[image: image1.emf]
	Message Abstraction Layer Prototype Test plan AND REPORT

DRAFT CCSDS Record
CCSDS 000.0-Y-0

Draft Yellow Book

September 2009

FOREWORD

[Foreword text specific to this document goes here. The text below is boilerplate.]

Through the process of normal evolution, it is expected that expansion, deletion, or modification of this document may occur. This document is therefore subject to CCSDS document management and change control procedures, which are defined in the Procedures Manual for the Consultative Committee for Space Data Systems. Current versions of CCSDS documents are maintained at the CCSDS Web site:

http://www.ccsds.org/

Questions relating to the contents or status of this document should be addressed to the CCSDS Secretariat at the address indicated on page i.

At time of publication, the active Member and Observer Agencies of the CCSDS were:

Member Agencies
· Agenzia Spaziale Italiana (ASI)/Italy.

· British National Space Centre (BNSC)/United Kingdom.

· Canadian Space Agency (CSA)/Canada.

· Centre National d’Etudes Spatiales (CNES)/France.

· China National Space Administration (CNSA)/People’s Republic of China.

· Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)/Germany.

· European Space Agency (ESA)/Europe.

· Federal Space Agency (FSA)/Russian Federation.
· Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.

· Japan Aerospace Exploration Agency (JAXA)/Japan.

· National Aeronautics and Space Administration (NASA)/USA.

Observer Agencies
· Austrian Space Agency (ASA)/Austria.

· Belgian Federal Science Policy Office (BFSPO)/Belgium.

· Central Research Institute of Machine Building (TsNIIMash)/Russian Federation.

· Centro Tecnico Aeroespacial (CTA)/Brazil.

· Chinese Academy of Sciences (CAS)/China.

· Chinese Academy of Space Technology (CAST)/China.

· Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia.

· Danish National Space Center (DNSC)/Denmark.
· European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)/Europe.

· European Telecommunications Satellite Organization (EUTELSAT)/Europe.

· Hellenic National Space Committee (HNSC)/Greece.

· Indian Space Research Organization (ISRO)/India.

· Institute of Space Research (IKI)/Russian Federation.

· KFKI Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.

· Korea Aerospace Research Institute (KARI)/Korea.

· MIKOMTEK: CSIR (CSIR)/Republic of South Africa.

· Ministry of Communications (MOC)/Israel.

· National Institute of Information and Communications Technology (NICT)/Japan.
· National Oceanic and Atmospheric Administration (NOAA)/USA.

· National Space Organization (NSPO)/Chinese Taipei.

· Naval Center for Space Technology (NCST)/USA.

· Space and Upper Atmosphere Research Commission (SUPARCO)/Pakistan.

· Swedish Space Corporation (SSC)/Sweden.

· United States Geological Survey (USGS)/USA.

DOCUMENT CONTROL

	Document
	Title and Issue
	Date
	Status

	CCSDS 000.0-Y-0
	[Document Title], Draft CCSDS Record, Issue 0
	September 2009
	Current draft

	
	
	
	

	
	
	
	

CONTENTS

Section
Page

iiiDOCUMENT CONTROL

ivCONTENTS

1-11
Introduction

1-11.1
Purpose

1-11.2
scope

1-11.3
structure of this report

1-11.4
definitions (terms, nomenclature, conventions)

1-11.5
references

1-11.6
References

32
OVERVIEW

32.1
TEST APPROACH

42.2
TESTS OVERViEW

52.3
test Results SUMMARY

63
Test scenarios

73.1
IP test scenario

253.2
Data type test scenario

263.3
Error test scenario

323.4
Access control test scenario

333.5
Transport test scenario

384
MALPrototype Service Specification

384.1
IPTest Service

494.2
DataTest Service

504.3
ErrorTest Service

585
MALPrototype Data Types

585.1
Data Structures

585.2
IPTest Service Structures

646
Compliance matrix

646.1
Message Abstraction Layer

686.2
Data types

686.3
Errors

1 Introduction

1.1 Purpose

This test report provides a record of the interoperability testing that occurred in support of the production of the CCSDS recommendation 521.0, MISSION OPERATIONS—MESSAGE ABSTRACTION LAYER.
1.2 scope

This test report addresses primarily the formal prototype interoperations that occurred between the ESA developed prototype and the CNES developed prototype, against the formally released Red-1.1 version of the draft Message Abstraction Layer recommendation identified in 1.1.

1.3 structure of this report

This test report is organized as follows:

a) Section 1 provides purpose and scope, definitions and references used throughout the report;

b) Section 2 gives an overview of the test report and a summary of the test results;

c) Section 3 defines the test scenarios;

d) Section 4 defines the test services;

e) Section 5 defines the test data structures;

f) Section 6 gives the compliance matrix.
1.4 definitions (terms, nomenclature, conventions)

TBS.
1.5 references

1.6 References
The following documents are referenced in this document. At the time of publication, the editions indicated were valid. All documents are subject to revision, and users of this document are encouraged to investigate the possibility of applying the most recent editions of the documents indicated below. The CCSDS Secretariat maintains a register of currently valid CCSDS documents.
[A list of documents referenced in this document goes here. See CCSDS A20.0-Y-2, CCSDS Publications Manual (Yellow Book, Issue 2, June 2005) for reference list format.]

[Further references are TBS]

2 OVERVIEW

This document provides a record of the prototype interoperations conducted in support of the development of the CCSDS recommendation for Mission Operations Message Abstraction Layer.

The European Space Agency (ESA), and the Centre National d’Etudes Spatiales (CNES) of France each developed prototype implementations of the draft CCSDS recommendation.
2.1 TEST APPROACH

The tests check that two independent implementations of the MAL interoperate as specified by the CCSDS recommendation.
Two distinct stacks are built by assembling the following components:
· Test application

· Service specific API

· Service stubs and skeletons

· MAL API

· MAL implementation

· Security API

· Security implementation

· Transport API

· Transport adapter implementation

· Message transport

The figure below presents the two stacks:
[image: image2.emf]Messaging Middleware

Message transport

Implementation #1

Transport Adapter

Implementation

Service Stub/Skeletons

MAL API

Test Application

MAL Implementation

Standard Transport API

Service Specific API

Sec API

Sec

Impl

Implementation #2

Transport Adapter

Implementation

MAL API

Test Application

MAL Implementation

Standard Transport API

Service Specific API

Sec API

Sec

Impl

Service Stub/Skeletons

Message transport

Transport Adapter

Service Stub/Skeletons

MAL Standard APIs

Test Code

MAL Implementation

Service Specific API

Figure 2‑1 Initial MAL prototype
The following components are separately produced by ESA and CNES:
· Service specific API

· Service stubs and skeletons

· MAL API

· MAL implementation

· Security API

· Security implementation

· Transport API

The other components are shared by ESA and CNES:
· Test application

· Transport adapter implementation

· Message transport
2.2 TESTS OVERViEW
Five test scenarios are developed each verifying one aspect of the MAL book:
· Interaction Patterns
· Data types
· Standard errors
· Access control
· Transport
2.3 test Results SUMMARY

2.3.1 general discussion

TBS
2.3.2 TEST RESULTS

TBS
3 Test scenarios

A scenario is comprised of several test cases. Each test case launches several test procedures.
Scenarios, test cases and procedures are uniquely identified by a name. They also have a status that can be RUN, DONE or FAIL.

All the scenarios are coordinated at the consumer side:

· They are started by a consumer initiating an interaction

· The status of scenarios, test cases and procedures is determined on the consumer side.

Of course, assertions can be checked on both sides: consumer and provider.

A test procedure is in charge of checking a set of assertions. There are two possible results for an assertion: OK (the assertion succeeded) or ERROR (the assertion failed).

A test procedure is DONE if it completes and if all the assertions are OK. If it is not completed, its status is RUN. If it is completed and if at least one assertion is in ERROR then its status is FAIL.

A test case is DONE if all the test procedures complete with the status DONE. If at least one procedure is not completed, its status is RUN. If all the procedures have completed and if at least one of them is FAIL then the test case status is FAIL.

A scenario is DONE if all the test cases complete with the status DONE. If at least one test case is not completed, its status is RUN. If all the test cases have completed and if at least one of them is FAIL then the scenario status is FAIL.

Providers are implemented as specified in section 4.

Two processes are launched:

1. The first one is called the “TestCoordinator” process. It launches the test procedures.

2. The second one is called the “TestPeer” process.

The “TestPeer” process instantiates the following providers:

· One IPTest provider with a private broker

· Two IPTest providers using the same shared broker

· DataTest provider without broker
The parameters of the shared broker are listed below:

	Broker name
	AuthenticationId
	Provider max number

	SharedBroker
	{0x01, 0x02}
	1

The parameters of the providers are listed below:

	Provider name
	Service
	AuthenticationId
	Broker

	IPTest-private
	IPTest
	{0x02, 0x03}
	Private broker

	IPTest-shared1
	IPTest
	{0x02, 0x04}
	Shared broker “SharedBroker”

	IPTest-shared1
	IPTest
	{0x02, 0x05}
	Shared broker “SharedBroker”

	DataTest
	DataTest
	{0x02, 0x06}
	No broker

It writes the URIs of providers and brokers into a properties file that is read by the TestCoordinator process.

