

Assured

and session

Live

and shared broker

false

and domain

1

ensure
initiate deregister with qos

Queued

and session

Live

and shared broker

false

and domain

1

ensure
initiate deregister with qos

Timely

and session

Live

and shared broker

false

and domain

1

ensure
initiate publish deregister with qos

Assured

and session

Live

and shared broker

false

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

first publish register

Simulation

and shared broker

false

scenario

first publish register

sess

and shared broker

shared

ensure
initiate publish register with qos

Best Effort

and session

Simulation

and shared broker

false

and domain

1

ensure
initiate publish register with qos

Assured

and session

Simulation

and shared broker

false

and domain

1

ensure
initiate publish register with qos

Queued

and session

Simulation

and shared broker

false

and domain

1

ensure
initiate publish register with qos

Timely

and session

Simulation

and shared broker

false

and domain

1

ensure
initiate register with qos

Best Effort

and session

Simulation

and shared broker

false

and domain

1

ensure
initiate register with qos

Assured

and session

Simulation

and shared broker

false

and domain

1

ensure
initiate register with qos

Queued

and session

Simulation

and shared broker

false

and domain

1

ensure
initiate register with qos

Timely

and session

Simulation

and shared broker

false

and domain

1

ensure
initiate publish with qos

Best Effort

and session

Simulation

and shared broker

false

and domain

1

ensure
initiate publish with qos

Assured

and session

Simulation

and shared broker

false

and domain

1

ensure
initiate publish with qos

Queued

and session

Simulation

and shared broker

false

and domain

1

ensure
initiate publish with qos

Timely

and session

Simulation

and shared broker

false

and domain

1

ensure
initiate publish error with qos

Best Effort

and session

Simulation

and shared broker

false

and domain

1

ensure
initiate publish error with qos

Assured

and session

Simulation

and shared broker

false

and domain

1

ensure
initiate publish error with qos

Queued

and session

Simulation

and shared broker

false

and domain

1

ensure
initiate publish error with qos

Timely

and session

Simulation

and shared broker

false

and domain

1

ensure
initiate deregister with qos

Best Effort

and session

Simulation

and shared broker

false

and domain

1

ensure
initiate deregister with qos

Assured

and session

Simulation

and shared broker

false

and domain

1

ensure
initiate deregister with qos

Queued

and session

Simulation

and shared broker

false

and domain

1

ensure
initiate deregister with qos

Timely

and session

Simulation

and shared broker

false

and domain

1

ensure
initiate publish deregister with qos

Assured

and session

Simulation

and shared broker

false

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

first publish register

Replay

and shared broker

false

scenario

first publish register

sess

and shared broker

shared

ensure
initiate publish register with qos

Best Effort

and session

Replay

and shared broker

false

and domain

1

ensure
initiate publish register with qos

Assured

and session

Replay

and shared broker

false

and domain

1

ensure
initiate publish register with qos

Queued

and session

Replay

and shared broker

false

and domain

1

ensure
initiate publish register with qos

Timely

and session

Replay

and shared broker

false

and domain

1

ensure
initiate register with qos

Best Effort

and session

Replay

and shared broker

false

and domain

1

ensure
initiate register with qos

Assured

and session

Replay

and shared broker

false

and domain

1

ensure
initiate register with qos

Queued

and session

Replay

and shared broker

false

and domain

1

ensure
initiate register with qos

Timely

and session

Replay

and shared broker

false

and domain

1

ensure
initiate publish with qos

Best Effort

and session

Replay

and shared broker

false

and domain

1

ensure
initiate publish with qos

Assured

and session

Replay

and shared broker

false

and domain

1

ensure
initiate publish with qos

Queued

and session

Replay

and shared broker

false

and domain

1

ensure
initiate publish with qos

Timely

and session

Replay

and shared broker

false

and domain

1

ensure
initiate publish error with qos

Best Effort

and session

Replay

and shared broker

false

and domain

1

ensure
initiate publish error with qos

Assured

and session

Replay

and shared broker

false

and domain

1

ensure
initiate publish error with qos

Queued

and session

Replay

and shared broker

false

and domain

1

ensure
initiate publish error with qos

Timely

and session

Replay

and shared broker

false

and domain

1

ensure
initiate deregister with qos

Best Effort

and session

Replay

and shared broker

false

and domain

1

ensure
initiate deregister with qos

Assured

and session

Replay

and shared broker

false

and domain

1

ensure
initiate deregister with qos

Queued

and session

Replay

and shared broker

false

and domain

1

ensure
initiate deregister with qos

Timely

and session

Replay

and shared broker

false

and domain

1

ensure
initiate publish deregister with qos

Assured

and session

Replay

and shared broker

false

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

	test first publish register and shared broker
	true

	scenario

test first publish register and shared broker

shared

first publish register

Live

and shared broker

true

scenario

first publish register

sess

and shared broker

shared

ensure
initiate publish register with qos

Best Effort

and session

Live

and shared broker

true

and domain

1

ensure
initiate publish register with qos

Assured

and session

Live

and shared broker

true

and domain

1

ensure
initiate publish register with qos

Queued

and session

Live

and shared broker

true

and domain

1

ensure
initiate publish register with qos

Timely

and session

Live

and shared broker

true

and domain

1

ensure
initiate register with qos

Best Effort

and session

Live

and shared broker

true

and domain

1

ensure
initiate register with qos

Assured

and session

Live

and shared broker

true

and domain

1

ensure
initiate register with qos

Queued

and session

Live

and shared broker

true

and domain

1

ensure
initiate register with qos

Timely

and session

Live

and shared broker

true

and domain

1

ensure
initiate publish with qos

Best Effort

and session

Live

and shared broker

true

and domain

1

ensure
initiate publish with qos

Assured

and session

Live

and shared broker

true

and domain

1

ensure
initiate publish with qos

Queued

and session

Live

and shared broker

true

and domain

1

ensure
initiate publish with qos

Timely

and session

Live

and shared broker

true

and domain

1

ensure
initiate publish error with qos

Best Effort

and session

Live

and shared broker

true

and domain

1

ensure
initiate publish error with qos

Assured

and session

Live

and shared broker

true

and domain

1

ensure
initiate publish error with qos

Queued

and session

Live

and shared broker

true

and domain

1

ensure
initiate publish error with qos

Timely

and session

Live

and shared broker

true

and domain

1

ensure
initiate deregister with qos

Best Effort

and session

Live

and shared broker

true

and domain

1

ensure
initiate deregister with qos

Assured

and session

Live

and shared broker

true

and domain

1

ensure
initiate deregister with qos

Queued

and session

Live

and shared broker

true

and domain

1

ensure
initiate deregister with qos

Timely

and session

Live

and shared broker

true

and domain

1

ensure
initiate publish deregister with qos

Assured

and session

Live

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

first publish register

Simulation

and shared broker

true

scenario

first publish register

sess

and shared broker

shared

ensure
initiate publish register with qos

Best Effort

and session

Simulation

and shared broker

true

and domain

1

ensure
initiate publish register with qos

Assured

and session

Simulation

and shared broker

true

and domain

1

ensure
initiate publish register with qos

Queued

and session

Simulation

and shared broker

true

and domain

1

ensure
initiate publish register with qos

Timely

and session

Simulation

and shared broker

true

and domain

1

ensure
initiate register with qos

Best Effort

and session

Simulation

and shared broker

true

and domain

1

ensure
initiate register with qos

Assured

and session

Simulation

and shared broker

true

and domain

1

ensure
initiate register with qos

Queued

and session

Simulation

and shared broker

true

and domain

1

ensure
initiate register with qos

Timely

and session

Simulation

and shared broker

true

and domain

1

ensure
initiate publish with qos

Best Effort

and session

Simulation

and shared broker

true

and domain

1

ensure
initiate publish with qos

Assured

and session

Simulation

and shared broker

true

and domain

1

ensure
initiate publish with qos

Queued

and session

Simulation

and shared broker

true

and domain

1

ensure
initiate publish with qos

Timely

and session

Simulation

and shared broker

true

and domain

1

ensure
initiate publish error with qos

Best Effort

and session

Simulation

and shared broker

true

and domain

1

ensure
initiate publish error with qos

Assured

and session

Simulation

and shared broker

true

and domain

1

ensure
initiate publish error with qos

Queued

and session

Simulation

and shared broker

true

and domain

1

ensure
initiate publish error with qos

Timely

and session

Simulation

and shared broker

true

and domain

1

ensure
initiate deregister with qos

Best Effort

and session

Simulation

and shared broker

true

and domain

1

ensure
initiate deregister with qos

Assured

and session

Simulation

and shared broker

true

and domain

1

ensure
initiate deregister with qos

Queued

and session

Simulation

and shared broker

true

and domain

1

ensure
initiate deregister with qos

Timely

and session

Simulation

and shared broker

true

and domain

1

ensure
initiate publish deregister with qos

Assured

and session

Simulation

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

first publish register

Replay

and shared broker

true

scenario

first publish register

sess

and shared broker

shared

ensure
initiate publish register with qos

Best Effort

and session

Replay

and shared broker

true

and domain

1

ensure
initiate publish register with qos

Assured

and session

Replay

and shared broker

true

and domain

1

ensure
initiate publish register with qos

Queued

and session

Replay

and shared broker

true

and domain

1

ensure
initiate publish register with qos

Timely

and session

Replay

and shared broker

true

and domain

1

ensure
initiate register with qos

Best Effort

and session

Replay

and shared broker

true

and domain

1

ensure
initiate register with qos

Assured

and session

Replay

and shared broker

true

and domain

1

ensure
initiate register with qos

Queued

and session

Replay

and shared broker

true

and domain

1

ensure
initiate register with qos

Timely

and session

Replay

and shared broker

true

and domain

1

ensure
initiate publish with qos

Best Effort

and session

Replay

and shared broker

true

and domain

1

ensure
initiate publish with qos

Assured

and session

Replay

and shared broker

true

and domain

1

ensure
initiate publish with qos

Queued

and session

Replay

and shared broker

true

and domain

1

ensure
initiate publish with qos

Timely

and session

Replay

and shared broker

true

and domain

1

ensure
initiate publish error with qos

Best Effort

and session

Replay

and shared broker

true

and domain

1

ensure
initiate publish error with qos

Assured

and session

Replay

and shared broker

true

and domain

1

ensure
initiate publish error with qos

Queued

and session

Replay

and shared broker

true

and domain

1

ensure
initiate publish error with qos

Timely

and session

Replay

and shared broker

true

and domain

1

ensure
initiate deregister with qos

Best Effort

and session

Replay

and shared broker

true

and domain

1

ensure
initiate deregister with qos

Assured

and session

Replay

and shared broker

true

and domain

1

ensure
initiate deregister with qos

Queued

and session

Replay

and shared broker

true

and domain

1

ensure
initiate deregister with qos

Timely

and session

Replay

and shared broker

true

and domain

1

ensure
initiate publish deregister with qos

Assured

and session

Replay

and shared broker

true

and domain

1

ensure
Call the operation getResult

ensure
the provider assertions

	script
	header test procedure

	note
	clean up the test instance

	delete fixture single instance

3.1.2.4 Test procedure: subscription area

This test checks that the allAreas statement specified by a Register is correctly interpreted by a shared broker.
	script
	subscription area test procedure

	ensure
	initiate publishers

	check
	subscribe to all areas
	true
	and expected notify from other services is
	1

	ensure
	check notify header

	check
	subscribe to all areas
	false
	and expected notify from other services is
	0

	ensure
	publish deregister

3.1.2.5 Test procedure: subscription domain

This test checks that the domain specified by a Register is correctly interpreted by the broker.

A provider is publishing a set of updates with the following domains (the dot notation is used to separate the sub-domains):

· spacecraftA

· spacecraftA.aocs

· spacecraftA.aocs.thrustA

· spacecraftA.payload

· spacecraftA.payload.cameraA.tempB

· spacecraftB

· agency.spacecraftA

Therefore a subscription message with the domain of spacecraftA and a NULL subDomain field would only match the first update.
A subscription message with the domain of spacecraftA and a subDomain field set to aocs would only match the second update.
A subscription message with the domain of spacecraftA and a subDomain field set to aocs.* would match the second and third updates.
A subscription message with the domain of spacecraftA and a subDomain field set to * would match updates 1 to 5.
	script
	subscription domain test procedure

	subscription domain
	false

	scenario

subscription domain

shared

ensure
initiate publisher with domains

spacecraftA,spacecraftA.aocs,spacecraftA.aocs.thrustA,spacecraftA.payload,spacecraftA.payload.cameraA.tempB,spacecraftB,agency.spacecraftA

and shared broker

false

ensure
subscribe to domain

spacecraftA

and subdomain

NULL

and expected domains

spacecraftA

ensure
subscribe to domain

spacecraftA

and subdomain

aocs

and expected domains

spacecraftA.aocs

ensure
subscribe to domain

spacecraftA

and subdomain

aocs.*

and expected domains

spacecraftA.aocs,spacecraftA.aocs.thrustA

ensure
subscribe to domain

spacecraftA

and subdomain

*

and expected domains

spacecraftA,spacecraftA.aocs,spacecraftA.aocs.thrustA,spacecraftA.payload,spacecraftA.payload.cameraA.tempB

ensure
publish deregister

	subscription domain
	true

	scenario

subscription domain

shared

ensure
initiate publisher with domains

spacecraftA,spacecraftA.aocs,spacecraftA.aocs.thrustA,spacecraftA.payload,spacecraftA.payload.cameraA.tempB,spacecraftB,agency.spacecraftA

and shared broker

true

ensure
subscribe to domain

spacecraftA

and subdomain

NULL

and expected domains

spacecraftA

ensure
subscribe to domain

spacecraftA

and subdomain

aocs

and expected domains

spacecraftA.aocs

ensure
subscribe to domain

spacecraftA

and subdomain

aocs.*

and expected domains

spacecraftA.aocs,spacecraftA.aocs.thrustA

ensure
subscribe to domain

spacecraftA

and subdomain

*

and expected domains

spacecraftA,spacecraftA.aocs,spacecraftA.aocs.thrustA,spacecraftA.payload,spacecraftA.payload.cameraA.tempB

ensure
publish deregister

3.1.2.6 Test procedure: subscription id

This test verifies that the URI of the consumer and the subscription identifier form the unique identifier of the subscription.

