
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/226236248

Towards an Interoperability Framework for Model-Driven Development of

Software Systems

Chapter · July 2006

DOI: 10.1007/1-84628-152-0_36

CITATIONS

64
READS

271

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Safe Automation of Maritime Systems (SAMS) View project

HAPTIK - token B/L View project

Axel Hahn

Carl von Ossietzky Universität Oldenburg

219 PUBLICATIONS 671 CITATIONS

SEE PROFILE

Arne-Jørgen Berre

SINTEF

88 PUBLICATIONS 967 CITATIONS

SEE PROFILE

All content following this page was uploaded by Axel Hahn on 31 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/226236248_Towards_an_Interoperability_Framework_for_Model-Driven_Development_of_Software_Systems?enrichId=rgreq-1b0b165ddaee8ea4417041bf1a46a8b1-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIzNjI0ODtBUzoxMDI5MDI4ODY1Njc5NDRAMTQwMTU0NTM2ODM3MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/226236248_Towards_an_Interoperability_Framework_for_Model-Driven_Development_of_Software_Systems?enrichId=rgreq-1b0b165ddaee8ea4417041bf1a46a8b1-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIzNjI0ODtBUzoxMDI5MDI4ODY1Njc5NDRAMTQwMTU0NTM2ODM3MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Safe-Automation-of-Maritime-Systems-SAMS?enrichId=rgreq-1b0b165ddaee8ea4417041bf1a46a8b1-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIzNjI0ODtBUzoxMDI5MDI4ODY1Njc5NDRAMTQwMTU0NTM2ODM3MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/HAPTIK-token-B-L?enrichId=rgreq-1b0b165ddaee8ea4417041bf1a46a8b1-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIzNjI0ODtBUzoxMDI5MDI4ODY1Njc5NDRAMTQwMTU0NTM2ODM3MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-1b0b165ddaee8ea4417041bf1a46a8b1-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIzNjI0ODtBUzoxMDI5MDI4ODY1Njc5NDRAMTQwMTU0NTM2ODM3MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Axel_Hahn?enrichId=rgreq-1b0b165ddaee8ea4417041bf1a46a8b1-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIzNjI0ODtBUzoxMDI5MDI4ODY1Njc5NDRAMTQwMTU0NTM2ODM3MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Axel_Hahn?enrichId=rgreq-1b0b165ddaee8ea4417041bf1a46a8b1-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIzNjI0ODtBUzoxMDI5MDI4ODY1Njc5NDRAMTQwMTU0NTM2ODM3MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Carl_von_Ossietzky_Universitaet_Oldenburg?enrichId=rgreq-1b0b165ddaee8ea4417041bf1a46a8b1-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIzNjI0ODtBUzoxMDI5MDI4ODY1Njc5NDRAMTQwMTU0NTM2ODM3MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Axel_Hahn?enrichId=rgreq-1b0b165ddaee8ea4417041bf1a46a8b1-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIzNjI0ODtBUzoxMDI5MDI4ODY1Njc5NDRAMTQwMTU0NTM2ODM3MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Arne_Jorgen_Berre?enrichId=rgreq-1b0b165ddaee8ea4417041bf1a46a8b1-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIzNjI0ODtBUzoxMDI5MDI4ODY1Njc5NDRAMTQwMTU0NTM2ODM3MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Arne_Jorgen_Berre?enrichId=rgreq-1b0b165ddaee8ea4417041bf1a46a8b1-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIzNjI0ODtBUzoxMDI5MDI4ODY1Njc5NDRAMTQwMTU0NTM2ODM3MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/SINTEF?enrichId=rgreq-1b0b165ddaee8ea4417041bf1a46a8b1-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIzNjI0ODtBUzoxMDI5MDI4ODY1Njc5NDRAMTQwMTU0NTM2ODM3MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Arne_Jorgen_Berre?enrichId=rgreq-1b0b165ddaee8ea4417041bf1a46a8b1-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIzNjI0ODtBUzoxMDI5MDI4ODY1Njc5NDRAMTQwMTU0NTM2ODM3MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Axel_Hahn?enrichId=rgreq-1b0b165ddaee8ea4417041bf1a46a8b1-XXX&enrichSource=Y292ZXJQYWdlOzIyNjIzNjI0ODtBUzoxMDI5MDI4ODY1Njc5NDRAMTQwMTU0NTM2ODM3MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Towards an Interoperability Framework for Model-
Driven Development of Software Systems

Brian Elvesæter1, Axel Hahn2, Arne-Jørgen Berre1, Tor Neple1

1 SINTEF ICT, P. O. Box 124 Blindern, N-0314 Oslo, Norway
{brian.elvesater, arne.j.berre, tor.neple}@sintef.no
2 Wirtschaftsinformatik Universität Oldenburg, D-26111 Oldenburg, Germany

hahn@wi-ol.de

Abstract. This paper presents an interoperability framework for enterprise ap-
plications and software systems. The framework provides a foundation for
model-driven development of software systems supporting the business inter-
operability needs of an enterprise. This is achieved through a set of reference
models that addresses interoperability issues for conceptual integration, techni-
cal integration and applicative integration of software systems.