The TestCoordinator process is launched after the TestPeer started in order that:

· The providers are ready to be called

· The URIs properties file is ready to be read by the TestCoordinator

A properties file enables to share the values of the following data:

· Providers authentication identifiers
· Shared broker authentication identifier

3.1 IP test scenario
Two test cases are defined:
· The first one tests every interaction pattern except the Pub/Sub pattern.

· The second one is dedicated to the Pub/Sub pattern which is different as it does not involve the provider in the same way and it is more complex. Several aspects of the Pub/Sub pattern need to be tested. One test procedure is done for each of them.

Pub/Sub tests are to be done with a private and a shared broker.

Two constraints are required in order to check the IP state charts:

· no message loss

· FIFO message ordering is required

As a consequence, the Best Effort QoS can only be used if the specific transport layer ensures in the context of the test bed that messages are delivered exactly once and according to a FIFO ordering.
3.1.1 Test case: all patterns except Pub/Sub

The consumer initiates the patterns by calling the following operations provided by the service IPTest:

· send

· submit

· request

· invoke

· progress

Those operations shall be called once for each QoS level and session type. It is not necessary to test each combination of QoS and session. One call for each QoS level and session type is enough.

The following parameters are used to make the calls:

	authenticationId
	{0x00, 0x01}

	qos
	Best Effort, Assured, Queued, Timely

	priority
	1

	domain
	{“Test”, “Domain”}

	networkZone
	“TestNetwork”

	session
	Live, Simulation, Replay

	session name
	If the session type is Live, the name is “LIVE”.

If the session type is Replay, the name is “R1”.

If the session type is Simulation, the name is “S1”.

Moreover it is necessary to go through all the transitions of the IP state charts. The following IPTestDefinitions have to be instantiated. The table only gives the IPTestTransitionType part of the IPTestTransition. The faulty transitions are underlined. In the faulty case, the field 'errorCode' of the IPTestTransition is set to the value INCORRECT_STATE otherwise it is set to “-1”. The field 'Transition list id' is used to identify the test procedure.

	IPTest operation
	IPTestTransitionList
	Transition list id

	submit
	{ACK}
	1

	
	{ACK_ERROR}
	2

	
	{ACK, ACK_ERROR}
	3

	
	{ACK_ERROR, ACK_ERROR}
	4

	request
	{RESPONSE}
	1

	
	{RESPONSE_ERROR}
	2

	
	{RESPONSE, RESPONSE}
	3

	
	{RESPONSE_ERROR, RESPONSE}
	4

	invoke
	{ACK, RESPONSE}
	1

	
	{ACK, RESPONSE_ERROR}
	2

	
	{ACK_ERROR}
	3

	
	{ACK, RESPONSE, RESPONSE}
	4

	
	{ACK, RESPONSE_ERROR, RESPONSE}
	5

	
	{ACK_ERROR, ACK}
	6

	
	{RESPONSE, ACK, RESPONSE}
	7

	progress
	{ACK, RESPONSE}
	1

	
	{ACK, RESPONSE_ERROR}
	2

	
	{ACK_ERROR}
	3

	
	{ACK, UPDATE, UPDATE, RESPONSE}
	4

	
	{ACK, UPDATE, UPDATE, UPDATE_ERROR}
	5

	
	{ACK, UPDATE, UPDATE, RESPONSE_ERROR}
	6

	
	{ACK, RESPONSE, RESPONSE}
	7

	
	{ACK, RESPONSE_ERROR, RESPONSE}
	8

	
	{ACK_ERROR, ACK}
	9

	
	{UPDATE, ACK, UPDATE, UPDATE, RESPONSE}
	10

	
	{UPDATE_ERROR, ACK, UPDATE, UPDATE, RESPONSE}
	11

	
	{RESPONSE, ACK, UPDATE, UPDATE, UPDATE_ERROR}
	12

	
	{ACK, UPDATE, UPDATE, UPDATE_ERROR, RESPONSE}
	13

	
	{ACK, UPDATE, UPDATE, RESPONSE_ERROR, RESPONSE}
	14

The consumer has to execute the following test procedure for every possible header values (QoS and session fields) and every possible transition. The name of the procedure is built from the parameters:

· ip: name of the tested IP

· qos: QoS level to be used

· session: session type to be used

· transition list id: identifier of the IPTestTransitionList that is expected by the consumer (see table above).
3.1.1.1 Test procedure: <ip>/<qos>/<session>/<transition list id>

The test procedure does the following actions:
1. Call the operation <ip> provided by the IPTest service with the parameters passed to the test procedures: 'ip', 'qos', 'session' and 'transition list id'.

2. Wait for the expected transitions to be done, except the faulty ones that are ignored.

3. Call the operation 'getResult' provided by the IPTest service.

4. Check the provider assertions from the IPTestResult returned by 'getResult'

5. Check the message header

6. Check the transitions

3.1.1.1.1 Check message header
When the consumer receives a MAL message it has to check that the header is the same as the expected header.

The expected header is deduced from the IPTestDefinition as follows:

	Field
	Assigned with

	URIfrom
	The provider's URI

	authenticationId
	Authentication id of the provider (statically defined)

	URIto
	Field 'consumerURI' of the IPTestDefinition.

	timestamp
	Field 'timestamp' of the IPTestDefinition.

	QoSlevel
	Field 'qos' of the IPTestDefinition.

	priority
	Field 'priority' of the IPTestDefinition.

	domain
	Field 'domain' of the IPTestDefinition.

	networkZone
	Field 'networkZone' of the IPTestDefinition.

	session
	Field 'session' of the IPTestDefinition.

	sessionName
	Field 'sessionName' of the IPTestDefinition.

	interactionType
	Interaction type used by the operation, e.g. the operation “send” uses a SEND interaction type.

	interactionStage
	Expected interaction stage as specified by the IPTestDefinition

	transactionId
	Assigned with the transaction identifier returned by the provider in the structure IPTestResult.

	area
	The test area name “MALPrototype”.

	service
	The test service name “IPTest”.

	operation
	The operation name.

	version
	The test service version.

	isError
	Depends on the expected interaction stage as specified by the IPTestDefinition:

· True if a *_ERROR transition is expected

· False otherwise

For each field, except 'timestamp', the following assertion is made:

	Assertion

	Info
	Result

	Check header field '<field name>'
	True if the value of the received header field is equal to the expected value fields

False otherwise.

For 'timestamp' the assertion is:

	Assertion

	Info
	Result

	Check header field 'timestamp'
	True if the value of the received header timestamp is greater than the expected header timestamp.

False otherwise.

3.1.1.1.2 Check the transitions
The following assertion has to be checked for each transition of the IPTestTransitionList:
	Assertion

	Info
	Result

	Check transition step #<transition index in the IPTestTransitionList>
	True if the value of the received 'transition stage' is equal to the value of the expected stage (extracted from the IPTestTransitionList)

False otherwise.

3.1.2 Test case: Pub/Sub interaction

This test checks that the message header is correct during the Pub/Sub interaction.

3.1.2.1 Test procedure: pubsub/<qos>/<session>

The test procedure is described below. It shall be executed once for each QoS level and session type. It is not necessary to test each combination of QoS and session. One execution for each QoS level and session type is enough.
The consumer creates subscriptions from the following parameters:
	subscription id
	“sub1”

	authenticationId
	{0x00, 0x01}

	qos
	Best Effort, Assured, Queued, Timely

	priority
	1

	domain
	{“Test”, “Domain”}

	networkZone
	“TestNetwork”

	session
	Live, Simulation, Replay

	session name
	If the session type is Live, the name is “LIVE”.

If the session type is Replay, the name is “R1”.

If the session type is Simulation, the name is “S1”.

	entity expression
	{“A”, null, null, null}

	only on change
	false

3.1.2.1.1 Check Publish Register and Publish Register acknowledgement
The consumer does the following actions:
1. Calls the operation 'publishRegister' with the following parameter:
	TestPublishRegister

	qos
	Assured

	priority
	1

	domain
	{“Test”, “Domain”}

	networkZone
	“TestNetwork”

	session
	Live

	session name
	“LIVE”

	update key
	{“A”, null, null, null}

	errorCode
	-1

2. Call the operation 'getResult' provided by the IPTest service.

3. Check the provider assertions from the IPTestResult returned by 'getResult'
3.1.2.1.2 Check Register

The consumer registers for the PubSub operation ‘monitor’.
The Register header is obtained through the test transport module (see section 3.5).
The expected header is built as follows:

	Field
	Assigned with

	URIfrom
	The broker's URI

	authenticationId
	Parameter 'authenticationId'

	URIto
	The consumer's URI

	timestamp
	Current time before the subscription

	QoSlevel
	Parameter 'qos'

	priority
	Parameter 'priority'

	domain
	Parameter 'domain'

	networkZone
	Parameter 'networkZone'

	session
	Parameter 'session'

	sessionName
	Parameter 'sessionName'

	interactionType
	Pub/Sub

	interactionStage
	1

	transactionId
	Not assigned.

	area
	The test area name “MALPrototype”.

	service
	The test service name “IPTest”.

	operation
	The operation name.

	version
	The test service version.

	isError
	False

For each field, except 'timestamp' and 'transactionId', the following assertion is made:

	Assertion

	Info
	Result

	Check header field '<field name>'
	True if the value of the received header field is equal to the expected value fields

False otherwise.

