
PRE-RELEASE

Draft Specification Concerning
Space Data System Standards

SPACE LINK EXTENSION—
APPLICATION PROGRAM
INTERFACE FOR RETURN

CHANNEL FRAMES SERVICE

DRAFT RECOMMENDED PRACTICE

CCSDS 915.2-M-0

September 2005

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page i September 2005

AUTHORITY

 Issue: Draft Magenta Book, Issue 0
 Date: September 2005
 Location: N/A

(WHEN THIS RECOMMENDED PRACTICE IS FINALIZED, IT WILL CONTAIN
THE FOLLOWING STATEMENT OF AUTHORITY:)

This document has been approved for publication by the Management Council of the
Consultative Committee for Space Data Systems (CCSDS) and represents the consensus
technical agreement of the participating CCSDS Member Agencies. The procedure for
review and authorization of CCSDS Recommendations is detailed in the Procedures Manual
for the Consultative Committee for Space Data Systems, and the record of Agency
participation in the authorization of this document can be obtained from the CCSDS
Secretariat at the address below.

This Recommended Practice is published and maintained by:

CCSDS Secretariat
Program Integration Division (Code MT)
National Aeronautics and Space Administration
Washington, DC 20546, USA

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page ii September 2005

STATEMENT OF INTENT

(WHEN THIS RECOMMENDED PRACTICE IS FINALIZED, IT WILL CONTAIN
THE FOLLOWING STATEMENT OF INTENT:)

The Consultative Committee for Space Data Systems (CCSDS) is an organization officially
established by the management of member space Agencies. The Committee meets
periodically to address data systems problems that are common to all participants, and to
formulate sound technical solutions to these problems. Inasmuch as participation in the
CCSDS is completely voluntary, the results of Committee actions are termed
Recommendations and are not considered binding on any Agency.

This Recommended Practice is issued by, and represents the consensus of, the CCSDS
Plenary body. Agency endorsement of this Recommended Practice is entirely voluntary.
Endorsement, however, indicates the following understandings:

o Whenever an Agency establishes a CCSDS-related standard, this standard will be in

accord with the relevant Recommendation. Establishing such a standard does not
preclude other provisions which an Agency may develop.

o Whenever an Agency establishes a CCSDS-related standard, the Agency will provide

other CCSDS member Agencies with the following information:

-- The standard itself.

-- The anticipated date of initial operational capability.

-- The anticipated duration of operational service.

o Specific service arrangements shall be made via memoranda of agreement. Neither this
Recommended Practice nor any ensuing standard is a substitute for a memorandum
of agreement.

No later than five years from its date of issuance, this Recommended Practice will be
reviewed by the CCSDS to determine whether it should: (1) remain in effect without change;
(2) be changed to reflect the impact of new technologies, new requirements, or new
directions; or, (3) be retired or canceled.

In those instances when a new version of a Recommendation is issued, existing CCSDS-
related Agency standards and implementations are not negated or deemed to be non-CCSDS
compatible. It is the responsibility of each Agency to determine when such standards or
implementations are to be modified. Each Agency is, however, strongly encouraged to direct
planning for its new standards and implementations towards the later version of the
Recommended Practice.

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page iii September 2005

FOREWORD

(WHEN THIS RECOMMENDED PRACTICE IS FINALIZED, IT WILL CONTAIN
THE FOLLOWING FOREWORD:)

This document is a technical Recommended Practice for use in developing ground systems
for space missions and has been prepared by the Consultative Committee for Space Data
Systems (CCSDS). The Application Program Interface described herein is intended for
missions that are cross-supported between Agencies of the CCSDS.

This Recommended Practice specifies service-type specific extensions of the Space Link
Extension Application Program Interface for Transfer Services specified by CCSDS
(reference [4]). It allows implementing organizations within each Agency to proceed with
the development of compatible, derived Standards for the ground systems that are within
their cognizance. Derived Agency Standards may implement only a subset of the optional
features allowed by the Recommended Practice and may incorporate features not addressed
by the Recommended Practice.

Through the process of normal evolution, it is expected that expansion, deletion or
modification to this document may occur. This Recommended Practice is therefore subject
to CCSDS document management and change control procedures, as defined in the
Procedures Manual for the Consultative Committee for Space Data Systems. Current
versions of CCSDS documents are maintained at the CCSDS Web site:

http://www.ccsds.org/

Questions relating to the contents or status of this document should be addressed to the
CCSDS Secretariat at the address indicated on page i.