1 Introduction

Enterprises today face many challenges related to lack of interoperability. Enterprise
applications and software systems need to be interoperable in order to achieve seam-
less business across organisational boundaries and thus realise virtual networked
organisations. IEEE [1] defines interoperability as “the ability of two or more systems
or components to exchange information and to use the information that has been
exchanged”.

Model-driven development (MDD), and in particular OMG’s Model-Driven Ar-
chitecture® (MDA®1) [2], is emerging as the state of practice for developing modern
enterprise applications and software systems. The MDD paradigm provides us with a
better way of addressing and solving interoperability issues compared to earlier non-
modelling approaches. However, developing correct and useful models to address
interoperability is not an easy task. We believe that there is a need for an interopera-
bility framework that provides guidance on how MDD should be applied to address
interoperability.

In this paper we present initial results from ATHENA [3] and INTEROP [4] in de-
fining an interoperability framework for model-driven development of enterprise
applications and software systems. The framework provides a foundation, consisting
of a set of reference models, for how to apply MDD in software engineering disci-
plines in order to support the business interoperability needs of an enterprise.

1 Model Driven Architecture® and MDA® are registered trademarks of the Object Manage-

ment Group

The paper is structured as follows: In section 2 we provide some background in-
formation. In section 3, the main body of this paper, we present the interoperability
framework and its reference models for integration. In section 4 we discuss the usage
of the reference models in an example scenario focusing on inventory replenishment.
In section 5 we describe some related work. Conclusions and future work are pre-
sented in section 6.

2 Background

We use the term model-driven development (MDD) to refer to model-driven systems
development in a broad sense. The OMG MDA can be seen as a specific implementa-
tion of MDD with respect to software systems development. However, while the
OMG MDA is heavily focused on software integration technologies, we see MDD as
a new architectural approach for developing software systems based on requirements
derived from enterprise and business models. Interoperability solutions should be
driven by business needs first and software solutions second.

Model-driven development in our view represents a business-driven approach to
software systems development that starts with a computation independent model
(CIM) describing the business context and business requirements. The CIM is refined
to a platform independent model (PIM) which specifies services and interfaces that
the software systems must provide to the business, independent of software technol-
ogy platforms. The PIM is further refined to a platform specific model (PSM) which
describes the realisation of the software systems with respect to the chosen software
technology platforms. In addition to the business-driven approach, a model-driven
framework should also address how to integrate and modernise existing legacy sys-
tems according to new business needs. This approach is known as architecture-driven
modernisation (ADM) in the OMG.

In order to structure the various models developed and used within an enterprise
we adopt the recommendations of IEEE 1471 [5] which provide a terminology for
structuring descriptions of systems according to viewpoints. Viewpoints help to sepa-
rate the specification into views that address different areas of concern for different
stakeholders. A view can be represented by a set of visual models expressed using a
modelling language such as UML [6-8]. The interoperability framework described in
this paper adopts the following terms from IEEE 1471 standard:

− System: A collection of components organised to accomplish a specific function or
set of functions.

− Stakeholder: An individual, team, or organisation (or classes thereof) with interests
in, or concerns relative to, a system.

− Concern: Those interests which pertain to the system's development, its operation
or any other aspects that are critical or otherwise important to one or more stake-
holders. (In this paper we will also use the term aspect as a synonym for concern.)

− View: A representation of the whole system from the perspective of a related set of
concerns.

− Viewpoint: A specification of the conventions for constructing and using a view. A
pattern or template from which to develop individual views by establishing the
purposes and audience for a view and the techniques for its creation and analysis.

− Model: A representation of an entity in the real world.

3 Interoperability Framework

The interoperability framework presented in this paper is designed to fulfil these
design rationales:

− Identification of interoperability issues related to software models, using a holistic
approach where software architectures and enterprise architectures can be related.

− Identification of the relevant software architecture components, and explaining the
relationships between these components.

− Integration of model-driven software development processes.
− Structuring of software technologies, frameworks and methodologies which can be

found today.

The interoperability framework itself is structured according to the three main inte-
gration areas defined in ATHENA [3]:

1. Conceptual integration which focuses on concepts, meta-models, languages and
model relationships. It provides us with a foundation for systemising various as-
pects of software model interoperability.

2. Technical integration which focuses on the software development and execution
environments. It provides us with development tools for developing software mod-
els and execution platforms for executing software models.

3. Applicative integration which focuses on methodologies, standards and domain
models. It provides us with guidelines, principles and patterns that can be used to
solve software interoperability issues.

For each of these three areas we developed a reference model to describe and support
the application of model-driven development of software systems.