For 'timestamp' the assertion is:

	Assertion

	Info
	Result

	Check header field 'timestamp'
	True if the value of the received header timestamp is greater than the expected header timestamp.

False otherwise.

For 'transactionId' the assertion is:

	Assertion

	Info
	Result

	Check header field 'transactionId'
	True if the value of 'transactionId' changes at each registration.

False otherwise.

3.1.2.1.3 Check Register acknowledgement
The expected header is built in the same way as before in section 3.1.2.1.1 except for the fields:
	Field
	Assigned with

	authenticationId
	The authentication identifier of the broker (statically known)

	interactionStage
	2

	transactionId
	Field 'transactionId' of the Register message header.

For each field, except 'timestamp', the following assertion is made:

	Assertion

	Info
	Result

	Check header field '<field name>'
	True if the value of the received header field is equal to the expected value fields

False otherwise.

For 'timestamp' the assertion is:

	Assertion

	Info
	Result

	Check header field 'timestamp'
	True if the value of the received header timestamp is greater than the expected header timestamp.

False otherwise.

3.1.2.1.4 Check Publish
The consumer does the following actions:
4. Call the operation 'publishUpdates' provided by the IPTest service. The consumer triggers publications with the entity key {“A”, null, null, null}. Four publications are passed as parameters of the call: one for each update type: creation, update, modification and deletion.
5. Call the operation 'getResult' provided by the IPTest service.

6. Check the provider assertions from the IPTestResult returned by 'getResult'

3.1.2.1.5 Check Notify
The consumer checks the updates arrival (not implicit as the Notify reception is asynchronous):
	Assertion

	Info
	Result

	Check Notify messages arrival
	True if the four updates have been received.

False otherwise.

The consumer checks the Notify header correctness. The expected header is built in the same way as before in section 3.1.2.1.2 except for the fields:

	Field
	Assigned with

	timestamp
	Current time before the update publications

	interactionStage
	6

The same assertions as in section 3.1.2.1.2 are done.
3.1.2.1.6 Check Deregister

The consumer deregisters from the subscription “sub1”.
The Deregister header is obtained through the test transport module (see section 3.5).
The expected header is built in the same way as before in section 3.1.2.1.2 except for the fields:

	Field
	Assigned with

	timestamp
	Current time before the deregistration.

	interactionStage
	7

The same assertions as in section 3.1.2.1.2 are done.

3.1.2.1.7 Check Deregister acknowledgement
The expected header is built in the same way as before in section 3.1.2.1.2 except for the fields:
	Field
	Assigned with

	timestamp
	Current time before the deregistration

	interactionStage
	8

The same assertions as in section 3.1.2.1.2 are done.

3.1.2.1.8 Check Publish Deregister and Publish Deregister acknowledgement

The consumer does the following actions:
1. Calls the operation 'publishDeregister' with the following parameter:

	TestPublishDeregister

	qos
	Assured

	priority
	1

	domain
	{“Test”, “Domain”}

	networkZone
	“TestNetwork”

	session
	Live

	session name
	“LIVE”

	errorCode
	-1

2. Call the operation 'getResult' provided by the IPTest service.

3. Check the provider assertions from the IPTestResult returned by 'getResult'
3.1.2.2 Test procedure: subscription checking
The consumer calls the operation 'addPublishedEntities' with the entity key “A” and “B”.
The consumer creates the subscription “sub1” defined in test procedure 4.1.2.1 with the QoS level Assured and the session LIVE.
The consumer keeps the transaction identifier of the registration.

The consumer redefines the subscription “sub1” (i.e. the consumer registers again) with two identical entity requests:

· same expression “A”

· same 'only on change' parameter set to the value 'true'.

The consumer triggers two publications in this order:

1. key = “A”, type = Update

2. key = “A”, type = Modification

The consumer checks:

	Assertion

	Info
	Result

	Check update uniqueness
	True if each update arrives only once despite the two entity requests own the same expression.

False otherwise.

	Check 'only on change'
	True if the update which type is Update is not received ('only on change' is true).

False otherwise.

	Check the 'transactionId' invariance
	True if 'transactionId' is the same as before the subscription redefinition.

3.1.2.3 Test procedure: publish error

The consumer does the following actions:

1. call the operation 'publishRegister' with the entity key {“A”, null, null, null}

2. call the operation ‘publishUpdates’ with the following parameter:
	TestPublishUpdate

	qos
	Assured

	priority
	1

	domain
	{“Test”, “Domain”}

	networkZone
	“TestNetwork”

	session
	Live

	session name
	“LIVE”

	update key
	{“B”, null, null, null}

	errorCode
	UNKNOWN

This TestPublishUpdate checks that the error UNKNOWN is raised because the entity key {“B”, null, null, null} has not been registered by the provider.

3. Call the operation 'getResult' provided by the IPTest service.

4. Check the provider assertions from the IPTestResult returned by 'getResult'
3.1.2.4 Test procedure: subscription identifier uniqueness

This test procedure verifies that the URI of the consumer and the subscription identifier form the unique identifier of the subscription.
Two IPTest consumers are created. Two subscriptions with the same identifier “sub1” are created with both consumers as defined below:

	Consumer URI
	URI #1
	URI #2

	subscription id
	“sub1”
	“sub1”

	authenticationId
	{0x00, 0x01}
	{0x00, 0x01}

	qos
	Assured
	Assured

	priority
	1
	1

	domain
	{“Test”, “Domain1”}
	{“Test”, “Domain1”}

	networkZone
	“TestNetwork”
	“TestNetwork”

	session
	Live
	Live

	session name
	“LIVE”
	“LIVE”

	entity expression
	“A”
	“A”

	only on change
	false
	false

The consumer triggers one publication with the key “A” and the update type “Modification”.

The consumer checks:

	Assertion

	Info
	Result

	Check subscription identifier uniqueness
	True if the update is received once by both consumers.

False otherwise.

3.1.2.5 Test procedure: subscription entity requests

This test checks that the entity requests are correctly interpreted by the broker, in particular the expression used to define the expected entities.
A list of entity keys is defined:

1. A

2. A.B

3. A.B.C

4. A.B.C.D

5. B

6. Q.B.C

The consumer calls the operation 'addPublishedEntities' with the entity keys list presented above.

A list of entity request expressions is defined:
1. A

2. A.[null]

3. A.*

4. A.B.[null]

5. A.B.*

6. [null].B.[null]

7. *.B.*

8. *

The consumer does the following actions:

· Creation of one subscription for each expression and registration.

The QoS level is Assured.

· Trigger the publication of one TestUpdate for each entity key.

Use the same header values as in section 3.1.1.

Check that:
	Assertion

	Info
	Result

	Check entity request expression <expression>
	True if the expected keys are received and only them (see table below).

False otherwise.

The expected keys depending on the expression used are listed below:
	Expression
	Expected keys

	A
	A

	A.[null]
	A.B

	A.*
	A, A.B, A.B.C, A.B.C.D

	A.B.[null]
	A.B.C

	A.B.*
	A.B, A.B.C, A.B.C.D

	[null].B.[null]
	A.B.C, Q.B.C

	.B.
	A.B, A.B.C, A.B.C.D, B, Q.B.C

	*
	A, A.B, A.B.C, A.B.C.D, B, Q.B.C

3.1.2.6 Test procedure: registration error

The consumer registers to a private broker in order to receive the updates published by an unknown entity called “C”. The test procedure checks:
	Assertion

	Info
	Result

	Check registration error
	True if an error is raised.

False otherwise.

3.1.2.7 Test procedure: notify error

The consumer creates the subscription “sub1” defined in test procedure 3.1.2.1 with the QoS level Assured and the session LIVE. Then the consumer deletes the provider and checks:
	Assertion

	Info
	Result

	Check notify error
	True if a Notify error is raised.

False otherwise.

3.1.2.8 Test procedure: publish register error
The consumer does the following actions:
1. Calls the operation 'publishRegister' of the provider instance “IPTest-shared1” with the same parameter as in 3.1.2.1.1
2. Calls the operation 'publishRegister' of the provider instance “IPTest-shared2” with the same parameter as in 3.1.2.1.1 except the field ‘errorCode’ assigned with TOO_MANY error code.
3. Call the operation 'getResult' provided by “IPTest-shared1” and “IPTest-shared2” and check the returned assertions.
3.1.2.9 Test procedure: publish register redefinition

The consumer does the following actions:

1. call the operation 'publishRegister' with the entity key {“A”, null, null, null}

2. call the operation 'publishRegister' with the entity key {“B”, null, null, null}
3. call the operation ‘publishUpdates’ with the following parameter:

	TestPublishUpdate

	qos
	Assured

	priority
	1

	domain
	{“Test”, “Domain”}

	networkZone
	“TestNetwork”

	session
	Live

	session name
	“LIVE”

	update key
	{“B”, null, null, null}

	errorCode
	-1

This TestPublishUpdate checks that no error is raised.

4. Call the operation 'getResult' provided by the IPTest service.

5. Check the provider assertions from the IPTestResult returned by 'getResult'
3.2 Data type test scenario

A list of MAL data structure instances is statically defined according to the following constraints:
· All the data types shall be instantiated at least once.

· Enumerations shall be instantiated once for each enumerated value.

· Abstract types need to be extended by a concrete type for the test

· The value Null shall belong to the list

· The value Null shall be inserted into a Composite structure

This data list is statically known by the DataTest service provider and consumer.