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page iv September 2005

At time of publication, the active Member and Observer Agencies of the CCSDS were:

Member Agencies

– Agenzia Spaziale Italiana (ASI)/Italy.
– British National Space Centre (BNSC)/United Kingdom.
– Canadian Space Agency (CSA)/Canada.
– Centre National d’Etudes Spatiales (CNES)/France.
– Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)/Germany.
– European Space Agency (ESA)/Europe.
– Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.
– National Aeronautics and Space Administration (NASA)/USA.
– National Space Development Agency of Japan (NASDA)/Japan.
– Russian Space Agency (RSA)/Russian Federation.

Observer Agencies

– Austrian Space Agency (ASA)/Austria.
– Central Research Institute of Machine Building (TsNIIMash)/Russian Federation.
– Centro Tecnico Aeroespacial (CTA)/Brazil.
– Chinese Academy of Space Technology (CAST)/China.
– Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia.
– Communications Research Laboratory (CRL)/Japan.
– Danish Space Research Institute (DSRI)/Denmark.
– European Organization for the Exploitation of Meteorological Satellites

(EUMETSAT)/Europe.
– European Telecommunications Satellite Organization (EUTELSAT)/Europe.
– Federal Service of Scientific, Technical & Cultural Affairs (FSST&CA)/Belgium.
– Hellenic National Space Committee (HNSC)/Greece.
– Indian Space Research Organization (ISRO)/India.
– Industry Canada/Communications Research Centre (CRC)/Canada.
– Institute of Space and Astronautical Science (ISAS)/Japan.
– Institute of Space Research (IKI)/Russian Federation.
– KFKI Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.
– MIKOMTEK: CSIR (CSIR)/Republic of South Africa.
– Korea Aerospace Research Institute (KARI)/Korea
– Ministry of Communications (MOC)/Israel.
– National Oceanic & Atmospheric Administration (NOAA)/USA.
– National Space Program Office (NSPO)/Taipei.
– Swedish Space Corporation (SSC)/Sweden.
– United States Geological Survey (USGS)/USA.

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page v September 2005

PREFACE

This document is a draft CCSDS Recommended Practice. Its draft status indicates that the
CCSDS believes the document to be technically mature and has released it for formal review by
appropriate technical organizations. As such, its technical contents are not stable, and several
iterations of it may occur in response to comments received during the review process.

Implementers are cautioned not to fabricate any final equipment in accordance with this
document’s technical content.

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page vi September 2005

DOCUMENT CONTROL

Document Title Date Status
CCSDS
915.2-W-1.0

Space Link Extension – Application
Program Interface for Return
Channel Frames Service

March 2005 Draft

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page vii September 2005

CONTENTS

Section Page

1 INTRODUCTION.. 1-1
1.1 PURPOSE... 1-1
1.2 SCOPE.. 1-1
1.3 APPLICABILITY ... 1-1
1.4 RATIONALE.. 1-2
1.5 DOCUMENT STRUCTURE ... 1-2
1.6 DEFINITIONS, NOMENCLATURE, AND CONVENTIONS............................. 1-5
1.7 REFERENCES ... 1-7

2 OVERVIEW... 2-1
2.1 INTRODUCTION .. 2-1
2.2 PACKAGE RCF SERVICE INSTANCES .. 2-1
2.3 PACKAGE RCF OPERATIONS ... 2-5

3 RCF SPECIFIC SPECIFICATIONS FOR API COMPONENTS............................ 3-1
3.1 API SERVICE ELEMENT... 3-1
3.2 SLE OPERATIONS.. 3-6
3.3 SLE APPLICATION .. 3-7
3.4 SEQUENCE OF DIAGNOSTIC CODES .. 3-7

ANNEX A RCF SPECIFIC INTERFACES... A-1
ANNEX B ACRONYMS .. B-1
ANNEX C INFORMATIVE REFERENCES .. C-1

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page viii September 2005

CONTENTS (continued)

Figure Page

1-1 SLE SERVICES AND SLE API DOCUMENTATION... 1-3
2-1 RCF SERVICE INSTANCES... 2-2
2-2 RCF OPERATION OBJECT INTERFACES .. 2-6

Table Page

2-1 RCF CONFIGURATION PARAMETERS... 2-4
2-2 RCF STATUS INFORMATION .. 2-4
2-3 MAPPING OF RCF OPERATIONS TO OPERATION OBJECT INTERFACES 2-5

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page 1-1 September 2005

1 INTRODUCTION

1.1 PURPOSE

The Recommended Practice ‘SLE C++ Application Program Interface for Transfer Services’
(reference [4]) specifies a C++ API for CCSDS Space Link Extension Transfer Services. The
API is intended for use by application programs implementing SLE transfer services.