3.1 Reference Model for Conceptual Integration

The reference model for conceptual integration has been developed from a MDD
point of view focusing on the enterprise applications and software system. A compu-
tation independent model (CIM) corresponds to a view defined by a computation
independent viewpoint. It describes the business context and business requirements
for the software system(s) under consideration. A platform independent model (PIM)
corresponds to a view defined by a platform independent viewpoint. It describes
software specifications independent of execution platforms such as WebService,
J2EE, .net, agents and P2P technologies. A platform specific model (PSM) corre-
sponds to a view defined by a platform specific viewpoint. It describes the realisation

of software systems in the chosen set of execution platforms. Figure 1 shows this
relationship with respect to an enterprise system, where the CIM is embedded within
the enterprise, the PIM is embedded within a computational system, and the PSM is
embedded within an execution platform, which itself is embedded within the compu-
tational system. The figure also shows how the MDA and ADM could be perceived
as a “top-down” and a “bottom-up” approach to software development and integra-
tion.

The models at the various levels may be semantically annotated using ontologies
which help to achieve mutual understanding on all levels. The use of reference ontol-
ogy will also aid us in doing model transformations and mappings between and across
the three model levels. We also see the usage of interoperability patterns for horizon-
tal and vertical integration.

Models are used to describe different concerns of a software system. We have
identified four categories of system aspects where specific software interoperability
issues can be addressed by conceptual integration.

1. Service aspects: Services are an abstraction and an encapsulation of the function-
ality provided by an autonomous entity, e.g. a software component. Services are
typically provided through well-defined interfaces or contracts that specify their
usage and behaviour.

2. Information aspects: Information aspects are related to the messages or structures
exchanged, processed and stored by software systems or software components.
Business concepts are represented in software as information messages or struc-
tures that are provided or required by services and processes.

3. Process aspects: Processes describe sequencing of work in terms of actions, con-
trol flows, information flows, interactions, protocols, etc. They can be applied to
business aspects (e.g. workflow management) as well as technical aspects (e.g.
communication protocols).

4. Non-functional aspects: Extra-functional qualities that can be applied to services,
information and processes.

These four aspects can be addressed at all three CIM, PIM and PSM levels. Specific
concerns regarding them can be made explicitly visible through visual models defined
by viewpoints used by different stakeholders within an enterprise. Other categories of
aspects may be introduced, but we feel that the four identified here will provide a
good baseline for discussing conceptual integration.

All of the elements discussed above are integrated into figure 1 where we look at
horizontal and vertical integration between two enterprise systems A and B. The same
principles could of course be applied when addressing integration between multiple
enterprise systems.

Computational System A

Enterprise System A
(MDD Abstraction)

Execution Platform A

Ontologies

Model-Driven
Architecture (MDA)
&
Architecture-Driven
Modernisation (ADM)

Platform Independent
Model (PIM)

Computational Independent
Model (CIM)

Architecture-Driven
Modernisation (ADM)

Semantic
Annotation

Semantic
Annotation

Model-Driven
Architecture (MDA)

Platform Specific
Model (PSM)

Semantic
Annotation

Computational System B

Enterprise System B
(MDD Abstraction)

Execution Platform B

Ontologies

Model-Driven
Architecture (MDA)
&
Architecture-Driven
Modernisation (ADM)

Platform Independent
Model (PIM)

Computational Independent
Model (CIM)

Architecture-Driven
Modernisation (ADM)

Semantic
Annotation

Semantic
Annotation

Model-Driven
Architecture (MDA)

Platform Specific
Model (PSM)

Semantic
Annotation

Servi
ce

Aspects
Information
Aspects

Process
Aspects

Non-

Functi
onal

Aspec
ts

Horizontal Integration

Ve
rt

ic
al

 I

nt
eg

ra
tio

n

Reference
Ontology

MT

MT

MT

MT Model Transformation

MT

MT Model Transformation

MI

MI

Interoperability
Patterns

Model Interoperability

Fig. 1. Reference model for conceptual integration

We will use this reference model to address model interoperability, where amongst
other things meta-models and ontologies will be used to define model transformations
and model mappings between the different views of an enterprise system. In literature
[9, 10] different dimensions of system design are identified:

− System abstraction: This dimension of system design reflects the abstraction in
terms of implementation independency and is addressed by MDD.

− Genericity: is an important design rational and has impact on the adaptability and
reusability of the system components.

− Viewpoint: System models represent a complex and strongly interrelated network
of model entities. To address different issues and for complexity reduction differ-
ent viewpoint on the model are used. This viewpoint may also be regarded for in-
teroperability.

− Composition: Systems are iteratively composed in a hierarchy from individual
objects to the system in the enterprise context. On each of this aggregation layers
the entities have to be interoperable

− Time: The system itself is modified in status, configuration and design.
− Model abstraction: Meta-models help to describe and analyse the used models

These dimensions can be used to analyse software systems or help to structure the
system modelling process and to catalyse design decisions. Each of these dimensions
may support interoperability achievements or could represent a challenge of interop-
erability. Figure 2 graphically organises these integration dimensions around the four
identified system aspects defined in the interoperability framework.