The consumer takes the data from the list one by one, in the same order, and calls the operation 'testData'. It checks that no error is raised by the provider, especially DATA_ERROR and BAD_ENCODING.

3.3 Error test scenario

The following tests use the ErrorTest service.
3.3.1 Test case: transport errors

These tests use a specific transport module called “Error transport module” that raises errors depending on the operation called.

This transport module implements the Transport SPI as shown by the following figure:

Both primitives 'Transmit' and 'TransmitMultiple' return the following errors depending on the service and operation names:

	Service
	Operation
	Error to raise

	ErrorTest
	testDeliveryFailed
	DELIVERY_FAILED

	ErrorTest
	testDeliveryTimedout
	DELIVERY_TIMEDOUT

	ErrorTest
	testDeliveryDelayed
	DELIVERY_DELAYED

	ErrorTest
	testDestinationUnknown
	DESTINATION_UNKNOWN

	ErrorTest
	testDestinationTransient
	DESTINATION_TRANSIENT

	ErrorTest
	testDestinationLost
	DESTINATION_LOST

	ErrorTest
	testEncryptionFail
	ENCRYPTION_FAIL

	ErrorTest
	testUnsupportedArea
	UNSUPPORTED_AREA

	ErrorTest
	testUnsupportedOperation
	UNSUPPORTED_OPERATION

	ErrorTest
	testUnsupportedVersion
	UNSUPPORTED_VERSION

	ErrorTest
	testBadEncoding
	BAD_ENCODING

	ErrorTest
	testUnknown
	UNKNOWN

	IPTest
	monitor
	ENCRYPTION_FAIL (used in section 3.5.4.2)

3.3.1.1 Test procedure: Delivery failed

The ErrorTest consumer calls the operation testDeliveryFailed and checks that the error DELIVERY_FAILED is returned.
	Assertion

	Info
	Result

	Check DELIVERY_FAILED error
	True if a DELIVERY_FAILED error is raised.

False otherwise.

3.3.1.2 Test procedure:Delivery timedout

The ErrorTest consumer calls the operation testDeliveryTimedout and checks that the error DELIVERY_TIMEDOUT is returned.
	Assertion

	Info
	Result

	Check DELIVERY_TIMEDOUT error
	True if a DELIVERY_TIMEDOUT error is raised.

False otherwise.

3.3.1.3 Test procedure:Delivery delayed

The ErrorTest consumer calls the operation testDeliveryDelayed and checks that the error DELIVERY_DELAYED is returned.
	Assertion

	Info
	Result

	Check DELIVERY_DELAYED error
	True if a DELIVERY_DELAYED error is raised.

False otherwise.

3.3.1.4 Test procedure:Destination unknown

The ErrorTest consumer calls the operation testDestinationUnknown and checks that the error DESTINATION_UNKNOWN is returned.
	Assertion

	Info
	Result

	Check DESTINATION_UNKNOWN error
	True if a DESTINATION_UNKNOWN error is raised.

False otherwise.

3.3.1.5 Test procedure: Destination transient

The ErrorTest consumer calls the operation testDestinationTransient and checks that the error DESTINATION_TRANSIENT is returned.
	Assertion

	Info
	Result

	Check DESTINATION_TRANSIENT error
	True if a DESTINATION_TRANSIENT error is raised.

False otherwise.

3.3.1.6 Test procedure: Destination lost

The ErrorTest consumer calls the operation testDestinationLost and checks that the error DESTINATION_LOST is returned.
	Assertion

	Info
	Result

	Check DESTINATION_LOST error
	True if a DESTINATION_LOST error is raised.

False otherwise.

3.3.1.7 Test procedure: Encryption fail

The ErrorTest consumer calls the operation testEncryptionFail and checks that the error ENCRYPTION_FAIL is returned.
	Assertion

	Info
	Result

	Check ENCRYPTION_FAIL error
	True if a ENCRYPTION_FAIL error is raised.

False otherwise.

3.3.1.8 Test procedure: Unsupported area

The ErrorTest consumer calls the operation testUnsupportedArea and checks that the error UNSUPPORTED_AREA is returned.
	Assertion

	Info
	Result

	Check UNSUPPORTED_AREA error
	True if a UNSUPPORTED_AREA error is raised.

False otherwise.

3.3.1.9 Test procedure: Unsupported operation

The ErrorTest consumer calls the operation testUnsupportedOperation and checks that the error UNSUPPORTED_OPERATION is returned.
	Assertion

	Info
	Result

	Check UNSUPPORTED_OPERATION error
	True if a UNSUPPORTED_OPERATION error is raised.

False otherwise.

3.3.1.10 Test procedure: Unsupported version

The ErrorTest consumer calls the operation testUnsupportedVersion and checks that the error UNSUPPORTED_VERSION is returned.
	Assertion

	Info
	Result

	Check UNSUPPORTED_VERSION error
	True if a UNSUPPORTED_VERSION error is raised.

False otherwise.

3.3.1.11 Test procedure: Bad encoding

The ErrorTest consumer calls the operation testBadEncoding and checks that the error BAD_ENCODING is returned.
	Assertion

	Info
	Result

	Check BAD_ENCODING error
	True if a BAD_ENCODING error is raised.

False otherwise.

3.3.1.12 Test procedure: Unknown
The ErrorTest consumer calls the operation testUnknown and checks that the error UNKNOWN is returned.
	Assertion

	Info
	Result

	Check UNKNOWN error
	True if a UNKNOWN error is raised.

False otherwise.

3.3.2 Test case: security errors

A test security module is to be implemented in order to raise errors depending on the operation called:

	Service
	Operation
	Error to raise

	ErrorTest
	testAuthenticationFailure
	AUTHENTICATION_FAIL

	ErrorTest
	testAuthorizationFailure
	AUTHORIZATION_FAIL

3.3.2.1 Test procedure: authentication failure

The ErrorTest consumer calls the operation testAuthenticationFail and checks that the error AUTHENTICATION_FAIL is returned.
	Assertion

	Info
	Result

	Check AUTHENTICATION_FAIL error
	True if a AUTHENTICATION_FAIL error is raised.

False otherwise.

3.3.2.2 Test procedure: authorization failure

The ErrorTest consumer calls the operation testAuthorizationFail and checks that the error AUTHORIZATION_FAIL is returned.
	Assertion

	Info
	Result

	Check AUTHORIZATION_FAIL error
	True if a AUTHORIZATION_FAIL error is raised.

False otherwise.

3.4 Access control test scenario

The Access Control interface has to be implemented by a test security module in charge of checking that the primitive CHECK is called by the MAL. The message passed with the CHECK request is returned to the MAL without being modified through the CHECK Response indication.
The consumer process has to create a MAL instance that uses the test security module.

3.4.1 Test case: CHECK interaction

3.4.1.1 Test procedure: CHECK interaction

The consumer has to do the following actions:
1. create an IPTest consumer

2. initiate a Request interaction by calling the operation “request”

3. wait for the end of the interaction

4. check that the MAL has interacted twice with the Access Control. The following assertion is checked:

	Assertion

	Info
	Result

	Check the CHECK interaction for a message coming from the application and for a message coming from the transport
	True if the Access Control primitive “CHECK Request” has been called twice:

· once for a message which interaction stage is “1” (Request coming from the application)

· and a second time for a message which interaction stage is “2” (Request response coming from the transport).

False otherwise.

3.5 Transport test scenario

The Transport interface is implemented by a test transport module in charge of:
· Checking that the Transport primitives are called by the MAL

· Keeping the last message that has been transmitted to the transport by the MAL (this feature is used by the test procedures 3.1.2.1 and 3.1.2.9)

· Forwarding the primitive Request to the actual transport layer

· Listening to the Indications triggered by the actual transport and transmitting them to the MAL

This test transport module is an intermediate layer between the MAL and the actual transport used for the test as shown by the following figure:

3.5.1 Test case: supported QoS interaction

3.5.1.1 Test procedure: supported QoS interaction

An IPTest consumer is created for each available QoS level: BEST_EFFORT, ASSURED, QUEUED and TIMELY. It is important that the MAL instance was not used before as the MAL only calls the SUPPORTEDIP once when first interacting with a specific transport.
The test checks the following assertion:

	Assertion

	Info
	Result

	Check the SUPPORTEDQOS interaction.
	True if:

· the primitive 'SUPPORTEDQOS Request' has been called once by the MAL for each QoS level

· and the value of the QoSLevel parameter is equal to the QoSLevel used when creating the consumer

· and the primitive 'SUPPORTEDQOS Indication' has been called once by the actual transport for each QoS level.

False otherwise.

3.5.2 Test case: supported IP interaction

3.5.2.1 Test procedure: supported IP interaction

A single instance of MAL and an IPTest consumer are created. It is important that the MAL instance was not used before as the MAL only calls the SUPPORTEDIP once when first interacting with a specific transport.
The test checks the following assertion:

	Assertion

	Info
	Result

	Check the SUPPORTEDIP interaction.
	True if:

· the primitive 'SUPPORTEDIP Request' has been called once by the MAL for each InteractionType.

· and the primitive 'SUPPORTEDQIP Indication' has been called once by the actual transport for each InteractionType.

False otherwise.