Reference [4] defines the architecture of the API and the functionality on a generic level,
which is independent of specific SLE services and communication technologies. It is thus
necessary to add service type specific specifications in supplemental Recommended
Practices. The purpose of this document is to specify extensions to the API needed for
support of the Return Channel Frames (RCF) service defined in reference [3].

1.2 SCOPE

This Recommended Practice defines extensions to the SLE API in terms of:

a) the RCF specific functionality provided by API components;

b) the RCF specific interfaces provided by API components; and

c) the externally visible behavior associated with the RCF interfaces exported by the
components.

It does not specify:

a) individual implementations or products;

b) the internal design of the components; and

c) the technology used for communications.

This Recommended Practice only defines interfaces and behavior that must be provided by
implementations supporting the Return Channel Frames service in addition to the
specification in reference [4].

1.3 APPLICABILITY

The RCF Application Program Interface specified in this document supports two versions of
the RCF service, namely:

a) version 1 as specified by reference [2]; and

b) version 2 as specified by reference [3].

Support for version 1 of these services is included for backward compatibility purposes for a
limited time and may not be continued in future versions of this specification. Support for
version 1 of the RCF service implies that SLE API implementations of this specification are
able to interoperate with peer SLE systems that comply with the specification of the

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page 1-2 September 2005

Transport Mapping Layer (TML) in ‘Specification of a SLE API Proxy for TCP/IP and
ASN.1’, ESOC, SLES-SW-API-0002-TOS-GCI, Issue 1.1, February 2001.

Any version dependent provisions within this Recommended Practice are marked as follows:

a) [V1:] for provisions specific to version 1; and

b) [V2:] for provisions specific to version 2.

1.4 RATIONALE

This Recommended Practice specifies the mapping of the RCF service specification to
specific functions and parameters of the SLE API. It also specifies the distribution of
responsibility for specific functions between SLE API software and application software.

The goal of this Recommended Practice is to create a standard for interoperability between:

a) application software using the SLE API and SLE API software implementing the SLE
API; and

b) service user and service provider applications communicating with each other using
the SLE API on both sides.

This interoperability standard also allows exchangeability of different products implementing
the SLE API, as long as they adhere to the interface specification of this Recommended
Practice.

1.5 DOCUMENT STRUCTURE

1.5.1 ORGANIZATION

This document is organized as follows:

– Section 1 provides purpose and scope of this specification, identifies conventions, and
lists definitions and references used throughout the document;

– Section 2 provides an overview of the RCF service and describes the API model
extension including support for the RCF service;

– Section 3 contains detailed specifications for the API components and for applications
using the API;

– Annex A provides a formal specification of the API interfaces and data types specific
to the RCF service;

– Annex B lists all acronyms used within this document;

– Annex C lists informative references.

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page 1-3 September 2005

1.5.2 SLE SERVICE DOCUMENTATION TREE

The SLE suite of recommendations is based on the cross support model defined in the SLE
Reference Model (reference [1]). The services defined by the reference model constitute one
of the three types of Cross Support Services:

a) Part 1: SLE Services;

b) Part 2: Ground Domain Services; and

c) Part 3: Ground Communications Services.

The SLE services are further divided into SLE service management and SLE transfer
services.

The basic organization of the SLE services and SLE documentation is shown in figure 1-1.
The various documents are described in the following paragraphs.

 Space Link Extension

SLE Service
Management Suite

SLE API for
Transfer Services

Cross Support
Reference Model SLE Executive

Summary

Space Link Extension

Return SLE Service
Specifications

Return SLE Service
Specifications

Return
SLE Service

Specifications

SLE Transfer Services

SLE Service
Management Suite

SLE Service
Management Suite

SLE API for
Transfer Services

Internet Protocol for
Transfer Services

Cross Support
Concept

Part 1: SLE Services

Cross Support
Reference Model

Part 1: SLE Services

SLE Executive
Summary

Legend: Report (Green) Recommendation

Core Specification

Application
Programmer’s

Guide

SLE API for Transfer Services

Return SLE Service
Specifications Return SLE Service
Specifications

Forward
SLE Service

Specifications

Report (Yellow) Recommended
Practice (Magenta)