Two IPTest consumers are created. Two subscriptions with the same identifier 'sub1' are created with both consumers as defined below:

· subscription identifier: 'sub1'

· authentication identifier: '0x00,0x01'

· qos: Assured

· priority: 1

· domain: 'Test,Domain1'

· networkZone: 'NetworkZone'

· session: Live

· session name: 'LIVE'

· entity expression: 'A,null,null,null'

· only on change: false

The consumer triggers one publication with the key 'A' and the update type 'Modification'.
The consumer checks that the update is received once by both consumers.
	script
	subscription id test procedure

	subscription id
	false

	scenario

subscription id

shared

ensure
use shared broker

false

ensure
create subscriber

ensure
create subscriber

ensure
publish

ensure
update is received once by every subscriber

ensure
unregister subscribers

ensure
publish deregister

	subscription id
	true

	scenario

subscription id

shared

ensure
use shared broker

true

ensure
create subscriber

ensure
create subscriber

ensure
publish

ensure
update is received once by every subscriber

ensure
unregister subscribers

ensure
publish deregister

3.1.2.7 Test procedure: subscription network

This test checks that the network specified by a Register is ignored by a broker.
	script
	subscription network test procedure

	subscription network
	false

	scenario

subscription network

shared

ensure
initiate publisher with network

publisherNetwork

and shared broker

false

ensure
subscribe with network

consumerNetwork

and expected notify

1

ensure
check notify header

ensure
publish deregister

	subscription network
	true

	scenario

subscription network

shared

ensure
initiate publisher with network

publisherNetwork

and shared broker

true

ensure
subscribe with network

consumerNetwork

and expected notify

1

ensure
check notify header

ensure
publish deregister

3.1.2.8 Test procedure: subscription operation

This test checks that the allOperations statement specified by a Register is correctly interpreted by a shared broker.
	script
	subscription operation test procedure

	subscription operation
	false

	scenario

subscription operation

shared

ensure
initiate publishers with shared broker

false

ensure
subscribe to all operations

true

and expected notify from other operations

1

ensure
check notify header

ensure
subscribe to all operations

false

and expected notify from other operations

0

ensure
publish deregister

	subscription operation
	true

	scenario

subscription operation

shared

ensure
initiate publishers with shared broker

true

ensure
subscribe to all operations

true

and expected notify from other operations

1

ensure
check notify header

ensure
subscribe to all operations

false

and expected notify from other operations

0

ensure
publish deregister

3.1.2.9 Test procedure: subscription service

This test checks that the allServices statement specified by a Register is correctly interpreted by a shared broker.

	script
	subscription service test procedure

	ensure
	initiate publishers

	ensure
	subscribe to all services
	true
	and expected notify from other services
	1

	ensure
	check notify header

	ensure
	subscribe to all services
	false
	and expected notify from other services
	0

	ensure
	publish deregister

3.1.2.10 Test procedure: subscription session name

This test checks that the session name specified by a Register is checked by a broker.
The session type is Simulation.
	script
	subscription session name test procedure

	subscription session name
	false

	scenario

subscription session name

shared

ensure
initiate publisher with session name

S1

and shared broker

false

ensure
subscribe with session name

S1

and expected notify

1

ensure
check notify header

ensure
subscribe with session name

S2

and expected notify

0

ensure
publish deregister

	subscription session name
	true

	scenario

subscription session name

shared

ensure
initiate publisher with session name

S1

and shared broker

true

ensure
subscribe with session name

S1

and expected notify

1

ensure
check notify header

ensure
subscribe with session name

S2

and expected notify

0

ensure
publish deregister

3.1.2.11 Test procedure: subscription session type

This test checks that the session type specified by a Register is checked by a broker.
	script
	subscription session type test procedure

	subscription session type
	false

	scenario

subscription session type

shared

ensure
initiate publisher with session type

Live

and shared broker

false

ensure
subscribe with session type

Live

and expected notify

1

ensure
check notify header

ensure
subscribe with session type

Simulation

and expected notify

0

ensure
publish deregister

	subscription session type
	true

	scenario

subscription session type

shared

ensure
initiate publisher with session type

Live

and shared broker

true

ensure
subscribe with session type

Live

and expected notify

1

ensure
check notify header

ensure
subscribe with session type

Simulation

and expected notify

0

ensure
publish deregister

3.1.2.12 Test procedure: subscription

This test checks that a Pub/Sub registration correctly behaves:

· Notified updates shall arrive only once even if several entity requests match the same entity

· If the 'only on change' indicator is true then only 'CREATION', 'MODIFICATION' and 'DELETION' updates shall be received.

· The Notify transaction identifier shall be equal to the first Register transaction identifier

The consumer registers with the following parameters:

· subscription identifier: 'sub1'

· authentication identifier: '0x00,0x01'

· priority: 1

· domain: 'Test,Domain'

· networkZone: 'NetworkZone'

· entity expression: 'A,null,null,null'

· only on change: false

The transaction identifier of the Register acknowledgement is stored.

The consumer re-registers with the same parameters as before except:

· only on change: true

· two entity requests with the same entity expression: 'A,null,null,null'
	script
	subscription test procedure

	subscription
	false

	scenario

subscription

shared

ensure
use shared broker

false

ensure
register

ensure
reregister

ensure
publish with update type

Creation

check

number of notified updates

1
ensure
transaction id is from the first register

ensure
publish with update type

Update

check

number of notified updates

0
ensure
publish with update type

Modification

check

number of notified updates

1
ensure
transaction id is from the first register

ensure
publish with update type

Deletion

check

number of notified updates

1
ensure
transaction id is from the first register

ensure
publish deregister

	subscription
	true

	scenario

subscription

shared

ensure
use shared broker

true

ensure
register

ensure
reregister

ensure
publish with update type

Creation

check

number of notified updates

1
ensure
transaction id is from the first register

ensure
publish with update type

Update

check

number of notified updates

0
ensure
publish with update type

Modification

check

number of notified updates

1
ensure
transaction id is from the first register

ensure
publish with update type

Deletion

check

number of notified updates

1
ensure
transaction id is from the first register

ensure
publish deregister

3.1.2.13 Test procedure: Multiple types

This test verifies that the pub sub pattern can handle an operation that defines multiple types in its message.
The consumer triggers one publication with the key 'A' and the update type 'Modification'.
The consumer checks that the update is received correctly.
	script
	multi type test procedure

	multi type test with shared broker
	false

	scenario

multi type test with shared broker

shared

ensure
use shared broker

false

ensure
create subscriber

ensure
publish

ensure
update is received correctly

ensure
unregister subscriber

ensure
publish deregister

	multi type test with shared broker
	true

	scenario

multi type test with shared broker

shared

ensure
use shared broker

true

ensure
create subscriber

ensure
publish

ensure
update is received correctly

ensure
unregister subscriber

ensure
publish deregister

3.2 Data type test scenario

A list of MAL data structure instances is statically defined according to the following constraints:
· All the data types shall be instantiated at least once.

· Enumerations shall be instantiated once for each enumerated value.

· Abstract types need to be extended by a concrete type for the test

· The value Null shall belong to the list

· The value Null shall be inserted into a Composite structure

This data list is statically known by the DataTest service provider and consumer.
The consumer takes the data from the list one by one, in the same order, and calls the operation 'testData'. It checks that no error is raised by the provider, especially DATA_ERROR and BAD_ENCODING.
	script
	data type scenario

	check
	explicit duration type works
	OK

	check
	explicit Fine Time type works
	OK

	check
	explicit Identifier type works
	OK

	check
	explicit Time type works
	OK

	check
	explicit URI type works
	OK

	check
	explicit Blob type works
	OK

	check
	explicit Boolean type works
	OK

	check
	explicit Octet type works
	OK

	check
	explicit Double type works
	OK

	check
	explicit Float type works
	OK

	check
	explicit Integer type works
	OK

	check
	explicit Long type works
	OK

	check
	explicit Short type works
	OK

	check
	explicit String type works
	OK

	check
	explicit UOctet type works
	OK

	check
	explicit UInteger type works
	OK

	check
	explicit ULong type works
	OK

	check
	explicit UShort type works
	OK

	check
	attribute types work
	OK

	check
	enumerations work
	OK

	check
	complete composites work
	OK

	check
	abstract composites work
	OK

	check
	lists work
	OK

	check
	nulls work
	OK

	check
	composites with null work
	OK

	check
	explicit multi return works
	OK

	check
	abstract multi return works
	OK

	check
	multi return with nulls work
	OK

3.3 Error test scenario

The following tests use the ErrorTest service.
3.3.1 Test Case: transport errors
3.3.1.1 Test procedure: transport failure
This test checks that the error code are correctly defined at the MAL level.
An ErrorTest consumer is created. Each operation raising a transport error is initiated. For each transport error, the test checks that the error raised by the provider is the one expected by the consumer.
	script
	transport error scenario

	ensure
	create consumer

	ensure
	raise error
	DELIVERY_FAILED

	ensure
	raise error
	DELIVERY_TIMEDOUT

	ensure
	raise error
	DELIVERY_DELAYED

	ensure
	raise error
	DESTINATION_UNKNOWN

	ensure
	raise error
	DESTINATION_TRANSIENT

	ensure
	raise error
	DESTINATION_LOST

	ensure
	raise error
	ENCRYPTION_FAIL

	ensure
	raise error
	UNSUPPORTED_AREA

	ensure
	raise error
	UNSUPPORTED_OPERATION

	ensure
	raise error
	UNSUPPORTED_VERSION

	ensure
	raise error
	BAD_ENCODING

	ensure
	raise error
	UNKNOWN

3.3.2 Test Case: Security errors

The test security module raises specific errors depending on the operation called:
	Comment

	Service
	Operation
	Error to raise

	ErrorTest
	testAuthenticationFailure
	AUTHENTICATION_FAIL

	ErrorTest
	testAuthorisationFailure
	AUTHORISATION_FAIL

This test checks that they are rejected locally first and then remotely.

3.3.2.1 Test procedure: authentication failure

The ErrorTest consumer calls the operation testAuthenticationFail and checks that the error AUTHENTICATION_FAIL is returned.
	script
	Access control error scenario

	ensure
	security manager has been created

	switch on local rejections

	ensure
	a testAuthenticationFailure interaction fails

	ensure
	error type is
	AUTHENTICATION_FAIL

	ensure
	error source is
	local

	switch off local rejections

	ensure
	a testAuthenticationFailure interaction fails

	ensure
	error type is
	AUTHENTICATION_FAIL

	ensure
	error source is
	remote

3.3.2.2 Test procedure: authorization failure

The ErrorTest consumer calls the operation testAuthorisationFail and checks that the error AUTHORISATION_FAIL is returned.
	script
	Access control error scenario

	ensure
	security manager has been created

	switch on local rejections

	ensure
	a testAuthorisationFail interaction fails

	ensure
	error type is
	AUTHORISATION_FAIL

	ensure
	error source is
	local

	switch off local rejections

	ensure
	a testAuthorisationFail interaction fails

	ensure
	error type is
	AUTHORISATION_FAIL

	ensure
	error source is
	remote

3.4 Access control test scenario

The Access Control interface has to be implemented by a test security module in charge of checking that the primitive CHECK is called by the MAL. The message passed with the CHECK request is returned to the MAL without being modified through the CHECK Response indication.
The consumer process has to create a MAL instance that uses the test security module.

3.4.1 Test case: CHECK interaction

3.4.1.1 Test procedure: CHECK interaction

The consumer has to do the following actions:
1. create an IPTest consumer

2. for each type of interaction

3. initiate an interaction by calling the relevant operation

4. wait for the end of the interaction

5. check that the MAL has interacted the correct number of times with Access Control.

6. check that each message that passed through Access Control has the correct interaction type and stage

Another check is also performed that ensures that if a message is modified by Access Control, that the modified message is used from that point onwards. The test AC component reverses the bytes of the authentication id.
	script
	Access control scenario

	ensure
	security manager has been created

	switch on message logging

	switch on authentication modification

	reset message count

	ensure
	a Send interaction completes

	check
	access control message count
	1

	check
	transmit count for
	Send
	interaction
	1

	check
	receive count for
	Send
	interaction
	0

	ensure
	transmitted message auth id is reversed compared to security index
	1

	note
	for the send test the stage field is ignored

	check
	message at index
	1
	has interaction of
	1

	ensure
	message at index
	1
	is not an error

	reset message count

	ensure
	a Submit interaction completes

	check
	access control message count
	2

	check
	transmit count for
	Submit
	interaction
	1

	check
	receive count for
	Submit
	interaction
	1

	ensure
	transmitted message auth id is reversed compared to security index
	1

	ensure
	received message at index
	1
	auth id is reversed compared to security index
	2

	check
	message at index
	1
	has interaction of
	2

	check
	message at index
	1
	has stage of
	1

	ensure
	message at index
	1
	is not an error

	check
	message at index
	2
	has interaction of
	2

	check
	message at index
	2
	has stage of
	2

	ensure
	message at index
	2
	is not an error

	reset message count

	ensure
	a Request interaction completes

	check
	access control message count
	2

	check
	transmit count for
	Request
	interaction
	1

	check
	receive count for
	Request
	interaction
	1

	ensure
	transmitted message auth id is reversed compared to security index
	1

	ensure
	received message at index
	1
	auth id is reversed compared to security index
	2

	check
	message at index
	1
	has interaction of
	3

	check
	message at index
	1
	has stage of
	1

	ensure
	message at index
	1
	is not an error

	check
	message at index
	2
	has interaction of
	3

	check
	message at index
	2
	has stage of
	2

	ensure
	message at index
	2
	is not an error

	reset message count

	ensure
	an Invoke interaction completes

	check
	access control message count
	3

	check
	transmit count for
	Invoke
	interaction
	1

	check
	receive count for
	Invoke
	interaction
	2

	ensure
	transmitted message auth id is reversed compared to security index
	1

	ensure
	received message at index
	1
	auth id is reversed compared to security index
	2

	ensure
	received message at index
	2
	auth id is reversed compared to security index
	3

	check
	message at index
	1
	has interaction of
	4

	check
	message at index
	1
	has stage of
	1

	ensure
	message at index
	1
	is not an error

	check
	message at index
	2
	has interaction of
	4

	check
	message at index
	2
	has stage of
	2

	ensure
	message at index
	2
	is not an error

	check
	message at index
	3
	has interaction of
	4

	check
	message at index
	3
	has stage of
	3

	ensure
	message at index
	3
	is not an error

	reset message count

	ensure
	a Progress interaction completes

	check
	access control message count
	6

	check
	transmit count for
	Progress
	interaction
	1

	check
	receive count for
	Progress
	interaction
	5

	ensure
	transmitted message auth id is reversed compared to security index
	1

	ensure
	received message at index
	1
	auth id is reversed compared to security index
	2

	ensure
	received message at index
	2
	auth id is reversed compared to security index
	3

	ensure
	received message at index
	3
	auth id is reversed compared to security index
	4

	ensure
	received message at index
	4
	auth id is reversed compared to security index
	5

	ensure
	received message at index
	5
	auth id is reversed compared to security index
	6

	check
	message at index
	1
	has interaction of
	5

	check
	message at index
	1
	has stage of
	1

	ensure
	message at index
	1
	is not an error

	check
	message at index
	2
	has interaction of
	5

	check
	message at index
	2
	has stage of
	2

	ensure
	message at index
	2
	is not an error

	check
	message at index
	3
	has interaction of
	5

	check
	message at index
	3
	has stage of
	3

	ensure
	message at index
	3
	is not an error

	check
	message at index
	4
	has interaction of
	5

	check
	message at index
	4
	has stage of
	3

	ensure
	message at index
	4
	is not an error

	check
	message at index
	5
	has interaction of
	5

	check
	message at index
	5
	has stage of
	3

	ensure
	message at index
	5
	is not an error

	check
	message at index
	6
	has interaction of
	5

	check
	message at index
	6
	has stage of
	4

	ensure
	message at index
	6
	is not an error

	switch off authentication modification

	switch off message logging

3.5 Transport test scenario

These tests check the Transport interface. A test transport module is used in order to check that the interactions between the MAL and the transport are correctly done. This test transport is described in annex C.