3.5.3 Test case: transmit interaction

3.5.3.1 Test procedure: transmit interaction

An IPTest consumer is created and a Send interaction is initiated by calling the operation “send”.
The test checks the following assertion:

	Assertion

	Info
	Result

	Check the TRANSMIT interaction.
	True if:

· the primitive 'TRANSMIT Request' has been called once by the MAL with a message which interaction stage is “1” (Send coming from the application)

· and the primitive 'TRANSMIT Indication' has been called once by the actual transport.

False otherwise.

3.5.4 Test case: transmit multiple interaction

3.5.4.1 Test procedure: transmit multiple interaction

This is a single process test: 'TestCoordinator'. This test doesn't check the MAL interoperability so it is not necessary to have two processes with two MAL implementations.
An IPTest provider and a private broker are created. Two IPTest consumers are created and registered to the private broker through the operation 'monitor. An update is published by calling the operation 'publishUpdates'.

The test checks the following assertion:

	Assertion

	Info
	Result

	Check the TRANSMITMULTIPLE interaction.
	True if:

· the primitive 'TRANSMITMULTIPLE Request' has been called once with two messages which interaction stage is “3” (Publish coming from the application)

· and the primitive 'TRANSMITMULTIPLE Indication' has been called once by the actual transport.

False otherwise.

3.5.4.2 Test procedure: transmit multiple error

The same test as above (see 3.5.4.1) is launched on top of the “Error transport module” (see section 3.3.1).
The test checks the following assertion:

	Assertion

	Info
	Result

	Check the TRANSMITMULTIPLE Error indication.
	True if the error ENCRYPTION_FAIL is caught by the publisher.

False otherwise.

3.5.5 Test case: receive interaction

3.5.5.1 Test procedure: receive interaction

An IPTest consumer is created and a Request interaction is initiated by calling the operation “request”.
The test checks the following assertion:

	Assertion

	Info
	Result

	Check the RECEIVE interaction.
	True if the primitive 'TRANSMIT Request' has been called once by the MAL with a message which interaction stage is “2” (Request response coming from the actual transport)

False otherwise.

3.5.6 Test case: receive multiple interaction

3.5.6.1 Test procedure: receive multiple interaction

As it is not possible to make the assumption that a transport module uses this interaction, the test transport module has to be enhanced with an operation enabling to trigger a RECEIVEMULTIPLE Indication.
An IPTest consumer is created. It is registered to the IPTest provider private broker running in the “TestPeer” process. One update is published by calling the operation “publishUpdate”. The Notify message is received by the consumer. Then the test procedure copies this message twice, making two Notify messages and directly injects them into the test transport module in order to trigger a RECEIVEMULTIPLE Indication.

The test checks the following assertion:

	Assertion

	Info
	Result

	Check the RECEIVEMULTIPLE interaction.
	True if the two Notify messages are received by the consumer.

False otherwise.

4 MALPrototype Service Specification

4.1 IPTest Service
This service aims at testing each Interaction Pattern (IP). It provides one operation for Send, Submit, Request, Invoke and Progress. The input parameter is an IPTestDefinition that contains:
· The parameters used by the consumer in order to initiate the interaction. These parameters enable the provider to check whether the received message header is correct or not.

· A list of interaction transitions expected by the consumer.

An operation 'getResult' is provided in order to enable the consumer to get:

· the interaction transaction identifier

· and the assertions evaluated on the provider side during an interaction.

Finally four operations 'monitor', 'addPublishedEntities', 'publishUpdates' and 'publishError' are provided in order to test the Pub/Sub interaction.

4.1.1 Check message header

When the provider receives a MAL message (initiating an interaction) it has to check that the header is the same as the expected header.

The expected header is deduced from the IPTestDefinition as follows:

	Field
	Assigned with

	URIfrom
	Field 'consumerURI' of the IPTestDefinition.

	authenticationId
	Field 'authenticationId' of the IPTestDefinition.

	URIto
	The provider's URI.

	timestamp
	Field 'timestamp' of the IPTestDefinition.

	QoSlevel
	Field 'qos' of the IPTestDefinition.

	Priority
	Field 'priority' of the IPTestDefinition.

	Domain
	Field 'domain' of the IPTestDefinition.

	networkZone
	Field 'networkZone' of the IPTestDefinition.

	Session
	Field 'session' of the IPTestDefinition.

	sessionName
	Field 'sessionName' of the IPTestDefinition.

	interactionType
	Interaction type used by the operation, e.g. the operation “send” uses a SEND interaction type.

	interactionStage
	1

	transactionId
	Not assigned

	Area
	The test area name “MALPrototype”.

	Service
	The test service name “IPTest”.

	Operation
	The operation name.

	version
	The test service version.

	isError
	False

The provider creates an InteractionKey and checks that it is unique by adding it into a hash table. The InteractionKey table is never cleaned during the life time of the provider.

For each field, except 'timestamp' and 'transactionId', the following assertion is made:

	Assertion

	Info
	Result

	Check header field '<field name>'
	True if the value of the received header field is equal to the expected value fields

False otherwise.

For 'timestamp' and 'transactionId', the assertions are:

	Assertion

	Info
	Result

	Check header field 'timestamp'
	True if the value of the received header timestamp is greater than the expected header timestamp.

False otherwise.

	Check header field 'transactionId'
	True if the InteractionKey is unique.

False otherwise.

4.1.2 Check transitions
The provider has to trigger the transitions that are expected by the consumer. Those transitions are specified by the attribute 'transitions' of the operation parameter IPTestDefinition.

For each IPTestTransition, the provider calls the primitive that triggers the transition, catches potential errors and evaluate the following assertion:

	Assertion

	Info
	Result

	Check transition <transition type>
	True if:

· No error is raised and no error is expected.

· An error is raised and its code is equal to the expected error code.

False otherwise.

4.1.3 Check Publish header

The Publish header is obtained through the test transport module (see section 3.5).

The expected header is built from the parameter TestPublish as follows:

	Field
	Assigned with

	URIfrom
	The provider's URI

	authenticationId
	Field 'authenticationId' of the TestPublish

	URIto
	The broker's URI

	Timestamp
	Current time before the publication

	QoSlevel
	Field 'qos' of the TestPublish

	Priority
	Field 'priority' of the TestPublish

	Domain
	Field 'domain' of the TestPublish

	networkZone
	Field 'networkZone' of the TestPublish

	Session
	Field 'session' of the TestPublish

	sessionName
	Field 'sessionName' of the TestPublish

	interactionType
	Pub/Sub

	interactionStage
	5

	transactionId
	Not assigned.

	Area
	The test area name “MALPrototype”.

	Service
	The test service name “IPTest”.

	Operation
	The operation name.

	version
	The test service version.

	isError
	False

For each field, except 'timestamp' and 'transactionId', the following assertion is made:

	Assertion

	Info
	Result

	Check header field '<field name>'
	True if the value of the received header field is equal to the expected value fields

False otherwise.

For 'timestamp' the assertion is:

	Assertion

	Info
	Result

	Check header field 'timestamp'
	True if the value of the received header timestamp is greater than the expected header timestamp.

False otherwise.

The field 'transactionId' is not used by the Publish request so it is not checked

4.1.4 Check Publish Error header
The Publish Error header is returned by the MAL API.
The expected header is built from the parameter TestPublishUpdate in the same way as in section 4.1.3 except for the field:

	Field
	Assigned with

	URIfrom
	The provider's URI

	AuthenticationId
	The broker authentication identifier (statically known from the test configuration data).

	URIto
	The broker's URI

	isError
	True

The same assertions as in section 4.1.3 are made.

4.1.5 Check Publish Register header

The Publish Register header is obtained through the test transport module (see section 3.5).

The expected header is built from the parameter TestPublishRegister in the same way as in section 4.1.3 except for the fields:

	Field
	Assigned with

	interactionStage
	3

	transactionId
	Not assigned.

For each field, except 'timestamp' and 'transactionId', the following assertion is made:

	Assertion

	Info
	Result

	Check header field '<field name>'
	True if the value of the received header field is equal to the expected value fields

False otherwise.

For 'timestamp' the assertion is:

	Assertion

	Info
	Result

	Check header field 'timestamp'
	True if the value of the received header timestamp is greater than the expected header timestamp.

False otherwise.

For 'transactionId' the assertion is:

	Assertion

	Info
	Result

	Check header field 'transactionId'
	True if the value of 'transactionId' changes at each registration.

False otherwise.

4.1.6 Check Publish Register acknowledgement header

The Publish Register acknowledgement header is returned by the MAL API (this implies to start an asynchronous invocation of the Publish Register interaction).
The expected header is built from the parameter TestPublishRegister in the same way as in section 4.1.3 except for the fields:

	Field
	Assigned with

	URIfrom
	The provider's URI

	URIto
	The broker's URI

	AuthenticationId
	The broker authentication identifier (statically known from the test configuration data).

	interactionStage
	4

	transactionId
	Field 'transactionId' of the Publish Register message header.

For each field, except 'timestamp', the following assertion is made:

	Assertion

	Info
	Result

	Check header field '<field name>'
	True if the value of the received header field is equal to the expected value fields

False otherwise.

For 'timestamp' the assertion is:

	Assertion

	Info
	Result

	Check header field 'timestamp'
	True if the value of the received header timestamp is greater than the expected header timestamp.

False otherwise.