 Forward
SLE Service

Specifications
 Return

SLE Service
Specifications

Summary of
Concept and

Rationale

Figure 1-1: SLE Services and SLE API Documentation

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page 1-4 September 2005

a) Cross Support Reference Model—Part 1: Space Link Extension Services; a
Recommendation that defines the framework and terminology for the specification of
SLE services.

b) Cross Support Concept—Part 1: Space Link Extension Services; a Report introducing
the concepts of cross support and the SLE services.

c) Space Link Extension Services—Executive Summary; an Administrative Report
providing an overview of Space Link Extension (SLE) Services. It is designed to
assist readers with their review of existing and future SLE documentation.

d) Forward SLE Service Specifications; a set of Recommendations that provide
specifications of all forward link SLE services.

e) Return SLE Service Specifications; a set of Recommendations that provide
specifications of all return link SLE services.

f) Internet Protocol for Transfer Services; a Recommendation providing the
specification of the wire protocol used for SLE transfer services.

g) SLE Service Management Specifications; a set of Recommendations that establish the
basis of SLE service management.

h) Application Program Interface for Transfer Services—Core Specification; a
Recommended Practice document specifying the generic part of the API for SLE
transfer services.

i) Application Program Interface for Transfer Services—Summary of Concept and
Rationale; a Report describing the concept and rationale for specification and
implementation of a Application Program Interface for SLE Transfer Services.

j) Application Program Interface for Return Services; a set of Recommended Practice
documents specifying the service-type specific extensions of the API for return link
SLE services.

k) Application Program Interface for Forward Services; a set of Recommended Practice
documents specifying the service-type specific extensions of the API for forward link
SLE services.

l) Application Program Interface for Transfer Services—Application Programmer's
Guide; a Report containing guidance material and software source code examples for
software developers using the API.

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page 1-5 September 2005

1.6 DEFINITIONS, NOMENCLATURE, AND CONVENTIONS

1.6.1 DEFINITIONS

1.6.1.1 Definitions from SLE Reference Model

This Recommended Practice makes use of the following terms defined in reference [1]:

a) Return Channel Frames service (RCF service);

b) operation;

c) service provider (provider);

d) service user (user);

e) SLE transfer service instance;

f) SLE transfer service production;

g) SLE transfer service provision.

1.6.1.2 Definitions from RCF Service

This Recommended Practice makes use of the following terms defined in reference [3]:

a) association;

b) communications service;

c) confirmed operation;

d) delivery mode;

e) global VCID;

f) invocation;

g) latency limit;

h) lock status;

i) notification;

j) offline processing latency;

k) parameter;

l) performance;

m) permitted global VCID set;

n) port identifier;

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page 1-6 September 2005

o) production status;

p) return;

q) service instance provision period;

r) transfer buffer;

s) unconfirmed operation;

t) virtual channel.

1.6.1.3 Definitions from ASN.1 Specification

This Recommended Practice makes use of the following term defined in reference [6]:

a) Object Identifier;

b) Octet String.

1.6.1.4 Definitions from UML Specification

This Recommended Practice makes use of the following terms defined in reference [C7]:

a) Attribute;

b) Base Class;

c) Class;

d) Data Type;

e) Interface;

f) Method.

1.6.1.5 Definitions from API Core Specification

This Recommended Practice makes use of the following terms defined in reference [4]:

a) Application Program Interface;

b) Component.

1.6.2 NOMENCLATURE

The following conventions apply throughout this Recommended Practice:

a) the words ‘shall’ and ‘must’ imply a binding and verifiable specification;

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page 1-7 September 2005

b) the word ‘should’ implies an optional, but desirable, specification;

c) the word ‘may’ implies an optional specification;

d) the words ‘is’, ‘are’, and ‘will’ imply statements of fact.

1.6.3 CONVENTIONS

This document applies the conventions defined in reference [4].

The RCF specific model extensions in section 2 are presented using the Unified Modelling
Language (UML) and applying the conventions defined in reference [4].

The RCF specific specifications for API components in section 3 are presented using the
conventions specified in reference [4].

The RCF specific data types and interfaces in annex A are specified in the notation of the
C++ programming language using the conventions defined in reference [4].