3.5.1.1 Test procedure: supported QoS interaction

An IPTest consumer is created for each available QoS level: BEST_EFFORT, ASSURED, QUEUED and TIMELY.
For each QoS level, the test checks that the SupportedQoS interaction has been initiated and replied once.
Not all tests in the supported QoS interaction test procedure were successful. The problem has been traced to a known issue of the MAL API Testbed. Hence, a failure in this specific test case is accepted.

	script
	supported qos test procedure

	ensure
	supported qos
	Best Effort
	counts reset

	ensure
	supported qos
	Assured
	counts reset

	ensure
	supported qos
	Queued
	counts reset

	ensure
	supported qos
	Timely
	counts reset

	supported qos
	Best Effort

	scenario

supported qos

qosLevel

ensure
create consumer with qos

Best Effort

check

is supported qos request count

[0] expected [1]
check

is supported qos response count

[0] expected [1]

	supported qos
	Assured

	scenario

supported qos

qosLevel

ensure
create consumer with qos

Assured

check

is supported qos request count

1
check

is supported qos response count

1

	supported qos
	Queued

	scenario

supported qos

qosLevel

ensure
create consumer with qos

Queued

check

is supported qos request count

1
check

is supported qos response count

1

	supported qos
	Timely

	scenario

supported qos

qosLevel

ensure
create consumer with qos

Timely

check

is supported qos request count

1
check

is supported qos response count

1

3.5.1.2 Test procedure: supported interaction patterns

An IPTest consumer is created. The test checks that the SupportedIP interaction has been initiated and replied once for every InteractionType.
Not all tests in the supported interaction patterns test procedure were successful. The problem has been traced to a known issue of the MAL API Testbed. Hence, a failure in this specific test case is accepted.
	script
	supported ip test procedure

	ensure
	create consumer

	__EXCEPTION__:org.ccsds.moims.mo.mal.MALException: The server socket cannot be created, because another process is already using this socket!

Ensure that you are instantiating a MAL provider with a unique configuration file and a unique port set. Also, check that the port which you set in your configuration file, is not used by other processes.

at esa.mo.mal.transport.tcpip.TCPIPTransport.init(TCPIPTransport.java:235) [TRANSPORT_TCPIP-1.0.3.jar]

at esa.mo.mal.transport.tcpip.TCPIPTransportFactoryImpl.createTransport(TCPIPTransportFactoryImpl.java:60) [TRANSPORT_TCPIP-1.0.3.jar]

at org.ccsds.moims.mo.testbed.transport.TestTransportFactory.createTransport(TestTransportFactory.java:64) [TESTBED_UTIL-1.0.4-SNAPSHOT.jar]

at esa.mo.mal.impl.transport.TransportSingleton.internalInstance(TransportSingleton.java:202) [MAL_IMPL-1.0.6.jar]

at esa.mo.mal.impl.transport.TransportSingleton.instance(TransportSingleton.java:91) [MAL_IMPL-1.0.6.jar]

at esa.mo.mal.impl.consumer.MALConsumerImpl.<init>(MALConsumerImpl.java:72) [MAL_IMPL-1.0.6.jar]

at esa.mo.mal.impl.consumer.MALConsumerManagerImpl.createConsumer(MALConsumerManagerImpl.java:66) [MAL_IMPL-1.0.6.jar]

at org.ccsds.moims.mo.mal.test.suite.LocalMALInstance.newIPTestStub(LocalMALInstance.java:234) [file:/home/freyssin/cnes/CCSDS_TCPIP_TESTBEDS.git/MOIMS_TESTBED_MAL/target/classes/]

at org.ccsds.moims.mo.mal.test.transport.SupportedIpTestProcedure.createConsumer(SupportedIpTestProcedure.java:76) [file:/home/freyssin/cnes/CCSDS_TCPIP_TESTBEDS.git/MOIMS_TESTBED_MAL/target/classes/]

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) [rt.jar:1.8.0_102]

at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) [rt.jar:1.8.0_102]

at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) [rt.jar:1.8.0_102]

at java.lang.reflect.Method.invoke(Method.java:498) [rt.jar:1.8.0_102]

at fitnesse.slim.fixtureInteraction.DefaultInteraction.methodInvoke(DefaultInteraction.java:16) [fitnesse-20140901.jar]

at fitnesse.slim.MethodExecutor.callMethod(MethodExecutor.java:43) [fitnesse-20140901.jar]

at fitnesse.slim.MethodExecutor.invokeMethod(MethodExecutor.java:30) [fitnesse-20140901.jar]

at fitnesse.slim.MethodExecutor.findAndInvoke(MethodExecutor.java:52) [fitnesse-20140901.jar]

at fitnesse.slim.FixtureMethodExecutor.execute(FixtureMethodExecutor.java:20) [fitnesse-20140901.jar]

at fitnesse.slim.StatementExecutor.getMethodExecutionResult(StatementExecutor.java:121) [fitnesse-20140901.jar]

at fitnesse.slim.StatementExecutor.call(StatementExecutor.java:99) [fitnesse-20140901.jar]

at fitnesse.slim.instructions.CallInstruction.executeInternal(CallInstruction.java:35) [fitnesse-20140901.jar]

at fitnesse.slim.instructions.Instruction.execute(Instruction.java:30) [fitnesse-20140901.jar]

at fitnesse.slim.ListExecutor$Executive.executeStatement(ListExecutor.java:50) [fitnesse-20140901.jar]

at fitnesse.slim.ListExecutor$Executive.executeStatements(ListExecutor.java:44) [fitnesse-20140901.jar]

at fitnesse.slim.ListExecutor.execute(ListExecutor.java:84) [fitnesse-20140901.jar]

at fitnesse.slim.SlimServer.executeInstructions(SlimServer.java:106) [fitnesse-20140901.jar]

at fitnesse.slim.SlimServer.processTheInstructions(SlimServer.java:93) [fitnesse-20140901.jar]

at fitnesse.slim.SlimServer.processOneSetOfInstructions(SlimServer.java:68) [fitnesse-20140901.jar]

at fitnesse.slim.SlimServer.tryProcessInstructions(SlimServer.java:54) [fitnesse-20140901.jar]

at fitnesse.slim.SlimServer.serve(SlimServer.java:40) [fitnesse-20140901.jar]

at fitnesse.slim.SlimService.handle(SlimService.java:164) [fitnesse-20140901.jar]

at fitnesse.slim.SlimService.acceptOne(SlimService.java:172) [fitnesse-20140901.jar]

at fitnesse.slim.SlimService.accept(SlimService.java:134) [fitnesse-20140901.jar]

at fitnesse.slim.SlimService$1.run(SlimService.java:79) [fitnesse-20140901.jar]

	check
	is supported ip request count
	Send
	[0] expected [1]

	check
	is supported ip response count
	Send
	[0] expected [1]

	check
	is supported ip request count
	Submit
	[0] expected [1]

	check
	is supported ip response count
	Submit
	[0] expected [1]

	check
	is supported ip request count
	Request
	[0] expected [1]

	check
	is supported ip response count
	Request
	[0] expected [1]

	check
	is supported ip request count
	Invoke
	[0] expected [1]

	check
	is supported ip response count
	Invoke
	[0] expected [1]

	check
	is supported ip request count
	Progress
	[0] expected [1]

	check
	is supported ip response count
	Progress
	[0] expected [1]

	check
	is supported ip request count
	Pub/Sub
	[0] expected [1]

	check
	is supported ip response count
	Pub/Sub
	[0] expected [1]

3.5.1.3 Test procedure: transmit interaction

An IPTest consumer is created. Each IP is initiated. The test checks that the Transmit interaction is initiated an replied once.
	script
	transmit test procedure

	ensure
	create consumer

	ensure
	initiate interaction
	Send

	check
	transmit request count
	Send
	1

	check
	transmit response count
	Send
	1

	ensure
	initiate interaction
	Submit

	check
	transmit request count
	Submit
	1

	check
	transmit response count
	Submit
	1

	ensure
	initiate interaction
	Request

	check
	transmit request count
	Request
	1

	check
	transmit response count
	Request
	1

	ensure
	initiate interaction
	Invoke

	check
	transmit request count
	Invoke
	1

	check
	transmit response count
	Invoke
	1

	ensure
	initiate interaction
	Progress

	check
	transmit request count
	Progress
	1

	check
	transmit response count
	Progress
	1

	ensure
	initiate interaction
	Pub/Sub

	check
	transmit request count
	Pub/Sub
	1

	check
	transmit response count
	Pub/Sub
	1

3.5.1.4 Test procedure: transmit error

An ErrorTest consumer is created. Each operation provided by the ErrorTest and leading to a Transport error is called.
The test transport error intercepts the IP initiation message and raises a Transmit Error.
The test checks that the error (MALTransmitErrorException) is raised at the MAL level.
	script
	transmit error test procedure

	ensure
	create consumer

	ensure
	raise error
	DELIVERY_FAILED

	ensure
	raise error
	DELIVERY_TIMEDOUT

	ensure
	raise error
	DELIVERY_DELAYED

	ensure
	raise error
	DESTINATION_UNKNOWN

	ensure
	raise error
	DESTINATION_TRANSIENT

	ensure
	raise error
	DESTINATION_LOST

	ensure
	raise error
	ENCRYPTION_FAIL

	ensure
	raise error
	UNSUPPORTED_AREA

	ensure
	raise error
	UNSUPPORTED_OPERATION

	ensure
	raise error
	UNSUPPORTED_VERSION

	ensure
	raise error
	BAD_ENCODING

	ensure
	raise error
	UNKNOWN

3.5.1.5 Test procedure: transmit multiple interaction

Two IPTest consumers are created and registered to the Pub/Sub operation provided by IPTest.
Then the test triggers a Publish to be done by the provider and checks that a Transmit Multiple has been done of the provider side with two Notify messages.
It should be noted that this is an optional requirement that Transmit Multiple is used, therefore a valid implementation may fail these tests. Because of this the test result is just reported not failed on.
	script
	transmit multiple test procedure

	ensure
	create consumers

	ensure
	initiate interaction

	Call the operation getResult

	show
	the provider assertions
	false

3.5.1.6 Test procedure: receive interaction

An IPTest consumer is created and a Request interaction is initiated by calling the operation 'request'.
The test checks that the primitive 'TRANSMIT Request' has been called once by the MAL with a message which interaction stage is '2' (Request response coming from the actual transport).
	script
	receive test procedure

	ensure
	create consumer

	ensure
	initiate interaction

	check
	receive count
	1

	check
	is request response
	true

3.5.1.7 Test procedure: receive multiple interaction

As it is not possible to make the assumption that a transport module uses this interaction, the test transport module has to be enhanced with an operation enabling to trigger a RECEIVEMULTIPLE Indication.
An IPTest consumer is created. It is registered to the IPTest Pub/Sub operation. One update is published by calling the operation 'publishUpdate'. The Notify message is received by the consumer.
Then the test procedure copies this message twice, making two Notify messages and directly injects them into the test transport module in order to trigger a RECEIVEMULTIPLE Indication.
The test checks that two Notify messages are received by the consumer.
	script
	receive multiple test procedure

	ensure
	create consumer

	ensure
	publish initial message

	ensure
	receive initial notify message

	ensure
	receive multiple notify messages

4 MALPrototype Service Specification

4.1 IPTest Service

This service aims at testing each Interaction Pattern (IP). It provides one operation for Send, Submit, Request, Invoke and Progress. The input parameter is an IPTestDefinition that contains:
· The parameters used by the consumer in order to initiate the interaction. These parameters enable the provider to check whether the received message header is correct or not.

· A list of interaction transitions expected by the consumer.

An operation 'getResult' is provided in order to enable the consumer to get:

· the interaction transaction identifier

· and the assertions evaluated on the provider side during an interaction.

Finally four operations 'monitor', 'addPublishedEntities', 'publishUpdates' and 'publishError' are provided in order to test the Pub/Sub interaction.

4.1.1 Check message header

When the provider receives a MAL message (initiating an interaction) it has to check that the header is the same as the expected header.

The expected header is deduced from the IPTestDefinition as follows:

	Field
	Assigned with

	URIfrom
	Field 'consumerURI' of the IPTestDefinition.

	authenticationId
	Field 'authenticationId' of the IPTestDefinition.

	URIto
	The provider's URI.

	timestamp
	Field 'timestamp' of the IPTestDefinition.

	QoSlevel
	Field 'qos' of the IPTestDefinition.

	Priority
	Field 'priority' of the IPTestDefinition.

	Domain
	Field 'domain' of the IPTestDefinition.

	networkZone
	Field 'networkZone' of the IPTestDefinition.

	Session
	Field 'session' of the IPTestDefinition.

	sessionName
	Field 'sessionName' of the IPTestDefinition.

	interactionType
	Interaction type used by the operation, e.g. the operation “send” uses a SEND interaction type.

	interactionStage
	1

	transactionId
	Not assigned

	Area
	The test area name “MALPrototype”.

	Service
	The test service name “IPTest”.

	Operation
	The operation name.

	version
	The test service version.

	isError
	False

The provider creates an InteractionKey and checks that it is unique by adding it into a hash table. The InteractionKey table is never cleaned during the life time of the provider.

For each field, except 'timestamp' and 'transactionId', the following assertion is made:

	Assertion

	Info
	Result

	Check header field '<field name>'
	True if the value of the received header field is equal to the expected value fields

False otherwise.

For 'timestamp' and 'transactionId', the assertions are:

	Assertion

	Info
	Result

	Check header field 'timestamp'
	True if the value of the received header timestamp is greater than the expected header timestamp.

False otherwise.

	Check header field 'transactionId'
	True if the InteractionKey is unique.

False otherwise.

4.1.2 Check transitions

The provider has to trigger the transitions that are expected by the consumer. Those transitions are specified by the attribute 'transitions' of the operation parameter IPTestDefinition.