4.1.7 Check Publish Register error header
The Publish Register Error header is returned by the MAL API (this implies to start an asynchronous invocation of the Publish Register interaction).

The expected header is built from the parameter TestPublishRegister in the same way as in section 4.1.6 except for the field:

	Field
	Assigned with

	isError
	True

The same assertions as in section 4.1.6 are made.
4.1.8 Check Publish Deregister header

The Publish Register header is obtained through the test transport module (see section 3.5).

The expected header is built from the parameter TestPublish in the same way as in section 4.1.3 except for the fields:

	Field
	Assigned with

	interactionStage
	9

	transactionId
	Not assigned.

The same assertions as in section 4.1.5 are made.

4.1.9 Check Publish Deregister acknowledgement header

The Publish Deregister acknowledgement header is returned by the MAL API (this implies to start an asynchronous invocation of the Publish Register interaction).

The expected header is built from the parameter TestPublishRegister in the same way as in section 4.1.6 except for the fields:

	Field
	Assigned with

	interactionStage
	10

The same assertions as in section 4.1.6 are made.

4.1.10 General
The service interface is described below:

	Area Identifier
	Service Identifier
	Area Number
	Service Number
	Service Version

	MALPrototype
	IPTest
	<test area nb>
	0
	1

	Interaction Pattern
	Operation Name
	Operation Number
	Support in replay
	Capability Set

	SEND
	send
	100
	No
	100

	SUBMIT
	submit
	101
	No
	

	REQUEST
	request
	102
	No
	

	INVOKE
	invoke
	103
	No
	

	PROGRESS
	progress
	104
	No
	

	PUBSUB
	monitor
	105
	No
	

	REQUEST
	getResult
	106
	No
	101

	SEND
	addPublishedEntity
	107
	No
	102

	SEND
	publishUpdates
	108
	No
	103

	SEND
	publishError
	109
	No
	

	SEND
	publishRegister
	110
	No
	

	SEND
	publishDeregister
	111
	No
	

4.1.11 OPERATION: send

4.1.11.1 General

This operation cleans the assertions table and check that the header of the received message is the same as the one expected (see 4.1.1).
	Operation Name
	Send

	Interaction Pattern
	SEND

	IP Sequence
	Message
	Field Type

	IN
	Send
	IPTestDefinition

4.1.12 OPERATION: submit

4.1.12.1 General
This operation cleans the assertions table and checks that the header of the received message is the same as the one expected (see 4.1.1). Moreover it triggers the transitions specified by the IPTestDefinition (see 3.1.2).
	Operation Name
	Submit

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	IPTestDefinition

4.1.12.2 Errors

The following error can be raised by this operation:

	Error
	Error #
	Comments

	TEST_ERROR
	70000
	Fake error for testing.

4.1.13 OPERATION: request

4.1.13.1 General
This operation cleans the assertions table and checks that the header of the received message is the same as the one expected (see 4.1.1). Moreover it triggers the transitions specified by the IPTestDefinition (see 3.1.2).
	Operation Name
	Request

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	IPTestDefinition

	OUT
	Response
	MAL::String

4.1.13.2 Errors

The following error can be raised by this operation:
	Error
	Error #
	Comments

	TEST_ERROR
	70000
	Fake error for testing.

4.1.14 OPERATION: invoke

4.1.14.1 General

This operation cleans the assertions table and checks that the header of the received message is the same as the one expected (see 4.1.1). Moreover it triggers the transitions specified by the IPTestDefinition (see 4.1.2).
	Operation Name
	Invoke

	Interaction Pattern
	INVOKE

	IP Sequence
	Message
	Field Type

	IN
	Request
	IPTestDefinition

	OUT
	Acknowledgement
	MAL::String

	OUT
	Response
	MAL::String

4.1.14.2 Errors

The following error can be raised by this operation:
	Error
	Error #
	Comments

	TEST_ERROR
	70000
	Fake error for testing.

4.1.15 OPERATION: progress

4.1.15.1 General

This operation cleans the assertions table and checks that the header of the received message is the same as the one expected (see 4.1.1). Moreover it triggers the transitions specified by the IPTestDefinition (see 4.1.2).
	Operation Name
	Progress

	Interaction Pattern
	PROGRESS

	IP Sequence
	Message
	Field Type

	IN
	Request
	IPTestDefinition

	OUT
	Acknowledgement
	MAL::String

	OUT
	Update
	MAL::Integer

	OUT
	Response
	MAL::String

4.1.15.2 Errors

The following error can be raised by this operation:
	Error
	Error #
	Comments

	TEST_ERROR
	<TEST ERROR CODE>
	Fake error for testing.

4.1.16 OPERATION: getResult

4.1.16.1 General

This operation returns an IPTestResult.
	Operation Name
	getResult

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	MAL::Element

	OUT
	Response
	IPTestResult

4.1.17 OPERATION: monitor

4.1.17.1 General

This operation initiates a Pub/Sub interaction. It is not implemented by the service provider but by a broker.
	Operation Name
	Monitor

	Interaction Pattern
	PUBLISH-SUBSCRIBE

	IP Sequence
	Message
	Field Type

	OUT
	Publish/Notify
	TestUpdate

4.1.17.2 Errors

The following error can be raised by this operation:
	Error
	Error #
	Comments

	UNKNOWN
	
	One or more of the entities identified in the registration do not exist.

4.1.18 OPERATION: publishRegister
4.1.18.1 General

This operation cleans the assertions table, registers a publisher as specified by the parameter TestPublishRegister and checks the header of the Publish Register message (see 4.1.5).
Moreover if no error is expected by the TestPublishRegister, it checks the header of the Publish Register acknowledgement message (see 4.1.6).

Otherwise it checks the header of the Publish Register error message (see 4.1.7).
	Operation Name
	publishRegister

	Interaction Pattern
	SEND

	IP Sequence
	Message
	Field Type

	IN
	Send
	TestPublishRegister

4.1.19 OPERATION: publishDeregister
4.1.19.1 General

This operation cleans the assertions table, registers a publisher as specified by the parameter TestPublishDeregister and checks the header of the Publish Deregister message (see 4.1.5).

Moreover if no error is expected by the TestPublishDeregister, it checks the header of the Publish Deregister acknowledgement message (see 4.1.8).

Otherwise it checks the header of the Publish Deregister error message (see 4.1.9).
	Operation Name
	publishRegister

	Interaction Pattern
	SEND

	IP Sequence
	Message
	Field Type

	IN
	Send
	TestPublishDeregister

4.1.20 OPERATION: publishUpdates

4.1.20.1 General

This operation cleans the assertions table, publishes an update as specified by the parameter TestPublishUpdate and checks the header of the Publish message (see 4.1.3).

Moreover if an error is expected by the TestPublishUpdate then the operation hangs until the error is raised or a timer ends.

The following assertion is checked:

	Assertion

	Info
	Result

	Check the Publish error message arrival
	True if the Publish error message arrived.

False otherwise.

The header of the Publish error message is checked (see 4.1.4).
	Operation Name
	publishUpdates

	Interaction Pattern
	SEND

	IP Sequence
	Message
	Field Type

	IN
	Send
	TestPublishUpdate

4.1.21 OPERATION: publishError

4.1.21.1 General

This operation cleans the assertions table, publishes an update as specified by the parameter TestErrorPublication and checks the header of the Publish message (see 3.1.3).
	Operation Name
	publishError

	Interaction Pattern
	SEND

	IP Sequence
	Message
	Field Type

	IN
	Send
	TestErrorPublication

4.2 DataTest Service
This service aims at testing the data structures.
It provides an operation 'testData' that enables to transmit any Element to the provider and check that it is well interpreted by the provider.

	Area Identifier
	Service Identifier
	Area Number
	Service Number
	Service Version

	MALPrototype
	DataTest
	<test area nb>
	0
	1

	Interaction Pattern
	Operation Name
	Operation Number
	Support in replay
	Capability Set

	REQUEST
	testData
	100
	No
	100

4.2.1 OPERATION: testData
4.2.1.1 General

The 'testData' operation allows a consumer to check that a data is correctly decoded on the provider side. The provider needs to statically know the list of data that the consumer is going to send. The consumer selects the data in the same order as the list and calls the operation 'testData'. The provider keeps the index of the currently selected data from the static list. When the operation 'testData' is called, the provider checks that the received data is equal to the selected data from the list. If the equality test fails, then the error DATA_ERROR is raised otherwise the provider returns Null.
	Operation Name
	testData

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	MAL::Element

	OUT
	Response
	MAL::Element

4.2.1.2 Errors

The following error can be raised by this operation:
	Error
	Error #
	Comments

	DATA_ERROR
	<DATA ERROR CODE>
	Data interoperability error

4.3 ErrorTest Service
This service aims at testing the MAL errors. It doesn't need to be implemented as it is only used on the consumer side to make the transport layer raise errors (see section 3.3.1).
4.3.1 General
	Area Identifier
	Service Identifier
	Area Number
	Service Number
	Service Version

	MALPrototype
	ErrorTest
	<test area nb>
	0
	1

	Interaction Pattern
	Operation Name
	Operation Number
	Support in replay
	Capability Set