Viewpoints

System abstraction Genericity

Model abstraction

Time

Composition

M0 M1 M2 M3

Code

PSM

PIM

CIM

System, Product

Product-line, Framework, Pattern

State

Evolution

(Virtual)
Enterprise

Service

Component

Object

Serv
ice

Asp
ects

Information
Aspects

Process
Aspects

Non-

Functi
onal

Asp
ec

ts

Realisation Viewpoint

System Viewpoint

Business Viewpoint

Enterprise Viewpoint

Fig. 2. Integration dimensions with respect to the four system aspects

We need to be aware of these integration dimensions when analysing how to achieve
model interoperability. When looking at two or more different models we need to ask
ourselves questions such as: Do the models describe the same or different set of con-
cerns. Do the models describe a generic problem or specific problem? Who are the
stakeholders, what is the intended use of the models, and how are the different mod-
els related through different viewpoints? How are the models composed, and what are
the relationships to sub-models? Are we looking at a fairly static or a highly dynamic
model of a certain aspect of the system? Are the models on the same abstraction level
or different abstraction levels? These questions are important with respect to the
model-driven development being applied. If we are not conscious of how the differ-
ent models relate to each other we will not be able achieve model interoperability.

3.2 Reference Model for Technical Integration

The reference model for technical integration has been developed from a service-
oriented point of view where a software system provides a set of services required by
the businesses and users of the enterprise. Services implemented by software should
provide functionality to support e.g. business transactions, business collaborations
and business processes, and business tasks performed by users.

The architecture of the enterprise applications and software systems can be de-
scribed according to a 4-tier reference architecture where each tier provides different
software services required by the enterprise. The software system itself is coupled to
a service bus that provides the necessary communication infrastructure required to
deploy a distributed system. Infrastructure services such as composition, mediation,

matchmaking and transformation that enables interoperability between software sys-
tems should be provided in such an environment. In addition we see that registries
and repositories will play an important role in integrating software systems. We see
the need for a model repository for managing models of various kinds, a service reg-
istry for managing naming, directory and location of services, an execution repository
for managing information and state needed in the execution of software services and
processes, and a data repository for managing results and traces of the executions.

We use the service bus as an architectural pattern for handling technical integration
of software systems. Figure 3 shows how a service bus comes into play when inte-
grating two (or more) enterprises systems. The service bus will make use of infra-
structure services, and registry and repository.

Software System Software System

Service Bus

Enterprise A
(Physical World)

Enterprise B
(Physical World)

Business

Business
Transactions

Business
Processes

Business
Collaborations

Users

Business
Tasks

Vertical
Integration

Business

Business
Transactions

Business
Processes

Business
Collaborations

Users

Business
Tasks

Vertical
Integration

Infrastructure ServicesInfrastructure Services

Registry/Repository

Model
Mgmt.

Service
Mgmt.

Exec.
Mgmt.

Data
Mgmt.

Se
rv

ic
e

B
us

Se
rv

ic
e

B
us

U
se

r I
nt

er
fa

ce
 S

er
vi

ce
s

U
se

r S
er

vi
ce

s

B
us

in
es

s
Se

rv
ic

es

R
es

ou
rc

e
Se

rv
ic

es

U
se

r I
nt

er
fa

ce
 S

er
vi

ce
s

U
se

r S
er

vi
ce

s

B
us

in
es

s
Se

rv
ic

es

R
es

ou
rc

e
Se

rv
ic

es

Fig. 3. Reference model for technical integration

A software system can be structured according to a tiered architecture. We have de-
fined a reference architecture that separates the architecture of a software system into
four logical tiers. The reference architecture consists of a local user-space called the
user service domain, and a shared transactional business-space called the business
service domain. The four tiers are as follows:

1. User interface tier provides presentation and user dialog logic. Sometimes, it is
useful to make the presentation and user dialog separation explicitly, in particular
to support reuse of user dialog on multiple platforms with different graphical ca-
pabilities, e.g. Web, PDA and Mobile phones.

2. User service tier provides the user’s model, which may include user session logic
and user-side representations of processes and information. It is an abstraction for

a set of business services, making the business service provision (and the commu-
nication mechanisms) transparent to the user interface tier.

3. Business service tier provides components that represent business functionality
and pervasive functionality (vertical vs. horizontal services). This tier provides en-
terprise-level services, and is responsible for protecting the integrity of enterprise
resources at the business logic level. Components in this tier can be process-
oriented, entity-oriented or workflow-oriented. For performance reasons, entity-
oriented components are typically not exposed outside of this tier.

4. Resource services tier provides global persistence services, typically in the form
of databases. Resource adapters (e.g. JDBC or ODBC drivers) provide access,
search and update services to databases and its data stored in a database manage-
ment system (DBMS) like Oracle or Sybase.

In addition to these four tiers we need a service communication bus so that services
deployed at the various tiers can interoperate both within a tier and across tiers.