For each IPTestTransition, the provider calls the primitive that triggers the transition, catches potential errors and evaluate the following assertion:

	Assertion

	Info
	Result

	Check transition <transition type>
	True if:

· No error is raised and no error is expected.

· An error is raised and its code is equal to the expected error code.

False otherwise.

4.1.3 Check Publish header

The Publish header is obtained through the test transport module (see section 3.1.2.3).

The expected header is built from the parameter TestPublish as follows:

	Field
	Assigned with

	URIfrom
	The provider's URI

	authenticationId
	Field 'authenticationId' of the TestPublish

	URIto
	The broker's URI

	Timestamp
	Current time before the publication

	QoSlevel
	Field 'qos' of the TestPublish

	Priority
	Field 'priority' of the TestPublish

	Domain
	Field 'domain' of the TestPublish

	networkZone
	Field 'networkZone' of the TestPublish

	Session
	Field 'session' of the TestPublish

	sessionName
	Field 'sessionName' of the TestPublish

	interactionType
	Pub/Sub

	interactionStage
	5

	transactionId
	Assigned with the first Publish Register transactionId value.

	Area
	The test area name “MALPrototype”.

	Service
	The test service name “IPTest”.

	Operation
	The operation name.

	version
	The test service version.

	isError
	False

For each field, except 'timestamp' and 'transactionId', the following assertion is made:

	Assertion

	Info
	Result

	Check header field '<field name>'
	True if the value of the received header field is equal to the expected value fields

False otherwise.

For 'timestamp' the assertion is:

	Assertion

	Info
	Result

	Check header field 'timestamp'
	True if the value of the received header timestamp is greater than the expected header timestamp.

False otherwise.

The field 'transactionId' is not used by the Publish request so it is not checked

4.1.4 Check Publish Error header

The Publish Error header is returned by the MAL API.
The expected header is built from the parameter TestPublishUpdate in the same way as in section 3.1.3 except for the field:

	Field
	Assigned with

	URIfrom
	The provider's URI

	AuthenticationId
	The broker authentication identifier (statically known from the test configuration data).

	URIto
	The broker's URI

	isError
	True

	QoSlevel
	QoSlevel of the first Publish Register for that domain, network zone and session.

	Priority
	Priority of the first Publish Register for that domain, network zone and session.

The same assertions as in section 3.1.3 are made.

4.1.5 Check Publish Register header

The Publish Register header is obtained through the test transport module (see section 3.1.2.1)
The expected header is built from the parameter TestPublishRegister in the same way as in section 3.1.3 except for the fields:

	Field
	Assigned with

	interactionStage
	3

	transactionId
	Not assigned.

For each field, except 'timestamp' and 'transactionId', the following assertion is made:

	Assertion

	Info
	Result

	Check header field '<field name>'
	True if the value of the received header field is equal to the expected value fields

False otherwise.

For 'timestamp' the assertion is:

	Assertion

	Info
	Result

	Check header field 'timestamp'
	True if the value of the received header timestamp is greater than the expected header timestamp.

False otherwise.

For 'transactionId' the assertion is:

	Assertion

	Info
	Result

	Check header field 'transactionId'
	True if the value of 'transactionId' changes at each registration.

False otherwise.

4.1.6 Check Publish Register acknowledgement header

The Publish Register acknowledgement header is returned by the MAL API (this implies to start an asynchronous invocation of the Publish Register interaction).
The expected header is built from the parameter TestPublishRegister in the same way as in section 3.1.3 except for the fields:

	Field
	Assigned with

	URIfrom
	The provider's URI

	URIto
	The broker's URI

	AuthenticationId
	The broker authentication identifier (statically known from the test configuration data).

	interactionStage
	4

	transactionId
	Field 'transactionId' of the Publish Register message header.

For each field, except 'timestamp', the following assertion is made:

	Assertion

	Info
	Result

	Check header field '<field name>'
	True if the value of the received header field is equal to the expected value fields

False otherwise.

For 'timestamp' the assertion is:

	Assertion

	Info
	Result

	Check header field 'timestamp'
	True if the value of the received header timestamp is greater than the expected header timestamp.

False otherwise.

4.1.7 Check Publish Register error header
The Publish Register Error header is returned by the MAL API (this implies to start an asynchronous invocation of the Publish Register interaction).

The expected header is built from the parameter TestPublishRegister in the same way as in section 3.1.6 except for the field:

	Field
	Assigned with

	isError
	True

The same assertions as in section 3.1.6 are made.
4.1.8 Check Publish Deregister header

The Publish Register header is obtained through the test transport module (see section 3.1.2.1).

The expected header is built from the parameter TestPublish in the same way as in section 3.1.3 except for the fields:

	Field
	Assigned with

	interactionStage
	9

	transactionId
	Not assigned.

The same assertions as in section 3.1.5 are made.

4.1.9 Check Publish Deregister acknowledgement header

The Publish Deregister acknowledgement header is returned by the MAL API (this implies to start an asynchronous invocation of the Publish Register interaction).

The expected header is built from the parameter TestPublishRegister in the same way as in section 3.1.6 except for the fields:

	Field
	Assigned with

	interactionStage
	10

The same assertions as in section 3.1.6 are made.

4.1.10 Check Publish Error arrival

After having published updates, the provider hangs until a Publish error is raised or a timer ends. The following assertion is checked:

	Assertion

	Info
	Result

	Check the Publish error message arrival
	True if the Publish error message arrived.

False otherwise.

	Check the error code
	True if equal to UNKNOWN

	Check the error info
	True if the info is an EntityKeyList that contains the failed EntityKeys.

4.1.11 General

The service interface is described below:

	Area Identifier
	Service Identifier
	Area Number
	Service Number
	Service Version

	MALPrototype
	IPTest
	7
	0
	1

	Interaction Pattern
	Operation Name
	Operation Number
	Support in replay
	Capability Set

	SEND
	send
	100
	No
	100

	SUBMIT
	submit
	101
	No
	

	REQUEST
	request
	102
	No
	

	INVOKE
	invoke
	103
	No
	

	PROGRESS
	progress
	104
	No
	

	PUBSUB
	monitor
	105
	No
	

	REQUEST
	getResult
	106
	No
	101

	SEND
	publishUpdates
	108
	No
	102

	SEND
	publishRegister
	110
	No
	

	SEND
	publishDeregister
	111
	No
	

4.1.12 OPERATION: send

4.1.12.1 General

This operation cleans the assertions table and check that the header of the received message is the same as the one expected (see 3.1.1).
	Operation Name
	send

	Interaction Pattern
	SEND

	IP Sequence
	Message
	Field Type

	IN
	Send
	IPTestDefinition

4.1.13 OPERATION: submit

4.1.13.1 General

This operation cleans the assertions table and checks that the header of the received message is the same as the one expected (see 3.1.1). Moreover it triggers the transitions specified by the IPTestDefinition (see 3.1.2).
	Operation Name
	submit

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	IPTestDefinition

4.1.13.2 Errors

The following error can be raised by this operation:

	Error
	Error #
	Comments

	MALPrototype::TEST_ERROR
	See
	Fake error for testing.

4.1.14 OPERATION: request

4.1.14.1 General

This operation cleans the assertions table and checks that the header of the received message is the same as the one expected (see 3.1.1). Moreover it triggers the transitions specified by the IPTestDefinition (see 3.1.2).
	Operation Name
	request

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	IPTestDefinition

	OUT
	Response
	MAL::String

4.1.14.2 Errors

The following error can be raised by this operation:
	Error
	Error #
	Comments

	MALPrototype::TEST_ERROR
	See
	Fake error for testing.

4.1.15 OPERATION: invoke

4.1.15.1 General

This operation cleans the assertions table and checks that the header of the received message is the same as the one expected (see 3.1.1). Moreover it triggers the transitions specified by the IPTestDefinition (see 3.1.2).
	Operation Name
	invoke

	Interaction Pattern
	INVOKE

	IP Sequence
	Message
	Field Type

	IN
	Invoke
	IPTestDefinition

	OUT
	Acknowledgement
	MAL::String

	OUT
	Response
	MAL::String

4.1.15.2 Errors

The following error can be raised by this operation:
	Error
	Error #
	Comments

	MALPrototype::TEST_ERROR
	See
	Fake error for testing.

4.1.16 OPERATION: progress

4.1.16.1 General

This operation cleans the assertions table and checks that the header of the received message is the same as the one expected (see 3.1.1). Moreover it triggers the transitions specified by the IPTestDefinition (see 3.1.2).
	Operation Name
	progress

	Interaction Pattern
	PROGRESS

	IP Sequence
	Message
	Field Type

	IN
	Progress
	IPTestDefinition

	OUT
	Acknowledgement
	MAL::String

	OUT
	Update
	MAL::Integer

	OUT
	Response
	MAL::String

4.1.16.2 Errors

The following error can be raised by this operation:
	Error
	Error #
	Comments

	MALPrototype::TEST_ERROR
	See
	Fake error for testing.

4.1.17 OPERATION: getResult

4.1.17.1 General

This operation returns an IPTestResult.
	Operation Name
	getResult

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	MAL::Element

	OUT
	Response
	IPTestResult

4.1.18 OPERATION: monitor

4.1.18.1 General

This operation initiates a Pub/Sub interaction. It is not implemented by the service provider but by a broker.
	Operation Name
	monitor

	Interaction Pattern
	PUBLISH-SUBSCRIBE

	IP Sequence
	Message
	Field Type

	OUT
	Publish/Notify
	TestUpdate

4.1.18.2 Errors

The following error can be raised by this operation:
	Error
	Error #
	Comments

	MAL::UNKNOWN
	See MAL book
	One or more of the entities identified in the registration do not exist.

4.1.19 OPERATION: publishRegister
4.1.19.1 General

This operation cleans the assertions table, registers a publisher as specified by the parameter TestPublishRegister and checks the header of the Publish Register message (see 3.1.5).
Moreover if no error is expected by the TestPublishRegister, it checks the header of the Publish Register acknowledgement message (see 3.1.6).

Otherwise it checks the header of the Publish Register error message (see 3.1.7).
	Operation Name
	publishRegister

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Send
	TestPublishRegister

4.1.20 OPERATION: publishDeregister

4.1.20.1 General

This operation cleans the assertions table, registers a publisher as specified by the parameter TestPublishDeregister and checks the header of the Publish Deregister message (see 3.1.5).

Moreover if no error is expected by the TestPublishDeregister, it checks the header of the Publish Deregister acknowledgement message (see 3.1.8).

Otherwise it checks the header of the Publish Deregister error message (see 3.1.9).

	Operation Name
	publishDeregister

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Send
	TestPublishDeregister

4.1.21 OPERATION: publishUpdates

4.1.21.1 General

This operation cleans the assertions table, publishes an update as specified by the parameter TestPublishUpdate and checks the header of the Publish message (see 3.1.3).

Moreover if an error is expected by the TestPublishUpdate then the operation hangs until a Publish error is raised or a timer ends (see 3.1.10).

The header of the Publish error message is checked (see 3.1.4).
	Operation Name
	publishUpdates

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Send
	TestPublishUpdate

4.1.22 OPERATION: testMultipleNotify

4.1.22.1 General

This operation cleans the assertions table, publishes an update as specified by the parameter TestPublishUpdate and checks that one Transmit Multiple request has been done containing two Notify messages.
If an error is expected to be thrown by the parameter TestPublishUpdate then the operation checks that a TransmitMultipleErrorException has been raised when publishing the update.
	Operation Name
	testMultipleNotify

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Send
	TestPublishUpdate

4.2 DataTest Service

This service aims at testing the data structures.
It provides an operation 'testData' that enables to transmit any Element to the provider and check that it is well interpreted by the provider.

4.2.1 General

	Area Identifier
	Service Identifier
	Area Number
	Service Number
	Service Version

	MALPrototype
	DataTest
	7
	1
	1

	Interaction Pattern
	Operation Name
	Operation Number
	Support in replay
	Capability Set

	REQUEST
	testData
	100
	No
	100

4.2.2 OPERATION: testData

4.2.2.1 General

The 'testData' operation allows a consumer to check that a data is correctly decoded on the provider side. The provider needs to statically know the list of data that the consumer is going to send. The consumer selects the data in the same order as the list and calls the operation 'testData'. The provider keeps the index of the currently selected data from the static list. When the operation 'testData' is called, the provider checks that the received data is equal to the selected data from the list. If the equality test fails, then the error DATA_ERROR is raised otherwise the provider returns Null.
	Operation Name
	testData

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	MAL::Element

	OUT
	Response
	MAL::Element

4.2.2.2 Errors

The following error can be raised by this operation:
	Error
	Error #
	Comments

	DATA_ERROR
	70001
	Data interoperability error

4.3 ErrorTest Service

This service aims at testing the MAL errors. It doesn't need to be implemented as it is only used on the consumer side to make the transport layer raise errors (see section 3.3).
4.3.1 General

	Area Identifier
	Service Identifier
	Area Number
	Service Number
	Service Version

	MALPrototype
	ErrorTest
	7
	2
	1

	Interaction Pattern
	Operation Name
	Operation Number
	Support in replay
	Capability Set

	REQUEST
	testDeliveryFailed
	100
	No
	100

	REQUEST
	testDeliveryTimedout
	101
	No
	

	REQUEST
	testDeliveryDelayed
	102
	No
	

	REQUEST
	testDestinationUnknown
	103
	No
	

	REQUEST
	testDestinationTransient
	104
	No
	

	REQUEST
	testDestinationLost
	105
	No
	

	REQUEST
	testEncryptionFail
	106
	No
	

	REQUEST
	testUnsupportedArea
	107
	No
	

	REQUEST
	testUnsupportedOperation
	108
	No
	

	REQUEST
	testUnsupportedVersion
	109
	No
	100

	REQUEST
	testBadEncoding
	110
	No
	

	REQUEST
	testUnknown
	111
	No
	

	REQUEST
	testAuthenticationFailure
	112
	No
	

	REQUEST
	testAuthorizationFailure
	113
	No
	

4.3.2 OPERATION: testDeliveryFailed

4.3.2.1 General

This operation raises the error DELIVERY_FAILED.
	Operation Name
	testDeliveryFailed

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	MAL::Element

	OUT
	Response
	MAL::Element

4.3.3 OPERATION: testDeliveryTimedout

4.3.3.1 General

This operation raises the error DELIVERY_TIMEDOUT
	Operation Name
	testDeliveryTimedout

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	MAL::Element

	OUT
	Response
	MAL::Element

4.3.4 OPERATION: testDeliveryDelayed

4.3.4.1 General

This operation raises the error DELIVERY_FAILED.
	Operation Name
	testDeliveryDelayed

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	MAL::Element

	OUT
	Response
	MAL::Element

4.3.5 OPERATION: testDestinationUnknown

4.3.5.1 General

This operation raises the error DESTINATION_UNKNOWN.
	Operation Name
	testDestinationUnknown