	REQUEST
	testDeliveryFailed
	100
	No
	100

	REQUEST
	testDeliveryTimedout
	101
	No
	

	REQUEST
	testDeliveryDelayed
	102
	No
	

	REQUEST
	testDestinationUnknown
	103
	No
	

	REQUEST
	testDestinationTransient
	104
	No
	

	REQUEST
	testDestinationLost
	105
	No
	

	REQUEST
	testEncryptionFail
	106
	No
	

	REQUEST
	testUnsupportedArea
	107
	No
	

	REQUEST
	testUnsupportedOperation
	108
	No
	

	REQUEST
	testUnsupportedVersion
	109
	No
	100

	REQUEST
	testBadEncoding
	110
	No
	

	REQUEST
	testUnknown
	111
	No
	

	REQUEST
	testAuthenticationFailure
	112
	No
	

	REQUEST
	testAuthorizationFailure
	113
	No
	

4.3.2 OPERATION: testDeliveryFailed

4.3.2.1 General

This operation does nothing. Actually the error is raised by the transport layer before the provider is invoked.
	Operation Name
	testDeliveryFailed

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	MAL::Element

	OUT
	Response
	MAL::Element

4.3.3 OPERATION: testDeliveryTimedout

4.3.3.1 General

This operation does nothing. Actually the error is raised by the transport layer before the provider is invoked.
	Operation Name
	testDeliveryTimedout

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	MAL::Element

	OUT
	Response
	MAL::Element

4.3.4 OPERATION: testDeliveryDelayed

4.3.4.1 General

This operation does nothing. Actually the error is raised by the transport layer before the provider is invoked.
	Operation Name
	testDeliveryDelayed

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	MAL::Element

	OUT
	Response
	MAL::Element

4.3.5 OPERATION: testDestinationUnknown

4.3.5.1 General

This operation does nothing. Actually the error is raised by the transport layer before the provider is invoked.
	Operation Name
	testDestinationUnknown

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	MAL::Element

	OUT
	Response
	MAL::Element

4.3.6 OPERATION: testDestinationTransient

4.3.6.1 General

This operation does nothing. Actually the error is raised by the transport layer before the provider is invoked.
	Operation Name
	testDestinationTransient

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	MAL::Element

	OUT
	Response
	MAL::Element

4.3.7 OPERATION: testDestinationLost

4.3.7.1 General

This operation does nothing. Actually the error is raised by the transport layer before the provider is invoked.
	Operation Name
	testDestinationLost

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	MAL::Element

	OUT
	Response
	MAL::Element

4.3.8 OPERATION: testEncryptionFail

4.3.8.1 General

This operation does nothing. Actually the error is raised by the transport layer before the provider is invoked.
	Operation Name
	testEncryptionFail

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	MAL::Element

	OUT
	Response
	MAL::Element

4.3.9 OPERATION: testUnsupportedArea

4.3.9.1 General

This operation does nothing. Actually the error is raised by the transport layer before the provider is invoked.
	Operation Name
	testUnsupportedArea

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	MAL::Element

	OUT
	Response
	MAL::Element

4.3.10 OPERATION: testUnsupportedOperation

4.3.10.1 General

This operation does nothing. Actually the error is raised by the transport layer before the provider is invoked.
	Operation Name
	testUnsupportedOperation

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	MAL::Element

	OUT
	Response
	MAL::Element

4.3.11 OPERATION: testUnsupportedVersion

4.3.11.1 General

This operation does nothing. Actually the error is raised by the transport layer before the provider is invoked.
	Operation Name
	testUnsupportedVersion

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	MAL::Element

	OUT
	Response
	MAL::Element

4.3.12 OPERATION: testBadEncoding

4.3.12.1 General

This operation does nothing. Actually the error is raised by the transport layer before the provider is invoked.
	Operation Name
	testBadEncoding

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	MAL::Element

	OUT
	Response
	MAL::Element

4.3.13 OPERATION: testUnknown

4.3.13.1 General

This operation does nothing. Actually the error is raised by the transport layer before the provider is invoked.
	Operation Name
	testUnknown

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	MAL::Element

	OUT
	Response
	MAL::Element

4.3.14 OPERATION: testAuthenticationFailure

4.3.14.1 General

This operation does nothing. Actually the error is raised by the MAL layer before the provider is invoked.
	Operation Name
	testAuthenticationFailure

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	MAL::Element

	OUT
	Response
	MAL::Element

4.3.15 OPERATION: testAuthorizationFailure

4.3.15.1 General

This operation does nothing. Actually the error is raised by the MAL layer before the provider is invoked.
	Operation Name
	testAuthorizationFailure

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	MAL::Element

	OUT
	Response
	MAL::Element

5 MALPrototype Data Types

This section defines the data types used by the test services (see section 4).

5.1 Data Structures

5.1.1 Assertion
	Structure Name
	Assertion

	Extends
	MAL::Composite

	Short form
	test_asrt

	Field
	Type
	Comment

	procedureName
	MAL::String
	Name of the test procedure that evaluated the assertion.

	Info
	MAL::String
	Message explaining what the assertion checks.

	Result
	MAL::Boolean
	Boolean indicating whether the assertion succeeded (true) or not (false).

5.1.2 AssertionList
	List Name
	AssertionList

	Short form
	test_asrt_lst

	List of
	Assertion

5.2 IPTest Service Structures

5.2.1 IPTestDefinition
This abstract structure is inherited by all the IP test definition structures.

	Structure Name
	IPTestDefinition

	Extends
	MAL::Composite

	Short form
	test_ip_def

	Field
	Type
	Comment

	procedureName
	MAL::String
	Name of the test procedure

	consumerURI
	MAL::URI
	The consumer's URI

	authenticationId
	MAL:Blob
	The authentication identifier used by the consumer

	Qos
	MAL::QoSLevel
	The QoS level required by the consumer

	Priority
	MAL::Integer
	The priority level required by the consumer

	Domain
	MAL::DomainIdentifier
	The domain used by the consumer

	networkZone
	MAL::Identifier
	The network zone used by the consumer

	Session
	MAL::SessionType
	The type of the session used by the consumer

	sessionName
	MAL::Identifier
	The identifier of the session used by the consumer

	transitions
	IPTestTransitionList
	The transitions that are requested by the consumer

	timestamp
	MAL::Date
	The time the consumer initiated the interaction.

5.2.2 IPTestTransitionType

This enumeration is used to require an expected transition from an IP test.

	Enumeration Name
	IPTestTransitionType

	Short form
	test_ip_trt

	Enumeration Value
	Short form
	Comment

	ACK
	1
	Return an acknowledgement.

	RESPONSE
	2
	Return a response.

	ACK_ERROR
	3
	Return an error as an acknowledgement.

The error is a TEST_ERROR.

	RESPONSE_ERROR
	4
	Return an error as a response.

The error is a TEST_ERROR.

	UPDATE
	5
	Return a progress update.

	UPDATE_ERROR
	6
	Return an error as an update.

The error is a TEST_ERROR.

5.2.3 IPTestTransition

This structure is used to define an expected transition from an IP test. It asserts what transition is expected and what result is expected from the transition: successful or failure.

	Structure Name
	IPTestTransition

	Extends
	MAL::Composite

	Short form
	test_ip_tr

	Field
	Type
	Comment

	Type
	IPTestTransitionType
	The type of the transition to do

	errorCode
	MAL::Integer
	The code of the error expected to be raised when doing the transition (failed transition).

-1 if no error is expected (successful transition).

5.2.4 IPTestTransitionList

	List Name
	IPTestTransitionTypeList

	Short form
	test_ip_trl

	List of
	IPTestTransition

5.2.5 BadHeaderReport

This data structure is an error report produced after having found a faulty header.

	Structure Name
	BadHeaderReport

	Extends
	MAL::Composite

	Short form
	test_ip_bhr

	Field
	Type
	Comment

	expectedHeader
	MAL::MessageHeader
	The expected header

	faultyHeader
	MAL::MessageHeader
	The header that is not compliant with the MAL rules

5.2.6 BadHeaderReportList

This data structure is a list of BadHeaderReport.
	List Name
	BadHeaderReportList

	Short form
	test_ip_bhrl

	List of
	BadHeaderReport

5.2.7 TestPublish
This abstract structure is a publish context.

	Structure Name
	TestPublish

	Extends
	MAL::Composite

	Abstract

	Field
	Type
	Comment

	Qos
	MAL::QoSLevel
	The QoS level to be used by the provider.

	Priority
	MAL::Integer
	The priority to be used by the provider.

	domain
	MAL::DomainIdentifier
	The domain to be used by the provider.

	networkZone
	MAL::Identifier
	The network zone to be used by the provider.

	Session
	MAL::SessionType
	The session type to be used by the provider.

	sessionName
	MAL::Identifier
	The session name to be used by the provider.

5.2.8 TestPublishRegister
This data structure specifies how the IPTest provider shall register.

	Structure Name
	TestPublishRegister

	Extends
	TestPublish

	Short form
	test_ip_tpr

	Field
	Type
	Comment

	entityKeys
	MAL::EntityKeyList
	The keys of the entities to be registered.

	errorCode
	MAL::Integer
	The code of the Publish Register error expected to be received.

-1 if no Publish Register error is expected.

5.2.9 TestPublishDeregister

This data structure specifies how the IPTest provider shall register.