1.7 REFERENCES

The following documents contain provisions, which through reference in this text, constitute
provisions of this document. At the time of publication, the editions indicated were valid.
All documents are subject to revision, and users of this document are encouraged to
investigate the possibility of applying the most recent editions of the documents indicated
below. The CCSDS Secretariat maintains a register of currently valid CCSDS Reports and
Recommendations.

NOTE – A list of informative references is provided in annex C.

[1] Cross Support Reference Model – Part 1: Space Link Extension Services.
Recommendation for Space Data System Standards, CCSDS 910.4-B-1, Blue Book.
Issue 1, Washington, D.C.: CCSDS, May 1996.

[2] Space Link Extension – Return Channel Frames Service Specification, Draft
Recommendation for Space Data System Standards, CCSDS 911.2 R1.7, Red Book,
Issue 1.7, September 1999.

[3] Space Link Extension – Return Channel Frames Service Specification, Draft
Recommendation for Space Data System Standards, CCSDS 911.2 B-1, Blue Book,
Issue 1, November 2004.

[4] Space Link Extension – Application Program Interface for Transfer Services — Core
Specification. Draft Recommended Practice for Space Data System Standards,
CCSDS 914.0-W-1, White Book, Issue 1, Washington, D.C.: CCSDS, To be issued.

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page 1-8 September 2005

[5] Programming Languages – C++. International Standard, ISO/IEC 14882, Geneva,
ISO, 2003.

[6] Information Technology — Open Systems Interconnection — Specification of Abstract
Syntax Notation One (ASN.1). International Standard, ISO/IEC 8824:1990, 2nd ed.
Geneva: ISO, 1990.

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page 2-1 September 2005

2 OVERVIEW

2.1 INTRODUCTION

This section describes the extension of the SLE API model in reference [4] for support of the
RCF service. Extensions are needed for the API components API Service Element and SLE
Operations.

In addition to the extensions defined in this section, the component API Proxy must support
encoding and decoding of RCF specific protocol data units.

2.2 PACKAGE RCF SERVICE INSTANCES

2.2.1.1 Overview

The RCF extensions to the component API Service Element are defined by the package RCF
Service Instances. Figure 2-1 provides an overview of this package. The diagram includes
classes from the package API Service Element specified in reference [4], which provide
applicable specifications for the RCF service.

The package adds two service instance classes:

a) RCF SI User, supporting the service user role; and

b) RCF SI Provider, supporting service provider role.

These classes correspond to the placeholder classes I<SRV>_SI User and I<SRV>_SI
Provider defined in reference [4].

Both classes are able to handle the specific RCF operations.

For the class RCF SI User, this is the only extension of the base class SI User.

The class RCF SI Provider adds two new interfaces:

a) IRCF_SIAdmin by which the application can set RCF specific configuration
parameters; and

b) IRCF_SIUpdate by which the application must update dynamic status information,
required for generation of status reports.

These interfaces correspond to the placeholder interfaces I<SRV>_SIAdmin and
I<SRV>_SIUpdate defined in reference [4].

RCF specific configuration parameters are defined by the internal class RCF Configuration.
The class RCF Status Information defines dynamic status parameters maintained by the
service instance.

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page 2-2 September 2005

All specifications provided in this section refer to a single service instance. If more than one
service instance is used, each service instance must be configured and updated independently.

2.2.2 COMPONENT CLASS RCF SI USER

The class defines a RCF service instance supporting the service user role. It ensures that SLE
PDUs passed by the application and by the association are supported by the RCF service and
handles the RCF operation objects defined in 2.3. It does not add further features to those
provided by the base class SI User.

API Service Instance

- ret urn timeout period

(from API Service E lement)

<<CoClass>>

SI Provider

- repo rt request type
- reporting cyc le

(from API Service E lement)

<<Internal>>
SI User

(from API Service Element)

<<Internal>>

RCF SI User
<<Internal>>

IRCF_SIAdmin
<<Int erface>>

IRCF_SIUpdate
<<Int erface>>

ISLE_SIAdmin
(f ro m API Service Ele m ent)

<<Interface>>

RCF Configuration
delivery mode
latency lim it
permitted global VCID Lis t
transfer buffer s ize

<<Internal>>

RCF SI Provider
<<CoClass>>

RCF Status Information

number of frames delivered
frame synchronisation lock
symbol synchronisation lock
subcarrier demodulation lock
carrier demodulation lock
production status
requested global VCID

<<Internal>>

Figure 2-1: RCF Service Instances

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page 2-3 September 2005

2.2.3 COMPONENT CLASS RCF SI PROVIDER

The class defines a RCF service instance supporting the service provider role. It exports the
interfaces IRCF_SIAdmin for configuration of the service instance after creation and
IRCF_SIUpdate for update of dynamic status parameters during operation.