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	MAL::Element

	OUT
	Response
	MAL::Element

4.3.6 OPERATION: testDestinationTransient

4.3.6.1 General

This operation raises the operation DESTINATION_TRANSIENT.
	Operation Name
	testDestinationTransient

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	MAL::Element

	OUT
	Response
	MAL::Element

4.3.7 OPERATION: testDestinationLost

4.3.7.1 General

This operation raises the error DESTINATION_LOST.
	Operation Name
	testDestinationLost

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	MAL::Element

	OUT
	Response
	MAL::Element

4.3.8 OPERATION: testEncryptionFail

4.3.8.1 General

This operation raises the error ENCRYPTION_FAIL.
	Operation Name
	testEncryptionFail

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	MAL::Element

	OUT
	Response
	MAL::Element

4.3.9 OPERATION: testUnsupportedArea

4.3.9.1 General

This operation raises the error UNSUPPORTED_AREA.
	Operation Name
	testUnsupportedArea

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	MAL::Element

	OUT
	Response
	MAL::Element

4.3.10 OPERATION: testUnsupportedOperation

4.3.10.1 General

This operation raises the error UNSUPPORTED_OPERATION.
	Operation Name
	testUnsupportedOperation

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	MAL::Element

	OUT
	Response
	MAL::Element

4.3.11 OPERATION: testUnsupportedVersion

4.3.11.1 General

This operation raises the error UNSUPPORTED_VERSION.
	Operation Name
	testUnsupportedVersion

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	MAL::Element

	OUT
	Response
	MAL::Element

4.3.12 OPERATION: testBadEncoding

4.3.12.1 General

This operation raises the error BAD_ENCODING.
	Operation Name
	testBadEncoding

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	MAL::Element

	OUT
	Response
	MAL::Element

4.3.13 OPERATION: testUnknown

4.3.13.1 General

This operation raises the error UNKNOWN.
	Operation Name
	testUnknown

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	MAL::Element

	OUT
	Response
	MAL::Element

4.3.14 OPERATION: testAuthenticationFailure

4.3.14.1 General

This operation returns null. Actually the error is raised by the MAL layer (security test module) before the provider is invoked.
	Operation Name
	testAuthenticationFailure

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	MAL::Element

	OUT
	Response
	MAL::Element

4.3.15 OPERATION: testAuthorizationFailure

4.3.15.1 General

This operation returns null. Actually the error is raised by the MAL layer (security test module) before the provider is invoked.
	Operation Name
	testAuthorizationFailure

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	MAL::Element

	OUT
	Response
	MAL::Element

5 MALPrototype Data Types

This section defines the data types used by the test services (see section 0).

5.1 Data Structures

5.1.1 Assertion
	Structure Name
	Assertion

	Extends
	MAL::Composite

	Short form
	test_asrt

	Field
	Type
	Comment

	procedureName
	MAL::String
	Name of the test procedure that evaluated the assertion.

	Info
	MAL::String
	Message explaining what the assertion checks.

	Result
	MAL::Boolean
	Boolean indicating whether the assertion succeeded (true) or not (false).

5.1.2 AssertionList

	List Name
	AssertionList

	Short form
	test_asrt_lst

	List of
	Assertion

5.2 IPTest Service Structures

5.2.1 IPTestDefinition
This abstract structure is inherited by all the IP test definition structures.

	Structure Name
	IPTestDefinition

	Extends
	MAL::Composite

	Short form
	test_ip_def

	Field
	Type
	Comment

	procedureName
	MAL::String
	Name of the test procedure

	consumerURI
	MAL::URI
	The consumer's URI

	authenticationId
	MAL::Blob
	The authentication identifier used by the consumer

	Qos
	MAL::QoSLevel
	The QoS level required by the consumer

	Priority
	MAL::Integer
	The priority level required by the consumer

	Domain
	MAL::DomainIdentifier
	The domain used by the consumer

	networkZone
	MAL::Identifier
	The network zone used by the consumer

	Session
	MAL::SessionType
	The type of the session used by the consumer

	sessionName
	MAL::Identifier
	The identifier of the session used by the consumer

	transitions
	IPTestTransitionList
	The transitions that are requested by the consumer

	timestamp
	MAL::Time
	The time the consumer initiated the interaction.

5.2.2 IPTestTransitionType

This enumeration is used to require an expected transition from an IP test.

	Enumeration Name
	IPTestTransitionType

	Short form
	test_ip_trt

	Enumeration Value
	Short form
	Comment

	ACK
	1
	Return an acknowledgement.

	RESPONSE
	2
	Return a response.

	ACK_ERROR
	3
	Return an error as an acknowledgement.

The error is a TEST_ERROR.

	RESPONSE_ERROR
	4
	Return an error as a response.

The error is a TEST_ERROR.

	UPDATE
	5
	Return a progress update.

	UPDATE_ERROR
	6
	Return an error as an update.

The error is a TEST_ERROR.

5.2.3 IPTestTransition

This structure is used to define an expected transition from an IP test. It asserts what transition is expected and what result is expected from the transition: successful or failure.

	Structure Name
	IPTestTransition

	Extends
	MAL::Composite

	Short form
	test_ip_tr

	Field
	Type
	Comment

	Type
	IPTestTransitionType
	The type of the transition to do

	errorCode
	MAL::Integer
	The code of the error expected to be raised when doing the transition (failed transition).

-1 if no error is expected (successful transition).

5.2.4 IPTestTransitionList

	List Name
	IPTestTransitionList

	Short form
	test_ip_trl

	List of
	IPTestTransition

5.2.5 BadHeaderReport

This data structure is an error report produced after having found a faulty header.

	Structure Name
	BadHeaderReport

	Extends
	MAL::Composite

	Short form
	test_ip_bhr

	Field
	Type
	Comment

	expectedHeader
	MAL::MessageHeader
	The expected header

	faultyHeader
	MAL::MessageHeader
	The header that is not compliant with the MAL rules

5.2.6 BadHeaderReportList

This data structure is a list of BadHeaderReport.

	List Name
	BadHeaderReportList

	Short form
	test_ip_bhrl

	List of
	BadHeaderReport

5.2.7 TestPublish
This abstract structure is a publish context.

	Structure Name
	TestPublish

	Extends
	MAL::Composite

	Abstract

	Field
	Type
	Comment

	Qos
	MAL::QoSLevel
	The QoS level to be used by the provider.

	Priority
	MAL::Integer
	The priority to be used by the provider.

	domain
	MAL::DomainIdentifier
	The domain to be used by the provider.

	networkZone
	MAL::Identifier
	The network zone to be used by the provider.

	Session
	MAL::SessionType
	The session type to be used by the provider.

	sessionName
	MAL::Identifier
	The session name to be used by the provider.

5.2.8 TestPublishRegister
This data structure specifies how the IPTest provider shall register.

	Structure Name
	TestPublishRegister

	Extends
	TestPublish

	Short form
	test_ip_tpr

	Field
	Type
	Comment

	entityKeys
	MAL::EntityKeyList
	The keys of the entities to be registered.

	errorCode
	MAL::Integer
	The code of the Publish Register error expected to be received.

-1 if no Publish Register error is expected.

5.2.9 TestPublishDeregister

This data structure specifies how the IPTest provider shall register.

	Structure Name
	TestPublishDeregister

	Extends
	TestPublish

	Short form
	test_ip_tpdr

	Field
	Type
	Comment

5.2.10 TestPublishUpdate
This data structure specifies how the IPTest provider shall publish an update.

	Structure Name
	TestPublishUpdate

	Extends
	TestPublish

	Short form
	test_ip_tup

	Field
	Type
	Comment

	updates
	TestUpdateList
	The updates to be published by the provider

	errorCode
	MAL::Integer
	The code of the Publish error expected to be received.

-1 if no Publish error is expected.

	exception
	MAL::Boolean
	Indicates whether the error is returned as a Java Exception or a Publish Error message.

	failedEntityKeys
	MAL::EntityKeyList
	The keys of the published entities that have not been registered.

5.2.11 TestUpdate

This data structure defines an Update published by the IPTest.

	Structure Name
	TestUpdate

	Extends
	MAL::Update

	Short form
	test_ip_tu

	Field
	Type
	Comment

	Counter
	MAL::Integer
	A counter used to distinguish the test updates and to check the ordering.

5.2.12 TestUpdateList

This data structure is a list of TestUpdate.

	List Name
	TestUpdateList

	Short form
	test_ip_tul

	List of
	TestUpdate

5.2.13 InteractionKey

	Structure Name
	InteractionKey

	Extends
	MAL::Composite

	Short form
	test_ip_itrk

	Field
	Type
	Comment

	URIfrom
	MAL::URI
	The consumer's URI

	transactionId
	MAL::Integer
	The transaction identifier of the interaction

	interactionType
	MAL::InteractionType
	The type of the interaction

	Service
	MAL::Identifier
	The name of the called service

	operation
	MAL::Identifier
	The name of the called operation

5.2.14 IPTestResult

	Structure Name
	IPTestResult

	Extends
	MAL::Composite

	Short form
	test_ip_tstr

	Field
	Type
	Comment

	transactionId
	MAL::Identifier
	The transaction identifier assigned to the last interaction

	assertions
	MALPrototype::AssertionList
	The list of assertions checked by the provider.

6 MALPrototype Errors

The following error can be raised by this operation:
	Error
	Error #
	Comments

	TEST_ERROR
	70000
	Fake error for testing.

7 Compliance matrix
This section lists all the requirements specified in the MAL book that are checked by the test scenarios. Some requirements are implicitly tested by the API itself which restricts what a MAL client can do.

The tables below gather the MAL requirements and indicate either the test procedure responsible for checking it or how the Java MAL API implicitly verifies it.

7.1 Message Abstraction Layer

7.1.1 IP and service interface

The next sections list the MAL requirements and the test procedures in charge of verifying them.
7.1.1.1 Transaction handling (MAL book 3.2)

	Test procedures

	3.1.1.1 Test procedure: <ip>/<qos>/<session>/<transition list id>
Assertion defined on the provider side: 4.1.1 Check message header (field 'transaction id')

	3.1.1.1 Test procedure: <ip>/<qos>/<session>/<transition list id>
Assertion defined in 4.1.1 Check message header ('transactionId' checking)

7.1.1.2 Error handling (MAL book 3.5.x.4)
Submit (x=2), Request (x=3), Invoke (x=4), Progress (x=5):
	Test procedure

	3.1.1.1 Test procedure: <ip>/<qos>/<session>/<transition list id>
4.1.1 Check message header (field 'isError')

Send:
Java MAL API: no error can be returned by a provider during a Send interaction.

7.1.1.3 PubSub error handling (MAL book 3.5.6.7)

	Test procedures

	3.1.2.12 Test procedure: registration error

	3.1.2.3 Test procedure: notify error

	3.1.2.1 Test procedure: publish error

	3.1.2.3 Test procedure: publish error

7.1.1.4 Operation template and primitives (MAL book 3.5.x.5, 3.5.x.6)

Java MAL API: the consumer and provider interfaces enable to send the Requests and receive the Indications defined for each IP.
7.1.1.5 Requests and Indications (MAL book 3.5.x.8)
Send (x=1), Submit (x=2), Request (x=3), Invoke (x=4), Progress (x=5)

Interaction initiation requests/indications:

	Test procedure

	3.1.1.1 Test procedure: <ip>/<qos>/<session>/<transition list id>
Assertions defined on the provider side: 4.1.1 Check message header

Ack, Response, Update and errors requests/indications:
	Test procedure

	3.1.1.1 Test procedure: <ip>/<qos>/<session>/<transition list id>
Assertions defined on the provider side: 4.1.1 Check message header

7.1.1.6 Pub/Sub Requests and Indications (MAL book 4.4.6.11)

All requests/indications except errors:
	Test procedure

	3.1.1.1 Test procedure: <ip>/<qos>/<session>/<transition list id>

Error requests/indications:
	Test procedures

	3.1.2.12 Test procedure: registration error

	3.1.2.3 Test procedure: notify error

	3.1.2.1 Test procedure: publish error

	3.1.2.3 Test procedure: publish error

7.1.1.7 Pub/Sub overview: unique subscription identifier (MAL book 3.5.6.3 d)
	Test procedure

	3.1.2.6 Test procedure: subscription id

7.1.1.8 Pub/Sub description (MAL book 3.5.6.2)

	Test procedure

	3.1.2.2 Test procedure: subscription checking

7.1.1.9 Pub/Sub entity key matching (MAL book 4.4.6.3)
	Test procedure

	3.1.2.5 Test procedure: subscription entity requests

7.1.1.10 State Charts (MAL book 3.5.x.7)
Send (x=1), Submit (x=2), Request (x=3), Invoke (x=4), Progress (x=5)
	Test procedure

	3.1.1.1 Test procedure: <ip>/<qos>/<session>/<transition list id>

7.1.1.11 Pub/Sub, state charts, consumer side (MAL book 4.4.6.8.1)
	Test procedures

	3.1.2.12 Test procedure: registration error

	3.1.2.3 Test procedure: notify error

	3.1.2.1 Test procedure: publish error

	3.1.2.3 Test procedure: publish error

7.1.1.12 Pub/Sub, state charts, provider side (MAL book 4.4.6.8.2)

	Test procedures

	3.1.2.12 Test procedure: registration error

	3.1.2.3 Test procedure: notify error

	3.1.2.1 Test procedure: publish error

	3.1.2.3 Test procedure: publish error

7.1.2 Access control interface

	Requirement
	Test procedure

	Check interaction

	Check

Check response
	3.4.1.1 Test procedure: CHECK interaction

	
	Check error
	3.3.2.1 Test procedure: authentication failure

7.1.3 Transport interface

	Requirement
	Test procedure

	SupportedQoS interaction

	3.5.1.1 Test procedure: supported QoS interaction

	SupportedIP interaction

	3.5.1.2 Test procedure: supported IP interaction

	Transmit interaction

	Request and indication
	3.5.1.3 Test procedure: transmit interaction

	
	Error indication
	3.3.1.1 Test procedure: Encryption fail

An error is raised by the transport layer during a transmit interaction.