	Structure Name
	TestPublishDeregister

	Extends
	TestPublish

	Short form
	test_ip_tpdr

	Field
	Type
	Comment

	entityKeys
	MAL::EntityKeyList
	The keys of the entities to be registered.

	errorCode
	MAL::Integer
	The code of the Publish Deregister error expected to be received.

-1 if no Publish Deregister error is expected.

5.2.10 TestPublishUpdate
This data structure specifies how the IPTest provider shall publish an update.

	Structure Name
	TestPublishUpdate

	Extends
	TestPublish

	Short form
	test_ip_tup

	Field
	Type
	Comment

	updates
	MAL::UpdateList
	The updates to be published by the provider

	errorCode
	MAL::Integer
	The code of the Publish error expected to be received.

-1 if no Publish error is expected.

5.2.11 TestUpdate

This data structure defines an Update published by the IPTest.

	Structure Name
	TestUpdate

	Extends
	MAL::Update

	Short form
	test_ip_tu

	Field
	Type
	Comment

	Counter
	MAL::Integer
	A counter used to distinguish the test updates and to check the ordering.

5.2.12 TestErrorPublication

This data structure specifies how the IPTest provider shall publish an error.

	Structure Name
	TestErrorPublication

	Extends
	TestPublish

	Short form
	test_ip_tep

	Field
	Type
	Comment

	Error
	MAL::StandardError
	The error to be published by the provider

5.2.13 InteractionKey

	Structure Name
	InteractionKey

	Extends
	MAL::Composite

	Short form
	test_ip_itrk

	Field
	Type
	Comment

	URIfrom
	MAL::URI
	The consumer's URI

	transactionId
	MAL::Integer
	The transaction identifier of the interaction

	interactionType
	MAL::InteractionType
	The type of the interaction

	Service
	MAL::Identifier
	The name of the called service

	operation
	MAL::Identifier
	The name of the called operation

5.2.14 IPTestResult

	Structure Name
	IPTestResult

	Extends
	MAL::Composite

	Short form
	test_ip_tstr

	Field
	Type
	Comment

	transactionId
	MAL::Integer
	The transaction identifier assigned to the last interaction

	assertions
	AssertionList
	The list of assertions checked by the provider.

6 Compliance matrix
This section lists all the requirements specified in the MAL book that are checked by the test scenarios. Some requirements are implicitly tested by the API itself which restricts what a MAL client can do.

The tables below gather the MAL requirements and indicate either the test procedure responsible for checking it or how the Java MAL API implicitly verifies it.

6.1 Message Abstraction Layer

6.1.1 IP and service interface
The next sections list the MAL requirements and the test procedures in charge of verifying them.
6.1.1.1 Transaction handling (MAL book 3.2)

	Test procedures

	3.1.1.1 Test procedure: <ip>/<qos>/<session>/<transition list id>

Assertion defined on the provider side: 4.1.1 Check message header (field 'transaction id')

	3.1.2.1 Test procedure: pubsub/<qos>/<session>
Assertion defined in 3.1.2.1.2 Check Register ('transactionId' checking)

6.1.1.2 Error handling (MAL book 3.5.x.4)
Submit (x=2), Request x=3), Invoke (x=4), Progress (x=5):
	Test procedure

	3.1.1.1 Test procedure: <ip>/<qos>/<session>/<transition list id>
3.1.1.1.1 Check message header (field 'isError')

Send:
Java MAL API: no error can be returned by a provider during a Send interaction.
6.1.1.3 PubSub error handling (MAL book 3.5.6.7)

	Test procedures

	3.1.2.6 Test procedure: registration error

	3.1.2.7 Test procedure: notify error

	3.1.2.8 Test procedure: publish register error

	3.1.2.3 Test procedure: publish error

6.1.1.4 Operation template and primitives (MAL book 3.5.x.5, 3.5.x.6)

Java MAL API: the consumer and provider interfaces enable to send the Requests and receive the Indications defined for each IP.
6.1.1.5 Requests and Indications (MAL book 3.5.x.8)
Send (x=1), Submit (x=2), Request (x=3), Invoke (x=4), Progress (x=5)

Interaction initiation requests/indications:

	Test procedure

	3.1.1.1 Test procedure: <ip>/<qos>/<session>/<transition list id>
Assertions defined on the provider side: 4.1.1 Check message header

Ack, Response, Update and errors requests/indications:
	Test procedure

	3.1.2.1 Test procedure: pubsub/<qos>/<session>
Check message header

6.1.1.6 Pub/Sub Requests and Indications (MAL book 4.4.6.11)

All requests/indications except errors:
	Test procedure

	3.1.2.1 Test procedure: pubsub/<qos>/<session>

Error requests/indications:
	Test procedures

	3.1.2.6 Test procedure: registration error

	3.1.2.7 Test procedure: notify error

	3.1.2.8 Test procedure: publish register error

	3.1.2.3 Test procedure: publish error

6.1.1.7 Pub/Sub overview: unique subscription identifier (MAL book 3.5.6.3 d)
	Test procedure

	3.1.2.4 Test procedure: subscription identifier uniqueness

6.1.1.8 Pub/Sub description (MAL book 3.5.6.2)
	Test procedure

	3.1.2.2 Test procedure: subscription checking

6.1.1.9 Pub/Sub entity key matching (MAL book 4.4.6.3)
	Test procedure

	3.1.2.5 Test procedure: subscription entity requests

6.1.1.10 State Charts (MAL book 3.5.x.7)
Send (x=1), Submit (x=2), Request (x=3), Invoke (x=4), Progress (x=5)
	Test procedure

	3.1.1.1 Test procedure: <ip>/<qos>/<session>/<transition list id>
3.1.1.1.2 Check the transitions

6.1.1.11 Pub/Sub, state charts, consumer side (MAL book 4.4.6.8.1)
	Test procedures

	3.1.2.1 Test procedure: pubsub/<qos>/<session>

	3.1.2.3 Test procedure: publish error

	3.1.2.6 Test procedure: registration error

	3.1.2.7 Test procedure: deregistration error

6.1.1.12 Pub/Sub, state charts, provider side (MAL book 4.4.6.8.2)

	Test procedures

	3.1.2.1 Test procedure: pubsub/<qos>/<session>
3.1.2.1.1 Check Publish Register and Publish Register acknowledgement
3.1.2.1.3 Check Publish

3.1.2.1.8 Check Publish Deregister and Publish Deregister acknowledgement

	3.1.2.3 Test procedure: publish error

	3.1.2.8 Test procedure: publish register error

6.1.2 Access control interface

	Requirement
	Test procedure

	Check interaction

(4.5.2)
	Check

Check response
	3.4.1.1 Test procedure: CHECK interaction

	
	Check error
	3.3.2.1 Test procedure: authentication failure

6.1.3 Transport interface

	Requirement
	Test procedure

	SupportedQoS interaction

(4.6.2)
	3.5.1.1 Test procedure: supported QoS interaction

	SupportedIP interaction

(4.6.3)
	3.5.2.1 Test procedure: supported IP interaction

	Transmit interaction

(4.6.4)
	Request and indication
	3.5.3.1 Test procedure: transmit interaction

	
	Error indication
	3.3.1.7 Test procedure: Encryption fail

An error is raised by the transport layer during a transmit interaction.

	Transmit multiple interaction

(4.6.5)
	Request and indication
	3.5.4.1 Test procedure: transmit multiple interaction

	
	Error indication
	3.5.4.2 Test procedure: transmit multiple error

	Receive interaction

(4.6.6)
	Indication
	3.5.5.1 Test procedure: receive interaction

	Receive multiple interaction

(4.6.7)
	Indication
	3.5.6.1 Test procedure: receive multiple interaction

6.2 Data types

All the data types are checked in section 3.2.

6.3 Errors
	Requirement (5.2)
	Test procedure

	DELIVERY_FAILED
	3.3.1.1 Test procedure: Delivery failed

	DELIVERY_TIMEDOUT
	3.3.1.2 Test procedure:Delivery timedout

	DELIVERY_DELAYED
	3.3.1.3 Test procedure:Delivery delayed

	DESTINATION_UNKNWON
	3.3.1.4 Test procedure:Destination unknown

	DESTINATION_TRANSIENT
	3.3.1.5 Test procedure: Destination transient

	DESTINATION_LOST
	3.3.1.6 Test procedure: Destination lost

	AUTHENTICATION_FAIL
	3.3.2.1 Test procedure: authentication failure

	AUTHORIZATION_FAIL
	3.3.2.2 Test procedure: authorization failure

	ENCRYPTION_FAIL
	3.3.1.7 Test procedure: Encryption fail

	UNSUPPORTED_AREA
	3.3.1.8 Test procedure: Unsupported area

	UNSUPPORTED_OPERATION
	3.3.1.9 Test procedure: Unsupported operation

	UNSUPPORTED_VERSION
	3.3.1.10 Test procedure: Unsupported version

	BAD_ENCODING
	3.3.1.11 Test procedure: Bad encoding

	UNKNOWN
	3.3.1.12 Test procedure: Unknown

	INCORRECT_STATE
	3.1.1.1 Test procedure: <ip>/<qos>/<session>/<transition list id>

Check faulty transitions on the provider side (see 4.1.2)

ANNEX A

[ANNEX TITLE]

[Annexes contain ancillary information. See CCSDS A20.0-Y-2, CCSDS Publications Manual (Yellow Book, Issue 2, June 2005) for discussion of the kinds of material contained in annexes.]