2.2.3.1 Responsibilities

2.2.3.1.1 Service Specific Configuration

The service instance implements the interface IRCF_SIAdmin to set the RCF specific
configuration parameters defined by the class RCF Configuration. The methods of this
interface must be called after creation of the service instance. When all configuration
parameters (including those set via the interface ISLE_SIAdmin) have been set, the method
ISLE_SIAdmin::ConfigCompleted() must be called. This method verifies that all
configuration parameters values are defined and are in the range defined in reference [3].

In addition, the interface IRCF_SIAdmin provides read access to the configuration
parameters.

2.2.3.1.2 Update of Dynamic Status Parameters

The class implements the interface IRCF_SIUpdate. The methods of this interface update
status parameters defined by the class RCF Status Information. In order to ensure that the
status information is always up to date, all changes of status parameters must be reported to
the service instance during its complete lifetime, independent of the state of the service
instance.

In addition, the class derives some of the parameters in RCF Status Information from RCF
PDUs exchanged between the service provider and the service user. The method used to
update each of the parameters is defined in 2.2.5.

The interface IRCF_SIUpdate provides read access to all status parameters.

2.2.3.1.3 Handling of the RCF–GET-PARAMETER Operation

The class responds autonomously to RCF–GET–PARAMETER invocations. It generates the
appropriate RCF–GET–PARAMETER return using the parameters maintained by the classes
RCF Configuration and RCF Status Information.

2.2.3.1.4 Status Reporting

The class generates RCF–STATUS–REPORT invocations when required using the
parameters maintained by the class RCF Status Information.

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page 2-4 September 2005

2.2.3.1.5 Processing of RCF Protocol Data Units

The class ensures that SLE PDUs passed by the application and by the association are
supported by the RCF service and handles the RCF operation objects defined in 2.3.

2.2.4 INTERNAL CLASS RCF CONFIGURATION

The class defines the configuration parameters that can be set via the interface
IRCF_SIAdmin. These parameters are defined by reference [3]. Table 2-1 describes how
the service instance uses these parameters.

2.2.5 INTERNAL CLASS RCF STATUS INFORMATION

The class defines dynamic status parameters handled by the service instance. The parameters
are defined by reference [3]. Table 2-2 describes how the service element updates each of the
parameters and how it uses the parameters.

Table 2-1: RCF Configuration Parameters

Parameter Used for

delivery-mode handling of the transfer buffer (enables / disables discarding of data)
checking of PDUs
RCF–GET–PARAMETER returns

latency-limit handling of the transfer buffer in the timely online and complete online
delivery modes
RCF–GET–PARAMETER returns

permitted-global-
VCID-set

RCF–GET–PARAMETER returns
checking of RCF-START invocations

transfer-buffer-size handling of the transfer buffer
RCF–GET–PARAMETER returns

Table 2-2: RCF Status Information

Parameter Update Used for

number-of-frames-
delivered

count of RCF–TRANSFER–DATA invocations
transmitted

status reports

frame-sync-lock-status set by a method of IRCF_SIUpdate status reports

symbol-sync-lock-
status

set by a method of IRCF_SIUpdate status reports

subcarrier-lock-status set by a method of IRCF_SIUpdate status reports

carrier-lock-status set by a method of IRCF_SIUpdate status reports

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page 2-5 September 2005

Parameter Update Used for

production-status set by a method of IRCF_SIUpdate status reports

requested-global-VCID extracted from RCF-START-return with a
positive result

RCF-GET-
PARAMETER

2.3 PACKAGE RCF OPERATIONS

Figure 2-2 shows the operation object interfaces required for the RCF service. The package
RCF Operations adds operation objects for the following RCF operations:

a) RCF–START;

b) RCF–TRANSFER–DATA;

c) RCF–SYNC–NOTIFY;

d) RCF–STATUS–REPORT;

e) RCF–GET–PARAMETER.

For other operations the API uses the common operation objects defined in reference [4].

Table 2-3 maps RCF operations to operation object interfaces.