	Transmit multiple interaction

	Request and indication
	3.5.1.5 Test procedure: transmit multiple interaction

	
	Error indication
	3.3.1.1 Test procedure: transmit multiple error

	Receive interaction

	Indication
	3.5.1.6 Test procedure: receive interaction

	Receive multiple interaction

	Indication
	3.5.1.7 Test procedure: receive multiple interaction

7.2 Data types

All the data types are checked in section 3.2.
7.3 Errors

	Requirement (5.2)
	Test procedure

	DELIVERY_FAILED
	3.3.1 Test procedure: Delivery failed

	DELIVERY_TIMEDOUT
	3.3.1 Test procedure:Delivery timedout

	DELIVERY_DELAYED
	3.3.1 Test procedure:Delivery delayed

	DESTINATION_UNKNWON
	3.3.1 Test procedure:Destination unknown

	DESTINATION_TRANSIENT
	3.3.1 Test procedure: Destination transient

	DESTINATION_LOST
	3.3.1 Test procedure: Destination lost

	AUTHENTICATION_FAIL
	3.3.2.1 Test procedure: authentication failure

	AUTHORIZATION_FAIL
	3.3.2.2 Test procedure: authorization failure

	ENCRYPTION_FAIL
	3.3.1 Test procedure: Encryption fail

	UNSUPPORTED_AREA
	3.3.1 Test procedure: Unsupported area

	UNSUPPORTED_OPERATION
	3.3.1 Test procedure: Unsupported operation

	UNSUPPORTED_VERSION
	3.3.1 Test procedure: Unsupported version

	BAD_ENCODING
	3.3.1 Test procedure: Bad encoding

	UNKNOWN
	3.3.1 Test procedure: Unknown

	INCORRECT_STATE
	3.1.1.1 Test procedure: <ip>/<qos>/<session>/<transition list id>

Check faulty transitions on the provider side (see 4.1.2)

ANNEX A

[MALPrototype XML specification]

[

<?xml version="1.0" encoding="UTF-8"?>

<smc:specification xmlns:smc="http://www.ccsds.org/schema/ServiceSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.ccsds.org/schema/ServiceSchema ServiceSchema.xsd">

 <smc:import>

 <smc:area name="MAL">

 <smc:dataTypes>

 <smc:fundamental name="Element"/>

 <smc:fundamental name="Composite"/>

 <smc:attribute name="Blob"/>

 <smc:attribute name="Boolean"/>

 <smc:attribute name="Double"/>

 <smc:attribute name="Duration"/>

 <smc:attribute name="FineTime"/>

 <smc:attribute name="Float"/>

 <smc:attribute name="Identifier"/>

 <smc:attribute name="Integer"/>

 <smc:attribute name="Long"/>

 <smc:attribute name="Octet"/>

 <smc:attribute name="Short"/>

 <smc:attribute name="String"/>

 <smc:attribute name="Time"/>

 <smc:attribute name="URI"/>

 <smc:enumeration name="SessionType"/>

 <smc:list name="DomainIdentifier"/>

 <smc:list name="IdBooleanList"/>

 <smc:list name="IdentifierList"/>

 <smc:list name="IntegerList"/>

 <smc:list name="NamedValueList"/>

 <smc:list name="QoSLevelList"/>

 <smc:list name="StringList"/>

 <smc:list name="UpdateList"/>

 <smc:list name="EntityKeyList"/>

 <smc:composite name="IdBooleanPair"/>

 <smc:composite name="Update"/>

 <smc:composite name="QoSLevel"/>

 <smc:composite name="MessageHeader"/>

 <smc:composite name="InteractionType"/>

 </smc:dataTypes>

 <smc:errors>

 <smc:error name="UNKNOWN"/>

 </smc:errors>

 </smc:area>

 </smc:import>

 <smc:area name="MALPrototype" number="7">

 <smc:service name="IPTest" number="0" version="1">

 <smc:capabilitySet number="100">

 <smc:sendIP name="send" number="100" supportInReplay="false"

 comment="This operation cleans the assertions table and check that the header of the received message is the same as the one expected (see 4.1.1).">

 <smc:messages>

 <smc:send>

 <smc:type area="MALPrototype" service="IPTest" name="IPTestDefinition"/>

 </smc:send>

 </smc:messages>

 </smc:sendIP>

 <smc:submitIP name="submit" number="101" supportInReplay="false"

 comment="This operation cleans the assertions table and checks that the header of the received message is the same as the one expected (see 4.1.1). Moreover it triggers the transitions specified by the IPTestDefinition (see 3.1.2).">

 <smc:messages>

 <smc:submit>

 <smc:type area="MALPrototype" service="IPTest" name="IPTestDefinition"/>

 </smc:submit>

 </smc:messages>

 <smc:errors>

 <smc:errorRef comment="Fake error for testing.">

 <smc:type area="MALPrototype" name="TEST_ERROR"/>

 </smc:errorRef>

 </smc:errors>

 </smc:submitIP>

 <smc:requestIP name="request" number="102" supportInReplay="false"

 comment="This operation cleans the assertions table and checks that the header of the received message is the same as the one expected (see 4.1.1). Moreover it triggers the transitions specified by the IPTestDefinition (see 3.1.2).">

 <smc:messages>

 <smc:request>

 <smc:type area="MALPrototype" service="IPTest" name="IPTestDefinition"/>

 </smc:request>

 <smc:response>

 <smc:type area="MAL" name="String"/>

 </smc:response>

 </smc:messages>

 <smc:errors>

 <smc:errorRef comment="Fake error for testing.">

 <smc:type area="MALPrototype" name="TEST_ERROR"/>

 </smc:errorRef>

 </smc:errors>

 </smc:requestIP>

 <smc:invokeIP name="invoke" number="103" supportInReplay="false"

 comment="This operation cleans the assertions table and checks that the header of the received message is the same as the one expected (see 4.1.1). Moreover it triggers the transitions specified by the IPTestDefinition (see 4.1.2).">

 <smc:messages>

 <smc:invoke>

 <smc:type area="MALPrototype" service="IPTest" name="IPTestDefinition"/>

 </smc:invoke>

 <smc:acknowledgement>

 <smc:type area="MAL" name="String"/>

 </smc:acknowledgement>

 <smc:response>

 <smc:type area="MAL" name="String"/>

 </smc:response>

 </smc:messages>

 <smc:errors>

 <smc:errorRef comment="Fake error for testing.">

 <smc:type area="MALPrototype" name="TEST_ERROR"/>

 </smc:errorRef>

 </smc:errors>

 </smc:invokeIP>

 <smc:progressIP name="progress" number="104" supportInReplay="false"

 comment="This operation cleans the assertions table and checks that the header of the received message is the same as the one expected (see 4.1.1). Moreover it triggers the transitions specified by the IPTestDefinition (see 4.1.2).">

 <smc:messages>

 <smc:progress>

 <smc:type area="MALPrototype" service="IPTest" name="IPTestDefinition"/>

 </smc:progress>

 <smc:acknowledgement>

 <smc:type area="MAL" name="String"/>

 </smc:acknowledgement>

 <smc:update>

 <smc:type area="MAL" name="Integer"/>

 </smc:update>

 <smc:response>

 <smc:type area="MAL" name="String"/>

 </smc:response>

 </smc:messages>

 <smc:errors>

 <smc:errorRef comment="Fake error for testing.">

 <smc:type area="MALPrototype" name="TEST_ERROR"/>

 </smc:errorRef>

 </smc:errors>

 </smc:progressIP>

 <smc:pubsubIP name="monitor" number="105" supportInReplay="false"

 comment="This operation initiates a Pub/Sub interaction. It is not implemented by the service provider but by a broker.">

 <smc:messages>

 <smc:publishNotify>

 <smc:type area="MALPrototype" service="IPTest" name="TestUpdate"/>

 </smc:publishNotify>

 </smc:messages>

 <smc:errors>

 <smc:errorRef comment="One or more of the entities identified in the registration do not exist.">

 <smc:type area="MAL" name="UNKNOWN"/>

 </smc:errorRef>

 </smc:errors>

 </smc:pubsubIP>

 </smc:capabilitySet>

 <smc:capabilitySet number="101">

 <smc:requestIP name="getResult" number="106" supportInReplay="false"

 comment="This operation returns an IPTestResult.">

 <smc:messages>

 <smc:request>

 <smc:type area="MAL" name="Element"/>

 </smc:request>

 <smc:response>

 <smc:type area="MALPrototype" service="IPTest" name="IPTestResult"/>

 </smc:response>

 </smc:messages>

 </smc:requestIP>

 </smc:capabilitySet>

 <smc:capabilitySet number="102">

 <smc:submitIP name="publishUpdates" number="108" supportInReplay="false"

 comment="This operation cleans the assertions table, publishes an update as specified by the parameter TestPublishUpdate and checks the header of the Publish message (see 4.1.3). Moreover if an error is expected by the TestPublishUpdate then the operation hangs until a Publish error is raised or a timer ends (see 4.1.10). The header of the Publish error message is checked (see 4.1.4).">

 <smc:messages>

 <smc:submit>

 <smc:type area="MALPrototype" service="IPTest" name="TestPublishUpdate"/>

 </smc:submit>

 </smc:messages>

 </smc:submitIP>

 <smc:submitIP name="publishRegister" number="110" supportInReplay="false"

 comment="This operation cleans the assertions table, registers a publisher as specified by the parameter TestPublishRegister and checks the header of the Publish Register message (see 4.1.5). Moreover if no error is expected by the TestPublishRegister, it checks the header of the Publish Register acknowledgement message (see 4.1.6). Otherwise it checks the header of the Publish Register error message (see 4.1.7).">

 <smc:messages>

 <smc:submit>

 <smc:type area="MALPrototype" service="IPTest" name="TestPublishRegister"/>

 </smc:submit>

 </smc:messages>

 </smc:submitIP>

 <smc:submitIP name="publishDeregister" number="111" supportInReplay="false"

 comment="This operation cleans the assertions table, registers a publisher as specified by the parameter TestPublishDeregister and checks the header of the Publish Deregister message (see 4.1.5). Moreover if no error is expected by the TestPublishDeregister, it checks the header of the Publish Deregister acknowledgement message (see 4.1.8). Otherwise it checks the header of the Publish Deregister error message (see 4.1.9).">

 <smc:messages>

 <smc:submit>

 <smc:type area="MALPrototype" service="IPTest" name="TestPublishDeregister"/>

 </smc:submit>

 </smc:messages>

 </smc:submitIP>

 <smc:submitIP name="testMultipleNotify" number="112" supportInReplay="false"

 comment="">

 <smc:messages>

 <smc:submit>

 <smc:type area="MALPrototype" service="IPTest" name="TestPublishUpdate"/>

 </smc:submit>

 </smc:messages>

 </smc:submitIP>

 </smc:capabilitySet>

 <smc:dataTypes>

 <smc:list name="BadHeaderReportList" shortForm="test_ip_bhrl">

 <smc:type area="MALPrototype" service="IPTest" name="BadHeaderReport"/>

 </smc:list>

 <smc:list name="IPTestTransitionList" shortForm="test_ip_ttl">

 <smc:type area="MALPrototype" service="IPTest" name="IPTestTransition"/>

 </smc:list>

 <smc:list name="TestUpdateList" shortForm="test_ip_tul">

 <smc:type area="MALPrototype" service="IPTest" name="TestUpdate"/>

 </smc:list>

 <smc:enumeration name="IPTestTransitionType" shortForm="test_ip_trt" comment="">

 <smc:item value="ACK" shortForm="1" comment=""/>

 <smc:item value="RESPONSE" shortForm="2" comment=""/>

 <smc:item value="ACK_ERROR" shortForm="3" comment=""/>

 <smc:item value="RESPONSE_ERROR" shortForm="4" comment=""/>

 <smc:item value="UPDATE" shortForm="5" comment=""/>

 <smc:item value="UPDATE_ERROR" shortForm="6" comment=""/>

 </smc:enumeration>

 <smc:composite name="IPTestDefinition" shortForm="test_ip_def"

 comment="This abstract structure is inherited by all the IP test definition structures.">

 <smc:extends>

 <smc:type area="MAL" name="Composite"/>

 </smc:extends>

 <smc:field name="procedureName" comment="Name of the test procedure">

 <smc:type area="MAL" name="String"/>

 </smc:field>

 <smc:field name="consumerURI" comment="The consumer's URI">

 <smc:type area="MAL" name="URI"/>

 </smc:field>

 <smc:field name="authenticationId"

 comment="The authentication identifier used by the consumer">

 <smc:type area="MAL" name="Blob"/>

 </smc:field>

 <smc:field name="Qos" comment="The QoS level required by the consumer">

 <smc:type area="MAL" name="QoSLevel"/>

 </smc:field>

 <smc:field name="Priority" comment="The priority level required by the consumer">

 <smc:type area="MAL" name="Integer"/>

 </smc:field>

 <smc:field name="Domain" comment="The domain used by the consumer">

 <smc:type area="MAL" name="DomainIdentifier"/>

 </smc:field>

 <smc:field name="networkZone" comment="The network zone used by the consumer">

 <smc:type area="MAL" name="Identifier"/>

 </smc:field>

 <smc:field name="Session" comment="The type of the session used by the consumer">

 <smc:type area="MAL" name="SessionType"/>

 </smc:field>

 <smc:field name="sessionName" comment="The identifier of the session used by the consumer">

 <smc:type area="MAL" name="Identifier"/>

 </smc:field>

 <smc:field name="transitions" comment="The transitions that are requested by the consumer">

 <smc:type area="MALPrototype" service="IPTest" name="IPTestTransitionList"/>

 </smc:field>

 <smc:field name="timestamp" comment="The time the consumer initiated the interaction.">

 <smc:type area="MAL" name="Time"/>

 </smc:field>

 </smc:composite>

 <smc:composite name="IPTestTransition" shortForm="test_ip_tr"

 comment="This structure is used to define an expected transition from an IP test. It asserts what transition is expected and what result is expected from the transition: successful or failure.">

 <smc:extends>

 <smc:type area="MAL" name="Composite"/>

 </smc:extends>

 <smc:field name="Type" comment="The type of the transition to do">

 <smc:type area="MALPrototype" service="IPTest" name="IPTestTransitionType"/>

 </smc:field>

 <smc:field name="errorCode"

 comment="The code of the error expected to be raised when doing the transition (failed transition).-1 if no error is expected (successful transition).">

 <smc:type area="MAL" name="Integer"/>

 </smc:field>

 </smc:composite>

 <smc:composite name="BadHeaderReport" shortForm="test_ip_bhr"

 comment="This data structure is an error report produced after having found a faulty header.">

 <smc:extends>

 <smc:type area="MAL" name="Composite"/>

 </smc:extends>

 <smc:field name="expectedHeader" comment="The expected header">

 <smc:type area="MAL" name="MessageHeader"/>

 </smc:field>

 <smc:field name="faultyHeader"

 comment="The header that is not compliant with the MAL rules">

 <smc:type area="MAL" name="MessageHeader"/>

 </smc:field>

 </smc:composite>

 <smc:composite name="TestPublish" comment="This abstract structure is a publish context.">