Legend

Service
Inter-service
communication

U
se

rS
er

vi
ce

D
om

ai
n

B
us

in
es

s
Se

rv
ic

e
D

om
ai

n

LS

Resource AdapterRALA Local Adapter

Local Storage Database

Resource
Service
Tier

Business
Service
Tier

User
Service
Tier

User
Interface
Tier

LS

RARA

LA

Service Bus
(Middleware
Services)

Fig. 4. 4-tier reference architecture for software system architectures

3.3 Reference Model for Applicative Integration

The reference model for applicative integration has been developed based on work
related to enterprise architecture frameworks and software architecture frameworks
[11]. Here we look at how enterprise models and software models prescribed by en-
terprise modelling and software modelling approaches can be integrated into the over-
all framework. Enterprise and software models can be related in a holistic view, re-
gardless of modelling language formalisms, by the use of meta-models. This is impor-

tant in order to understand the dependencies between the different models and views
of a system, and will help us in achieving interoperability.

The MDD methodology for software system development needs to follow a struc-
tured approach where interoperability requirements from business operations in a
networked enterprise drive the development of software solutions. This means that
MDD methodology for software systems needs to be related to enterprise architec-
tures. A specific part of the methodology needs to address how the MDD concepts
and the technical software components are reflected in a model world of the enter-
prise. Figure 5 shows how the model world, reflecting the applicative integration, is
related to the reference model for conceptual integration and the reference model for
technical integration. Enterprise and software models can be built to understand and
analyse the physical world of an enterprise.

An enterprise model describes a set of enterprise aspects, which amongst other
things includes descriptions of the business operations that we refer to as business
models. These business models provide a context for the software solutions that needs
to be developed and integrated, and thus needs to be reflected in the software model.

Software models describe how software systems are used to support the businesses
of an enterprise. The software models further refines the business models in terms of
software specification and software realisation models. The business model, the
specification model and the realisation model for a software system should include
descriptions of the four system aspects identified in the reference model for concep-
tual integration. The software models can be classified as CIM, PIM or PSM models
according to a MDD abstraction.

Software System

Enterprise Architecture A
(Model World)

Software
Model

Specification
Models

Business
Context

Business

Enterprise A
(Physical World)

Business
Transactions

Business
Processes

Business
Collaborations

Models of Service, Information
Process and Non-Functional Aspects

Enterprise
Model

Business
Models

Realisation
Models

Users

Business
Tasks

Vertical
Integration

Computational System A

Enterprise System A
(MDD Abstraction)

Execution Platform A

Ontologies
Model-Driven
Architecture (MDA)
&
Architecture-Driven
Modernisation (ADM)

Platform Independent
Model (PIM)

Computational Independent
Model (CIM)

Architecture-Driven
Modernisation (ADM)

Semantic
Annotation

Semantic
Annotation

Model-Driven
Architecture (MDA)

Platform Specific
Model (PSM)

Semantic
Annotation

MT

MT

MT Model Transformation

U
se

r I
nt

er
fa

ce
 S

er
vi

ce
s

U
se

r S
er

vi
ce

s

B
us

in
es

s
Se

rv
ic

es

R
es

ou
rc

e
Se

rv
ic

es

Se
rv

ic
e

B
us

MT

MT

MTMT

MT

Models of other Enterprise Aspects

Fig. 5. Reference Model for Applicative Integration

The model world corresponds to the set of models prescribed by a MDD methodol-
ogy. In our interoperability framework we have identified a set of models that we see

useful in achieving interoperability. However, we also acknowledge the fact that this
is just a baseline. Different enterprises must be able to develop their own software
views that they see purposeful in each business operation. It is important that the
applicative integration supports the development of a set of shared views amongst
different stakeholders and provides means for managing the dependencies between
these views. In order to satisfy these criteria we believe a viewpoint-based integration
approach must be chosen. This allows incorporating viewpoints, which are implicitly
or explicitly defined by other enterprise or software modelling approaches into an
applicative framework. The number of viewpoints to be used depends on the nature
of the system and its stakeholders.

In ATHENA [3] we will develop interoperability profiles that provide specific
guidelines for how to apply model-driven development of software systems in four
different business domains; Supply chain management where stable supply chains
and dynamic supply networks will be considered. Collaborative product development
in which cross-functional and cross-organisational teams collaborate in product de-
velopment. e-Procurement focusing on electronic purchasing and selling of goods
and services. Portfolio management focusing on project classifications, selection,
prioritisation, and resource allocation. In each of these business domains we find
domain-specific dictionaries, thesauri, nomenclatures and coding that will have im-
pact on the development and usage of domain-specific reference ontologies. Further-
more, industry standards, and legislations and regulations given by the national legis-
lative assemblies must also be taken into consideration. Each of these domains may
prioritise specific software concerns and aspects differently and require their own
custom-tailored views or models.