Table 2-3: Mapping of RCF Operations to Operation Object Interfaces

RCF Operation Operation Object Interface Defined in Package

RCF–BIND ISLE_Bind SLE Operations

RCF–UNBIND ISLE_Unbind SLE Operations

RCF–START IRCF_Start RCF Operations

RCF–STOP ISLE_Stop SLE Operations

RCF–TRANSFER–DATA IRCF_TransferData RCF Operations

RCF–SYNC–NOTIFY IRCF_SyncNotify RCF Operations

[TRANSFER-BUFFER] (see note) ISLE_TransferBuffer SLE Operations

RCF–SCHEDULE–STATUS–REPORT ISLE_ScheduleStatusReport SLE Operations

RCF–STATUS–REPORT IRCF_StatusReport RCF Operations

RCF–GET–PARAMETER IRCF_GetParameter RCF Operations

RCF–PEER–ABORT ISLE_PeerAbort SLE Operations

NOTE – TRANSFER-BUFFER is a pseudo-operation used to handle the transfer buffer
defined in reference [3].

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page 2-6 September 2005

ISLE_Operation
(from SLE Opera tions)

<<Interface>>
ISLE_ConfirmedOperation

(from SLE Operations)

<<Int erface>>

<<Inheritance>>

ISLE_Bind
(from SLE Opera tions)

<<Interface>>

ISLE_Unbind
(from SLE Operations)

<<Int erface>>

ISLE_PeerAbort
(from SLE Opera tions)

<<Int erface>>

ISLE_ScheduleStatusReport
(from SLE Opera tions)

<<Interface>>

ISLE_Stop
(from SLE Opera tions)

<<Interface>>

ISLE_TransferBuffer
(from SLE Operations)

<<Interface>>

IRCF_Start
<<Interface>>

IRCF_StatusReport
<<Interface>>

IRCF_SyncNotify
<<In terface >>

IRCF_TransferData
<<Interface>>

IRCF_GetParameter
<<Interface>>

<<Inheritance>>

<<Inher itance>>

<<In heritance>>
<<Inheritance>>

<<Inheritance>>

<<Inheritance>>

<<Inheritance>>

<<Inheritance>>

<<Inheritance>>

<<Inheritance>>

<<Inher itance>>

Figure 2-2: RCF Operation Object Interfaces

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page 3-1 September 2005

3 RCF SPECIFIC SPECIFICATIONS FOR API COMPONENTS

3.1 API SERVICE ELEMENT

3.1.1 SERVICE INSTANCE CONFIGURATION

3.1.1.1 The service element shall provide the interface IRCF_SIAdmin for configuration
of a provider-side service instance after creation.

3.1.1.2 The interface shall provide methods to set the following parameters, which the
service element needs for handling of the transfer buffer and delivers to the user in response
to a RCF–GET–PARAMETER invocation:

a) delivery-mode;

b) transfer-buffer-size, i.e. the maximum number of RCF–TRANSFER–
BUFFER invocations and RCF–SYNC–NOTIFY invocations that can be stored to a
transfer buffer PDU submitted to the service user;

c) latency-limit, if the delivery mode is either ‘timely online’ or 'complete online';

d) permitted-global-VCID-set, i.e. the set of master channels or virtual
channels from which the service user may request data.

NOTE – These parameters are defined in reference [3] for the operation RCF-GET-
PARAMETER. Handling of the transfer buffer by the service element is defined
in reference [4].

3.1.1.3 The interface shall provide methods to set the following parameters, which the
service instance uses to initialize parameters of the status report:

a) the value of the production status at the time the service instance is configured;

b) the lock status of the frame synchronization process at the time the service instance is
configured;

c) the lock status of the symbol synchronization process at the time the service instance
is configured;

d) the lock status of the sub-carrier demodulation process at the time the service instance
is configured;

e) the lock status of the carrier demodulation process at the time the service instance is
configured.

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page 3-2 September 2005

NOTES

1 For the delivery mode ‘offline’, status reporting is not supported. Therefore, these
parameters need not be specified.

2 Further configuration parameters must be set using the interface ISLE_SIAdmin
specified in reference [4]. These include the parameter return-timeout-
period required for the RCF-GET-PARAMETER operation.

3.1.1.4 All configuration parameters must be set before the method
ConfigCompleted() of the interface ISLE_SIAdmin is called. If one of the
parameters is omitted or the value of a parameter is not within the range specified by
reference [3], the method ConfigCompleted() shall return an error.