 <smc:extends>

 <smc:type area="MAL" name="Composite"/>

 </smc:extends>

 <smc:field name="Qos" comment="The QoS level to be used by the provider.">

 <smc:type area="MAL" name="QoSLevel"/>

 </smc:field>

 <smc:field name="Priority" comment="The priority to be used by the provider.">

 <smc:type area="MAL" name="Integer"/>

 </smc:field>

 <smc:field name="domain" comment="The domain to be used by the provider.">

 <smc:type area="MAL" name="DomainIdentifier"/>

 </smc:field>

 <smc:field name="networkZone" comment="The network zone to be used by the provider.">

 <smc:type area="MAL" name="Identifier"/>

 </smc:field>

 <smc:field name="Session" comment="The session type to be used by the provider.">

 <smc:type area="MAL" name="SessionType"/>

 </smc:field>

 <smc:field name="sessionName" comment="The session name to be used by the provider.">

 <smc:type area="MAL" name="Identifier"/>

 </smc:field>

 </smc:composite>

 <smc:composite name="TestPublishRegister" shortForm="test_ip_tpr"

 comment="This data structure specifies how the IPTest provider shall register.">

 <smc:extends>

 <smc:type area="MALPrototype" service="IPTest" name="TestPublish"/>

 </smc:extends>

 <smc:field name="entityKeys" comment="The keys of the entities to be registered.">

 <smc:type area="MAL" name="EntityKeyList"/>

 </smc:field>

 <smc:field name="errorCode"

 comment="The code of the Publish Register error expected to be received.-1 if no Publish Register error is expected.">

 <smc:type area="MAL" name="Integer"/>

 </smc:field>

 </smc:composite>

 <smc:composite name="TestPublishDeregister" shortForm="test_ip_tpdr"

 comment="This data structure specifies how the IPTest provider shall register.">

 <smc:extends>

 <smc:type area="MALPrototype" service="IPTest" name="TestPublish"/>

 </smc:extends>

 <smc:field name="entityKeys" comment="The keys of the entities to be registered.">

 <smc:type area="MAL" name="EntityKeyList"/>

 </smc:field>

 <smc:field name="errorCode"

 comment="The code of the Publish Deregister error expected to be received.-1 if no Publish Deregister error is expected.">

 <smc:type area="MAL" name="Integer"/>

 </smc:field>

 </smc:composite>

 <smc:composite name="TestPublishUpdate" shortForm="test_ip_tup"

 comment="This data structure specifies how the IPTest provider shall publish an update.">

 <smc:extends>

 <smc:type area="MALPrototype" service="IPTest" name="TestPublish"/>

 </smc:extends>

 <smc:field name="updates" comment="The updates to be published by the provider">

 <smc:type area="MALPrototype" service="IPTest" name="TestUpdateList"/>

 </smc:field>

 <smc:field name="errorCode"

 comment="The code of the Publish error expected to be received.-1 if no Publish error is expected.">

 <smc:type area="MAL" name="Integer"/>

 </smc:field>

 <smc:field name="exception"

 comment="Indicates whether the error is returned as an Exception or a Publish Error message">

 <smc:type area="MAL" name="Boolean"/>

 </smc:field>

 <smc:field name="failedEntityKeys" comment="The keys of the published entities that have not been registered.">

 <smc:type area="MAL" name="EntityKeyList"/>

 </smc:field>

 </smc:composite>

 <smc:composite name="TestUpdate" shortForm="test_ip_tu"

 comment="This data structure defines an Update published by the IPTest.">

 <smc:extends>

 <smc:type area="MAL" name="Update"/>

 </smc:extends>

 <smc:field name="Counter"

 comment="A counter used to distinguish the test updates and to check the ordering.">

 <smc:type area="MAL" name="Integer"/>

 </smc:field>

 </smc:composite>

 <smc:composite name="InteractionKey" shortForm="test_ip_itrk" comment="">

 <smc:extends>

 <smc:type area="MAL" name="Composite"/>

 </smc:extends>

 <smc:field name="URIfrom" comment="The consumer's URI">

 <smc:type area="MAL" name="URI"/>

 </smc:field>

 <smc:field name="transactionId" comment="The transaction identifier of the interaction">

 <smc:type area="MAL" name="Integer"/>

 </smc:field>

 <smc:field name="interactionType" comment="The type of the interaction">

 <smc:type area="MAL" name="InteractionType"/>

 </smc:field>

 <smc:field name="Service" comment="The name of the called service">

 <smc:type area="MAL" name="Identifier"/>

 </smc:field>

 <smc:field name="operation" comment="The name of the called operation">

 <smc:type area="MAL" name="Identifier"/>

 </smc:field>

 </smc:composite>

 <smc:composite name="IPTestResult" shortForm="test_ip_tstr" comment="">

 <smc:extends>

 <smc:type area="MAL" name="Composite"/>

 </smc:extends>

 <smc:field name="transactionId"

 comment="The transaction identifier assigned to the last interaction">

 <smc:type area="MAL" name="Identifier"/>

 </smc:field>

 <smc:field name="assertions" comment="The list of assertions checked by the provider.">

 <smc:type area="MALPrototype" name="AssertionList"/>

 </smc:field>

 </smc:composite>

 </smc:dataTypes>

 </smc:service>

 <smc:service name="DataTest" number="1" version="1">

 <smc:capabilitySet number="100">

 <smc:submitIP name="setTestDataOffset" number="99" supportInReplay="false"

 comment="This operation sets the index into the test list for the testData operation. Passing non positive values resets it to the start of the list.">

 <smc:messages>

 <smc:submit>

 <smc:type area="MAL" name="Integer"/>

 </smc:submit>

 </smc:messages>

 </smc:submitIP>

 <smc:requestIP name="testData" number="100" supportInReplay="false"

 comment="The 'testData' operation allows a consumer to check that a data is correctly decoded on the provider side. The provider needs to statically know the list of data that the consumer is going to send. The consumer selects the data in the same order as the list and calls the operation 'testData'. The provider keeps the index of the currently selected data from the static list. When the operation 'testData' is called, the provider checks that the received data is equal to the selected data from the list. If the equality test fails, then the error DATA_ERROR is raised otherwise the provider returns the sent data.">

 <smc:messages>

 <smc:request>

 <smc:type area="MAL" name="Element"/>

 </smc:request>

 <smc:response>

 <smc:type area="MAL" name="Element"/>

 </smc:response>

 </smc:messages>

 <smc:errors>

 <smc:errorRef comment="Data interoperability error">

 <smc:type area="MALPrototype" service="DataTest" name="DATA_ERROR"/>

 </smc:errorRef>

 </smc:errors>

 </smc:requestIP>

 <smc:requestIP name="testDataBlob" number="101" supportInReplay="false"

 comment="This operation checks that a basic Blob type can be sent and received explicitly">

 <smc:messages>

 <smc:request>

 <smc:type area="MAL" name="Blob"/>

 </smc:request>

 <smc:response>

 <smc:type area="MAL" name="Blob"/>

 </smc:response>

 </smc:messages>

 <smc:errors>

 <smc:errorRef comment="Data interoperability error">

 <smc:type area="MALPrototype" service="DataTest" name="DATA_ERROR"/>

 </smc:errorRef>

 </smc:errors>

 </smc:requestIP>

 <smc:requestIP name="testDataBoolean" number="102" supportInReplay="false"

 comment="This operation checks that a basic Boolean type can be sent and received explicitly">

 <smc:messages>

 <smc:request>

 <smc:type area="MAL" name="Boolean"/>

 </smc:request>

 <smc:response>

 <smc:type area="MAL" name="Boolean"/>

 </smc:response>

 </smc:messages>

 <smc:errors>

 <smc:errorRef comment="Data interoperability error">

 <smc:type area="MALPrototype" service="DataTest" name="DATA_ERROR"/>

 </smc:errorRef>

 </smc:errors>

 </smc:requestIP>

 <smc:requestIP name="testDataDouble" number="103" supportInReplay="false"

 comment="This operation checks that a basic Double type can be sent and received explicitly">

 <smc:messages>

 <smc:request>

 <smc:type area="MAL" name="Double"/>

 </smc:request>

 <smc:response>

 <smc:type area="MAL" name="Double"/>

 </smc:response>

 </smc:messages>

 <smc:errors>

 <smc:errorRef comment="Data interoperability error">

 <smc:type area="MALPrototype" service="DataTest" name="DATA_ERROR"/>

 </smc:errorRef>

 </smc:errors>

 </smc:requestIP>

 <smc:requestIP name="testDataDuration" number="104" supportInReplay="false"

 comment="This operation checks that a basic Duration type can be sent and received explicitly">

 <smc:messages>

 <smc:request>

 <smc:type area="MAL" name="Duration"/>

 </smc:request>

 <smc:response>

 <smc:type area="MAL" name="Duration"/>

 </smc:response>

 </smc:messages>

 <smc:errors>

 <smc:errorRef comment="Data interoperability error">

 <smc:type area="MALPrototype" service="DataTest" name="DATA_ERROR"/>

 </smc:errorRef>

 </smc:errors>

 </smc:requestIP>

 <smc:requestIP name="testDataFineTime" number="105" supportInReplay="false"

 comment="This operation checks that a basic FineTime type can be sent and received explicitly">

 <smc:messages>

 <smc:request>

 <smc:type area="MAL" name="FineTime"/>

 </smc:request>

 <smc:response>

 <smc:type area="MAL" name="FineTime"/>

 </smc:response>

 </smc:messages>

 <smc:errors>

 <smc:errorRef comment="Data interoperability error">

 <smc:type area="MALPrototype" service="DataTest" name="DATA_ERROR"/>

 </smc:errorRef>

 </smc:errors>

 </smc:requestIP>

 <smc:requestIP name="testDataFloat" number="106" supportInReplay="false"

 comment="This operation checks that a basic Float type can be sent and received explicitly">

 <smc:messages>

 <smc:request>

 <smc:type area="MAL" name="Float"/>

 </smc:request>

 <smc:response>

 <smc:type area="MAL" name="Float"/>

 </smc:response>

 </smc:messages>

 <smc:errors>

 <smc:errorRef comment="Data interoperability error">

 <smc:type area="MALPrototype" service="DataTest" name="DATA_ERROR"/>

 </smc:errorRef>

 </smc:errors>

 </smc:requestIP>

 <smc:requestIP name="testDataIdentifier" number="107" supportInReplay="false"

 comment="This operation checks that a basic Identifier type can be sent and received explicitly">

 <smc:messages>

 <smc:request>

 <smc:type area="MAL" name="Identifier"/>

 </smc:request>

 <smc:response>

 <smc:type area="MAL" name="Identifier"/>

 </smc:response>

 </smc:messages>

 <smc:errors>

 <smc:errorRef comment="Data interoperability error">

 <smc:type area="MALPrototype" service="DataTest" name="DATA_ERROR"/>

 </smc:errorRef>

 </smc:errors>

 </smc:requestIP>

 <smc:requestIP name="testDataInteger" number="108" supportInReplay="false"

 comment="This operation checks that a basic Integer type can be sent and received explicitly">

 <smc:messages>

 <smc:request>

 <smc:type area="MAL" name="Integer"/>

 </smc:request>

 <smc:response>

 <smc:type area="MAL" name="Integer"/>

 </smc:response>

 </smc:messages>

 <smc:errors>

 <smc:errorRef comment="Data interoperability error">

 <smc:type area="MALPrototype" service="DataTest" name="DATA_ERROR"/>

 </smc:errorRef>

 </smc:errors>

 </smc:requestIP>

 <smc:requestIP name="testDataLong" number="109" supportInReplay="false"

 comment="This operation checks that a basic Long type can be sent and received explicitly">

 <smc:messages>

 <smc:request>

 <smc:type area="MAL" name="Long"/>

 </smc:request>

 <smc:response>

 <smc:type area="MAL" name="Long"/>

 </smc:response>

 </smc:messages>

 <smc:errors>

 <smc:errorRef comment="Data interoperability error">

 <smc:type area="MALPrototype" service="DataTest" name="DATA_ERROR"/>

 </smc:errorRef>

 </smc:errors>

 </smc:requestIP>

 <smc:requestIP name="testDataOctet" number="110" supportInReplay="false"

 comment="This operation checks that a basic Octet type can be sent and received explicitly">

 <smc:messages>

 <smc:request>

 <smc:type area="MAL" name="Octet"/>

 </smc:request>

 <smc:response>

 <smc:type area="MAL" name="Octet"/>

 </smc:response>

 </smc:messages>

 <smc:errors>

 <smc:errorRef comment="Data interoperability error">

 <smc:type area="MALPrototype" service="DataTest" name="DATA_ERROR"/>

 </smc:errorRef>

 </smc:errors>

 </smc:requestIP>

 <smc:requestIP name="testDataShort" number="111" supportInReplay="false"

 comment="This operation checks that a basic Short type can be sent and received explicitly">

 <smc:messages>

 <smc:request>

 <smc:type area="MAL" name="Short"/>

 </smc:request>

 <smc:response>

 <smc:type area="MAL" name="Short"/>

 </smc:response>

 </smc:messages>

 <smc:errors>

 <smc:errorRef comment="Data interoperability error">

 <smc:type area="MALPrototype" service="DataTest" name="DATA_ERROR"/>

 </smc:errorRef>

 </smc:errors>

 </smc:requestIP>

 <smc:requestIP name="testDataString" number="112" supportInReplay="false"

 comment="This operation checks that a basic String type can be sent and received explicitly">

 <smc:messages>

 <smc:request>

 <smc:type area="MAL" name="String"/>

 </smc:request>

 <smc:response>

 <smc:type area="MAL" name="String"/>

 </smc:response>

 </smc:messages>

 <smc:errors>

 <smc:errorRef comment="Data interoperability error">

 <smc:type area="MALPrototype" service="DataTest" name="DATA_ERROR"/>

 </smc:errorRef>

 </smc:errors>

 </smc:requestIP>

 <smc:requestIP name="testDataTime" number="113" supportInReplay="false"

 comment="This operation checks that a basic Time type can be sent and received explicitly">

 <smc:messages>

 <smc:request>

 <smc:type area="MAL" name="Time"/>

 </smc:request>

 <smc:response>

 <smc:type area="MAL" name="Time"/>

 </smc:response>

 </smc:messages>

 <smc:errors>

 <smc:errorRef comment="Data interoperability error">

 <smc:type area="MALPrototype" service="DataTest" name="DATA_ERROR"/>

 </smc:errorRef>

 </smc:errors>

 </smc:requestIP>

 <smc:requestIP name="testDataURI" number="114" supportInReplay="false"

 comment="This operation checks that a basic URI type can be sent and received explicitly">

 <smc:messages>

 <smc:request>

 <smc:type area="MAL" name="URI"/>

 </smc:request>

 <smc:response>

 <smc:type area="MAL" name="URI"/>

 </smc:response>

 </smc:messages>

 <smc:errors>

 <smc:errorRef comment="Data interoperability error">

 <smc:type area="MALPrototype" service="DataTest" name="DATA_ERROR"/>

 </smc:errorRef>

 </smc:errors>

 </smc:requestIP>

 <smc:requestIP name="testDataComposite" number="115" supportInReplay="false"

 comment="This operation checks that a composite type can be sent and received explicitly">