We have identified three basic viewpoints that can be used as a starting point for
viewpoint-based integration of software systems; Context viewpoint focusing on the
business context of the software system, system viewpoint focusing on the specifica-
tion of the main components of the software system, and realisation viewpoint focus-
ing on the implementation of the software system. Figure 6 illustrates the viewpoint
metaphor exemplified using the three basic viewpoints. A business analyst is con-
cerned with aspects related to the business context of the software system within the
networked enterprise. The business view includes e.g. business process models. A
system architect is concerned with aspects related to the specification of the software
system. The specification view includes e.g. service and interface models. A software
developer is concerned with aspects related to the realisation of the software system.
The realisation view includes e.g. interaction and data models

Business
Analyst

B
us

in
es

s
Vi

ewARCADE data

FOFAS børkunne
oppdatereARCADE

: COP

Actual and
planned

draft TASKORG : Frequency
requirements

verified list :
Frequencies

From Div 6, FO/I, KA mobile avd, LV

final TASKORG : Frequency requirements

temp verified list :
Frequencies

Receive
ARCADE data

Generate Frequency list

Receive frequency requirements
from lower level

Receive COP

Establish/maintain
frequency pool

temporary list :
Frequencies

Verify security
level

Distribute Frequency list

Verify
Frequency list

new operation
new campaign

list : Frequencies

new operation
Distribute temporary Frequency list

new campaign

Joint LevelLower Echelon UnitCOPdistributorARCADE system

ARCADE data

FOFAS børkunne
oppdatereARCADE

: COP

Actual and
planned

draft TASKORG : Frequency
requirements

verified list :
Frequencies

From Div 6, FO/I, KA mobile avd, LV

final TASKORG : Frequency requirements

temp verified list :
Frequencies

Receive
ARCADE data

Generate Frequency list

Receive frequency requirements
from lower level

Receive COP

Establish/maintain
frequency pool

temporary list :
Frequencies

Verify security
level

Distribute Frequency list

Verify
Frequency list

new operation
new campaign

list : Frequencies

new operation
Distribute temporary Frequency list

new campaign

Joint LevelLower Echelon UnitCOPdistributorARCADE system

e.g. Business
Process Model

System
Architect

Sp
ec

ifi
ca

tio
n

Vi
ew

Deployed Unit #1
InformationService #1

Command Center

iProcess

InformationService #2

Deployed Unit #2

iNotification iPublish
NotificationService

ProcessingService

Ethernet

Satelite

Radio

Information
Information

Deployed Unit #1
InformationService #1

Command Center

iProcess

InformationService #2

Deployed Unit #2

iNotification iPublish
NotificationService

ProcessingService

Ethernet

Satelite

Radio

Information
Information

e.g. Service &
Interface Model

Software
Developer

cryptoKeys

Frequencies

Subnet
- nettId
- nettType
- name
- frequency
- frequencyChangeTime
- newFrequency
- frequencyFMprai
- frequencyDigPray
- areaCode
- KVTid
- KVTchangeTime

Main frequencies
- emitterType
- frequency
- emissionType
- area(polygon, circle)
- class of station(mobile, point-point, ground-air)

Frequency requirements
- emitterType
- emiss oinType
- area
- class of station[mobile, point-point, ground-air]
- timerange
- usage[send, receive,...]
- securityLabel[(NATO) unclassified, restricted, confidential, s ecret]

Decoding list

Telephone DirectoryAddressee

SOI
COP

op1

op2

op1

op2e.g.
Interaction

&
Data

Model

R
ea

lis
at

io
n

Vi
ew

Networked
Enterprise

Software
System

Legend

Business
Viewpoint

Specification
Viewpoint

Realisation
Viewpoint

Fig. 6. Illustration of the three basic viewpoints and their corresponding views

4 Example – Inventory Min/Max replenishment scenario

As a part of the work of defining the framework presented in this paper a student
project was performed over a couple of months. The task for the students was to take
an example integration scenario and create a set of models that were sufficient to be
used for further transformations into new models and code. The goal was to be able to
generate a running business process performing the integration scenario. The target
platform for execution was BPEL running on IBMs BPWS4J2 server. In addition to
creating models and code the students were to come up with observations of short-
comings in the different tools, methods and modelling languages. The experiences
from this exercise were brought into the process of defining the framework presented
in this paper.

The scenario that was chosen was “Inventory Min/Max replenishment” as defined
by the Automotive Industry Action Group (AIAG) [12], related to supply chain man-
agement. The idea behind this process is to let the supplier see the inventory level of
the customer with minimum and maximum levels of inventory for a specific inven-
tory item. Based on this information the supplier can perform inventory replenish-

2 BPWS4J, http://www.alphaworks.ibm.com/tech/bpws4j

ment so that the actual inventory level for an item is “automatically” kept between the
minimum and maximum levels defined. The document defines the process and the
information passed using the UN/CEFACT Unified Modeling Methodology [13].

At a high level one can say that there were three main models. Initially the parti-
tion into these three main model types was taken from [14], but indicated below,
these are easily mapable to the aspects defined in this paper;

1. Activities, a model that defined the Min/Max process including actors, activities
and information flow. This model describes the process aspects as defined in the
interoperability framework.