 <smc:messages>

 <smc:request>

 <smc:type area="MALPrototype" name="Assertion"/>

 </smc:request>

 <smc:response>

 <smc:type area="MALPrototype" name="Assertion"/>

 </smc:response>

 </smc:messages>

 <smc:errors>

 <smc:errorRef comment="Data interoperability error">

 <smc:type area="MALPrototype" service="DataTest" name="DATA_ERROR"/>

 </smc:errorRef>

 </smc:errors>

 </smc:requestIP>

 <smc:requestIP name="testDataEnumeration" number="116" supportInReplay="false"

 comment="This operation checks that a enumeration type can be sent and received explicitly">

 <smc:messages>

 <smc:request>

 <smc:type area="MAL" name="SessionType"/>

 </smc:request>

 <smc:response>

 <smc:type area="MAL" name="SessionType"/>

 </smc:response>

 </smc:messages>

 <smc:errors>

 <smc:errorRef comment="Data interoperability error">

 <smc:type area="MALPrototype" service="DataTest" name="DATA_ERROR"/>

 </smc:errorRef>

 </smc:errors>

 </smc:requestIP>

 <smc:requestIP name="testDataList" number="117" supportInReplay="false"

 comment="This operation checks that a list type can be sent and received explicitly">

 <smc:messages>

 <smc:request>

 <smc:type area="MALPrototype" name="AssertionList"/>

 </smc:request>

 <smc:response>

 <smc:type area="MALPrototype" name="AssertionList"/>

 </smc:response>

 </smc:messages>

 <smc:errors>

 <smc:errorRef comment="Data interoperability error">

 <smc:type area="MALPrototype" service="DataTest" name="DATA_ERROR"/>

 </smc:errorRef>

 </smc:errors>

 </smc:requestIP>

 </smc:capabilitySet>

 <smc:errors>

 <smc:error name="DATA_ERROR" number="70001" comment="Data interoperability error"/>

 </smc:errors>

 </smc:service>

 <smc:service name="ErrorTest" number="2" version="1">

 <smc:capabilitySet number="100">

 <smc:requestIP name="testDeliveryFailed" number="100" supportInReplay="false"

 comment="This operation does nothing. Actually the error is raised by the transport layer before the provider is invoked.">

 <smc:messages>

 <smc:request>

 <smc:type area="MAL" name="Element"/>

 </smc:request>

 <smc:response>

 <smc:type area="MAL" name="Element"/>

 </smc:response>

 </smc:messages>

 </smc:requestIP>

 <smc:requestIP name="testDeliveryTimedout" number="101" supportInReplay="false"

 comment="This operation does nothing. Actually the error is raised by the transport layer before the provider is invoked.">

 <smc:messages>

 <smc:request>

 <smc:type area="MAL" name="Element"/>

 </smc:request>

 <smc:response>

 <smc:type area="MAL" name="Element"/>

 </smc:response>

 </smc:messages>

 </smc:requestIP>

 <smc:requestIP name="testDeliveryDelayed" number="102" supportInReplay="false"

 comment="This operation does nothing. Actually the error is raised by the transport layer before the provider is invoked.">

 <smc:messages>

 <smc:request>

 <smc:type area="MAL" name="Element"/>

 </smc:request>

 <smc:response>

 <smc:type area="MAL" name="Element"/>

 </smc:response>

 </smc:messages>

 </smc:requestIP>

 <smc:requestIP name="testDestinationUnknown" number="103" supportInReplay="false"

 comment="This operation does nothing. Actually the error is raised by the transport layer before the provider is invoked.">

 <smc:messages>

 <smc:request>

 <smc:type area="MAL" name="Element"/>

 </smc:request>

 <smc:response>

 <smc:type area="MAL" name="Element"/>

 </smc:response>

 </smc:messages>

 </smc:requestIP>

 <smc:requestIP name="testDestinationTransient" number="104" supportInReplay="false"

 comment="This operation does nothing. Actually the error is raised by the transport layer before the provider is invoked.">

 <smc:messages>

 <smc:request>

 <smc:type area="MAL" name="Element"/>

 </smc:request>

 <smc:response>

 <smc:type area="MAL" name="Element"/>

 </smc:response>

 </smc:messages>

 </smc:requestIP>

 <smc:requestIP name="testDestinationLost" number="105" supportInReplay="false"

 comment="This operation does nothing. Actually the error is raised by the transport layer before the provider is invoked.">

 <smc:messages>

 <smc:request>

 <smc:type area="MAL" name="Element"/>

 </smc:request>

 <smc:response>

 <smc:type area="MAL" name="Element"/>

 </smc:response>

 </smc:messages>

 </smc:requestIP>

 <smc:requestIP name="testEncryptionFail" number="106" supportInReplay="false"

 comment="This operation does nothing. Actually the error is raised by the transport layer before the provider is invoked.">

 <smc:messages>

 <smc:request>

 <smc:type area="MAL" name="Element"/>

 </smc:request>

 <smc:response>

 <smc:type area="MAL" name="Element"/>

 </smc:response>

 </smc:messages>

 </smc:requestIP>

 <smc:requestIP name="testUnsupportedArea" number="107" supportInReplay="false"

 comment="This operation does nothing. Actually the error is raised by the transport layer before the provider is invoked.">

 <smc:messages>

 <smc:request>

 <smc:type area="MAL" name="Element"/>

 </smc:request>

 <smc:response>

 <smc:type area="MAL" name="Element"/>

 </smc:response>

 </smc:messages>

 </smc:requestIP>

 <smc:requestIP name="testUnsupportedOperation" number="108" supportInReplay="false"

 comment="This operation does nothing. Actually the error is raised by the transport layer before the provider is invoked.">

 <smc:messages>

 <smc:request>

 <smc:type area="MAL" name="Element"/>

 </smc:request>

 <smc:response>

 <smc:type area="MAL" name="Element"/>

 </smc:response>

 </smc:messages>

 </smc:requestIP>

 <smc:requestIP name="testUnsupportedVersion" number="109" supportInReplay="false"

 comment="This operation does nothing. Actually the error is raised by the transport layer before the provider is invoked.">

 <smc:messages>

 <smc:request>

 <smc:type area="MAL" name="Element"/>

 </smc:request>

 <smc:response>

 <smc:type area="MAL" name="Element"/>

 </smc:response>

 </smc:messages>

 </smc:requestIP>

 <smc:requestIP name="testBadEncoding" number="110" supportInReplay="false"

 comment="This operation does nothing. Actually the error is raised by the transport layer before the provider is invoked.">

 <smc:messages>

 <smc:request>

 <smc:type area="MAL" name="Element"/>

 </smc:request>

 <smc:response>

 <smc:type area="MAL" name="Element"/>

 </smc:response>

 </smc:messages>

 </smc:requestIP>

 <smc:requestIP name="testUnknown" number="111" supportInReplay="false"

 comment="This operation does nothing. Actually the error is raised by the transport layer before the provider is invoked.">

 <smc:messages>

 <smc:request>

 <smc:type area="MAL" name="Element"/>

 </smc:request>

 <smc:response>

 <smc:type area="MAL" name="Element"/>

 </smc:response>

 </smc:messages>

 </smc:requestIP>

 <smc:requestIP name="testAuthenticationFailure" number="112" supportInReplay="false"

 comment="This operation does nothing. Actually the error is raised by the MAL layer before the provider is invoked.">

 <smc:messages>

 <smc:request>

 <smc:type area="MAL" name="Element"/>

 </smc:request>

 <smc:response>

 <smc:type area="MAL" name="Element"/>

 </smc:response>

 </smc:messages>

 </smc:requestIP>

 <smc:requestIP name="testAuthorizationFailure" number="113" supportInReplay="false"

 comment="This operation does nothing. Actually the error is raised by the MAL layer before the provider is invoked.">

 <smc:messages>

 <smc:request>

 <smc:type area="MAL" name="Element"/>

 </smc:request>

 <smc:response>

 <smc:type area="MAL" name="Element"/>

 </smc:response>

 </smc:messages>

 </smc:requestIP>

 </smc:capabilitySet>

 </smc:service>

 <smc:dataTypes>

 <smc:list name="AssertionList" shortForm="test_asrt_lst">

 <smc:type area="MALPrototype" name="Assertion"/>

 </smc:list>

 <smc:composite name="Assertion" shortForm="test_asrt" comment="">

 <smc:extends>

 <smc:type area="MAL" name="Composite"/>

 </smc:extends>

 <smc:field name="procedureName"

 comment="Name of the test procedure that evaluated the assertion.">

 <smc:type area="MAL" name="String"/>

 </smc:field>

 <smc:field name="Info" comment="Message explaining what the assertion checks.">

 <smc:type area="MAL" name="String"/>

 </smc:field>

 <smc:field name="Result"

 comment="Boolean indicating whether the assertion succeeded (true) or not (false).">

 <smc:type area="MAL" name="Boolean"/>

 </smc:field>

 </smc:composite>

 </smc:dataTypes>

 <smc:errors>

 <smc:error name="TEST_ERROR" number="70000" comment="Fake error for testing."/>

 </smc:errors>

 </smc:area>

</smc:specification>

ANNEX B [Pub/Sub header consumer assertions]

· Check Register

The Register header is obtained through the test transport module (see section 3.1.2.3)
The expected header is built as follows:

	Field
	Assigned with

	URIfrom
	The broker's URI

	authenticationId
	Parameter 'authenticationId'

	URIto
	The consumer's URI

	timestamp
	Current time before the subscription

	QoSlevel
	Parameter 'qos'

	priority
	Parameter 'priority'

	domain
	Parameter 'domain'

	networkZone
	Parameter 'networkZone'

	session
	Parameter 'session'

	sessionName
	Parameter 'sessionName'

	interactionType
	Pub/Sub

	interactionStage
	1

	transactionId
	Not assigned.

	area
	The test area name “MALPrototype”.

	service
	The test service name “IPTest”.

	operation
	The operation name.

	version
	The test service version.

	isError
	False

For each field, except 'timestamp' and 'transactionId', the following assertion is made:

	Assertion

	Info
	Result

	Check header field '<field name>'
	True if the value of the received header field is equal to the expected value fields

False otherwise.

For 'timestamp' the assertion is:

	Assertion

	Info
	Result

	Check header field 'timestamp'
	True if the value of the received header timestamp is greater than the expected header timestamp.

False otherwise.

For 'transactionId' the assertion is:

	Assertion

	Info
	Result

	Check header field 'transactionId'
	True if the value of 'transactionId' changes at each registration.

False otherwise.

· Check Register acknowledgement

The expected header is built in the same way as Register except for the fields:
	Field
	Assigned with

	authenticationId
	The authentication identifier of the broker (statically known)

	interactionStage
	2

	transactionId
	Field 'transactionId' of the Register message header.

For each field, except 'timestamp', the following assertion is made:

	Assertion

	Info
	Result

	Check header field '<field name>'
	True if the value of the received header field is equal to the expected value fields

False otherwise.

For 'timestamp' the assertion is:

	Assertion

	Info
	Result

	Check header field 'timestamp'
	True if the value of the received header timestamp is greater than the expected header timestamp.

False otherwise.

· Check Notify

The consumer checks the updates arrival (not implicit as the Notify reception is asynchronous):
	Assertion

	Info
	Result

	Check Notify messages arrival
	True if the four updates have been received.

False otherwise.

The consumer checks the Notify header correctness. The expected header is built in the same way as before except for the fields:

	Field
	Assigned with

	timestamp
	Current time before the update publications

	interactionStage
	6

The same assertions as Register are done.

· Check Deregister

The consumer deregisters from the subscription “sub1”.
The Deregister header is obtained through the test transport module.
The expected header is built in the same way as Register except for the fields:

	Field
	Assigned with

	timestamp
	Current time before the deregistration.

	interactionStage
	7

The same assertions as Register are done.

· Check Deregister acknowledgement

The expected header is built in the same way as Register except for the fields:
	Field
	Assigned with

	timestamp
	Current time before the deregistration

	interactionStage
	8

The same assertions as Register are done.

ANNEX C [Test transport]
The Transport interface is implemented by a test transport module in charge of:
· Checking that the transport primitives are called by the MAL

· Keeping the last message that has been transmitted to the transport by the MAL

· Forwarding the primitive Request to the actual transport layer

· Listening to the indications triggered by the actual transport and transmitting them to the MAL

This test transport module is an intermediate layer between the MAL and the actual transport used for the test as shown by the following figure:

[image: image3.png]
The test transport module has a specific behavior in the following cases:
· Publish Register Error header checking
A Publish Register Error message is returned (Receive indication) if a Publish Register message is sent (Transmit request) to the service IPTest and if it contains a particular EntityKey.

· Register Error header checking
A Register Error message is returned (Receive indication) if a Register message is sent (Transmit request) to the service IPTest and if it uses a particular subscription identifier.

· Transmit Error checking
A TransmitErrorException is raised (Transmit Error indication) if a message is sent (Transmit request) to the service ErrorTest and if it contains an empty body (i.e. equal to ‘null’).
The error code depends on the operation called. Only transport errors are raised. Access Control errors are raised by the test SecurityManager module.
	Service
	Operation
	Error to raise

	ErrorTest
	testDeliveryFailed
	DELIVERY_FAILED

	ErrorTest
	testDeliveryTimedout
	DELIVERY_TIMEDOUT

	ErrorTest
	testDeliveryDelayed
	DELIVERY_DELAYED

	ErrorTest
	testDestinationUnknown
	DESTINATION_UNKNOWN

	ErrorTest
	testDestinationTransient
	DESTINATION_TRANSIENT

	ErrorTest
	testDestinationLost
	DESTINATION_LOST

	ErrorTest
	testEncryptionFail
	ENCRYPTION_FAIL

	ErrorTest
	testUnsupportedArea
	UNSUPPORTED_AREA

	ErrorTest
	testUnsupportedOperation
	UNSUPPORTED_OPERATION

	ErrorTest
	testUnsupportedVersion
	UNSUPPORTED_VERSION

	ErrorTest
	testBadEncoding
	BAD_ENCODING

	ErrorTest
	testUnknown
	UNKNOWN

	IPTest
	monitor
	ENCRYPTION_FAIL

· Transmit Multiple Error checking
A TransmitMultipleErrorException is created if multiple messages are sent (Transmit Multiple request) by the service IPTest and if the first message is sent during a Notify stage and contains an Update with a particular EntityKey.
The second message is sent and the TransmitMultipleErrorException is raised (Transmit Multiple Error indication).

�Reprendre la stacktrace..