2. Interactions, a model that defined the different computational services that would
be part of the automated process and how they interact using defined interfaces.
This model describes the service aspects as defined in the interoperability frame-
work.

3. Information, a model that defined the information that was passed between the
different activities and services in the process. This model describes the informa-
tion aspects as defined in the interoperability framework.

No models describing the non-functional aspects were created in this exercise. All of
the models created can be viewed as platform independent models.

One of the ideas behind the framework is that different languages or notations can
be used to define the needed models. In order to discuss pros and cons of different
methods and notations it was chosen to create 2 sets of models, one using the Busi-
ness Process Modelling Notation (BPMN) [15] and one using the Business Process
Definition Metamodel (BPDM) [16]. These would be used to generate the needed
BPEL and WSDL descriptions using the UMT3 tool for code generation.

BPMN models for the scenario were created using the Metis4 tool from Computas.
BPDM has defined a UML 2.0 profile for definition of BPDM models. In this exer-
cise the Enterprise Architect5 tool from Sparx Systems was chosen since just about
was the only tool that had support for UML 2.0 at the point in time that this exercise
was carried out. Due to limitations in the chosen tools it was hard to export the model
information to a format that could be used by the UMT tool. It would be possible to
implement, but this would mean spending resources on something that would not
really add value to the exercise. To get around this problem it was chosen to create a
UML 1.4 model based on the BPDM and the BPMN model using the ACE-GIS UML
profile [17, 18]. From this model information UMT was able to generate BPEL and
WSDL information that had to be manually crafted to be executed by the execution
engine. The resulting web services (as executed by the execution engine) are business
services as defined in the business service tier of 4-tier reference architecture de-
scribed in section 3.2.

The approach of modelling process, service and information aspects, as defined in
the framework, does provide enough domain information in order to create platform
specific models.

3 UML Model Transformation Tool, http://umt-qvt.sourceforge.net/
4 Metis, http://www.computas.com/metis
5 Enterprise Architect, http://www.sparxsystems.com.au/ea.htm

5 Related Work

The IDEAS Interoperability Framework, developed in the IDEAS project [19], pro-
vides four different areas for structuring interoperability issues of enterprise applica-
tions; Business layer focusing on business environment and business processes.
Knowledge layer focusing on organisational roles, skills and competencies of em-
ployees, and knowledge assets. ICT systems layer focusing on applications, data and
communication components. Semantic dimension, cutting across the three identified
layers, focusing on supporting mutual understanding on all layers.

The ECMA/NIST (European Computer Manufacturers Association/National Insti-
tute of Standards and Technology) has developed a reference model for distributed
system integration [20]. The ECMA/NIST approach separates integration into four
different categories; Data Integration addressing the degree to which tools are able to
share common data and information. Control Integration addressing the degree to
which tools are able to interact directly with each other, by requesting and providing
services. Process Integration addressing the degree to which the user’s working proc-
ess and use of tools can be guided by a model of the work process and the methodol-
ogy to be followed. Presentation Integration addressing the degree to which a user-
interface program might provide access to the functionality needed by the user
through a common look and feel.

E-Commerce Integration Meta-Framework (ECIMF) defines recommended inter-
operability methodology, and the technical specification and base tools needed to
prepare specific comparisons of concrete frameworks [21]. The proposed ECIMF
methodology for analysis and modelling of the transformations between e-commerce
frameworks follows a layered approach. In order to analyse the problem domain one
has to split it into layers of abstraction, applying top-down technique to classify the
entities and their mutual relationships.

The Reference Model for Open Distributed Processing (RM-ODP) [22-25] is an
ISO standard focusing on open distributed processing systems. RM-ODP divides the
specification of ODP systems into five different, but related, viewpoints. The view-
points in RM-ODP are: enterprise viewpoint (focuses on purpose, scope and poli-
cies), information viewpoint (focuses on information processing and relationships
between information objects), computational viewpoint (focuses on functional speci-
fication and decomposition), engineering viewpoint (focuses on how to solve distri-
bution issues), and technology viewpoint (focuses on specific technology and solu-
tions).

The interoperability framework presented in this paper addresses much of the same
interoperability elements identified in the above framework and approaches, but re-
lates them more closely to software models in a model-driven development environ-
ment.

6 Conclusions and future work

We will conclude this paper by addressing each of the objectives or design rationales
for the development of the interoperability framework.

− The reference model for applicative integration clearly indicates that software
solutions cannot be developed in isolation if the goal is to achieve interoperability
between business units within and across virtual networked enterprises. The soft-
ware development process and models must be related to the enterprise and busi-
ness needs of an enterprise. We believe that a viewpoint-based integration ap-
proach provide a good foundation for relating different models and views in a ho-
listic approach where software architectures and enterprise architectures can be re-
lated.

− The reference model for technical integration provides a 4-tier reference architec-
ture for describing software systems as a set of services addressing business and
user needs. These software services are connected using a service bus that provides
infrastructure, registry and repository services for integrating software.

− The reference model for conceptual integration provides a basic understanding of
MDD concepts that can be integrated into model-driven software development
processes.

− Finally, we believe that the reference models provided can be used to structure
software technologies, frameworks and methodologies which can be found today.

The reference models described will be used in the development of more structured
methodologies focusing on different business domains as well as the development of
infrastructure, registry and repository services to enable interoperability between
software systems. In particular we will look into the specification of a set of UML 2.0
profiles for the four system aspects identified in the reference model for conceptual
integration.

This work is carried out in the context of ATHENA [3] and INTEROP [4].
ATHENA is an Integrated Project supported by the European Commission and
INTEROP is a Network of Excellence supported by the European Commission. The
main research challenge of both projects is to address interoperability for enterprise
applications and software.

References

1. IEEE, "IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer
Glossaries," Institute of Electrical and Electronics Engineers, New York, NY 1990.

2. Object Management Group, "MDA Guide Version 1.0.1," Object Management Group
omg/2003-06-01, 12th June 2003.

3. ATHENA, "ATHENA Public Web Site", http://www.athena-ip.org/, (accessed: 2004).
4. INTEROP, "INTEROP Portal", http://www.interop-noe.org/, (accessed: 2004).
5. IEEE, "IEEE Std 1471-2000: IEEE Recommended Practice for Architectural Description of

Software-Intensive Systems," IEEE, October 2000.

6. Object Management Group, "OMG Unified Modeling Language Specification Version
1.5," Object Management Group, Specification formal/03-03-01, March 2003.

7. Object Management Group, "UML 2.0 Infrastructure Final Adopted Specification," Object
Management Group, Specification ptc/03-09-15, 2003.

8. Object Management Group, "UML 2.0 Superstructure Final Adopted Specification," Object
Management Group, Specification ptc/03-08-02, 2003.

9. C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. Laqua, D. Muthig, B.
Paech, J. Wust, and J. Zettel, Component-based Product Line Engineering with UML: Ad-
dison-Wesley, 2002.

10. D. F. D'Souza and A. C. Wills, Object, Components, and Frameworks with UML - The
Catalysis Approach: Addison Wesley Longman, Inc., 1998.

11. B. Elvesæter, T. Neple, J. Ø. Aagedal, R. K. Rolfsen, and O. Ø. Stensli, "MACCIS 2.0 - An
Architecture Description Framework for Technical Infostructures and their Enterprise En-
vironment," presented at Command and Control Research and Technology Symposium,
San Diego, USA, 2004.

12. "Inventory Visiblilty and interoperability Min/Max Replenishment," Automotive Industry
Action Group (AIAG) 2003.

13. UN/CEFACT, "UN/CEFACT Modelling Methodology (UMM) User Guide," UN/CEFACT
CEFACT/TMG/N093, 2003.

14. "Infrastructure for electronic commerce - Application readable models in an open infra-
structure," Norsk Edipro 2002.

15. "Business Process Modeling Notation (BPMN)," Business Process Management Initiative
(BPMI) 2004.

16. "Updated Joint revised Business Process Definition Metamodel submission," Object Man-
agement Group bei/04-01-02, 2004.

17. D. Skogan, R. Grønmo, and I. Solheim, "Web Service Composition in UML," presented at
The 8th International IEEE Enterprise Distributed Object Computing Conference (EDOC),
Monterey, California, USA., 2004.

18. R. Grønmo, D. Skogan, I. Solheim, and J. Oldevik, "Model-Driven Web Service Develop-
ment," International Journal of Web Services Research (JWSR), vol. 1, 2004.

19. IDEAS, "IDEAS Home Page", http://www.ideas-roadmap.net/, (accessed: 2004).
20. ECMA, "Reference Model for Frameworks of Software Engineering Environments, 3rd

ed," ECMA, Technical Report NIST 500-211, ECMA TR/55, 1993.
21. ECIMF, "E-Commerce Integration Meta-Framework - General Methodology (ECIMF-

GM)," CEN/ISSS/WS-EC/ECIMF, Draft Version 0.3, 28.11 2001.
22. ITU-TS, "Basic Reference Model of Open Distributed Processing - Part 1: Overview and

guide to use the Reference Model," Rec.X901 (ISO/IEC 10746-1), 1995.
23. ITU-TS, "Basic Reference Model of Open Distributed Processing - Part 2: Descriptive

model," Rec.X902 (ISO/IEC 10746-2), 1995.
24. ITU-TS, "Basic Reference Model of Open Distributed Processing - Part 3: Prescriptive

model," Rec.X903 (ISO/IEC 10746-3), 1995.
25. ITU-TS, "Basic Reference Model of Open Distributed Processing - Part 4: Architectural

Semantics," Rec.X904 (ISO/IEC 10746-4), 1995.

View publication statsView publication stats

https://www.researchgate.net/publication/226236248