NOTES

1 As defined in reference [4], the service element shall start processing of the service
instance only after successful configuration.

2 The range of specific parameter values might be further constrained by service
management. The service element shall only perform checks on the limits specified
by reference [3].

3.1.1.5 If the delivery mode is ‘offline’, the service element shall accept the configuration
when the parameters defined in 3.1.1.3 have not been specified.

3.1.1.6 Configuration parameters must not be modified after successful return of the
method ConfigCompleted() defined in the interface ISLE_SIAdmin. The effect of an
attempt to set these parameters after completion of the configuration is undefined.

3.1.1.7 The values of all configuration parameters shall remain unmodified following a
RCF-UNBIND or RCF-PEER-ABORT operation and following a protocol-abort.

3.1.1.8 The interface IRCF_SIAdmin shall provide methods to retrieve the values of the
configuration parameters. The values returned by these methods before configuration has
been completed are undefined.

3.1.2 STATUS INFORMATION

3.1.2.1 The service element shall maintain status parameters for every service instance and
uses them for generation of status reports and for RCF–GET–PARAMETER returns.

NOTES

1 The parameters are defined in reference [3] for the operations RCF–STATUS–
REPORT and RCF–GET–PARAMETER.

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page 3-3 September 2005

2 Handling of the parameter reporting-cycle defined for the RCF–GET–
PARAMETER operation is specified in reference [3].

3.1.2.2 The service element shall update the following status parameters in the methods of
the interface IRCF_SIUpdate described in 3.1.2.6.

a) frame-sync-lock-status;

b) symbol-sync-lock-status;

c) subcarrier-lock-status;

d) carrier-lock-status; and

e) production-status.

NOTE – The initial values of these parameters following configuration of the service
instance are defined in A4.2.

3.1.2.3 The service element shall handle the parameter number-of-frames-
delivered as defined by the following specifications:

a) the parameter shall be set to zero when the service instance is configured;

b) when a TRANSFER–BUFFER PDU is transmitted to the service user, the parameter
shall be incremented by the number of RCF–TRANSFER–DATA invocations in that
PDU.

NOTE – Frames in a TRANSFER–BUFFER PDU that is discarded shall not be
included in the count of frames delivered.

3.1.2.4 The service element shall handle the parameter requested-global-VCID as
defined by the following specifications:

NOTE – The parameter requested-global-VCID shall be set by a RCF-START
invocation and can be requested by a RCF–GET-PARAMETER invocation. It
consists of three elements: the spacecraft ID (0 to 1023), the transfer frame
version number (0 to 3) and the VC ID (0 to 63). According to reference [3] the
VC ID is set to ‘any’ when a master channel is selected. As this cannot be
mapped to C++, the API uses a fourth element which specifies whether the ID
refers to a master channel or a virtual channel.

a) at the time of service instance configuration, the parameter shall be set to NULL;

NOTE – Setting the parameter to NULL only implies that a NULL pointer is returned
in the method reading the parameter.

b) if the application transmits a RCF–START return with a positive result, the value of
the parameter shall be extracted from the RCF–START invocation;

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page 3-4 September 2005

c) the parameter shall be reset to NULL following an accepted RCF–STOP invocation,
and following RCF–PEER–ABORT and protocol abort;

d) [V1:] if transfer of the parameter is requested by an RCF-GET-PARAMETER
invocation and the parameter is NULL, the service element shall return a copy of the
first element in the permitted-global-VCID-set defined in 3.1.1.2.

NOTE – [V2:] Version 2 of the RCF service foresees returning a NULL value if the
service instance is not in the state 'active'.

3.1.2.5 The service element shall provide the interface IRCF_SIUpdate for every service
instance. This interface must be used by the application to update the status parameters
defined in 3.1.2.2.

3.1.2.6 If more than one service instance exists, each service instance must be updated
independently.

3.1.2.7 In order to keep the status information up to date and consistent, the methods of the
interface IRCF_SIUpdate must be invoked for every change, independent of the state of
the service instance.

3.1.2.8 The interface IRCF_SIUpdate shall provide read access to all status parameters,
including those that are derived by other means.

NOTE – In the delivery mode ‘offline’, status reporting is not supported. Therefore, the
application can opt not to update status information in that mode. If status
information is not initialized and not updated, retrieval methods shall return the
initial parameter values defined in A4.2.

3.1.2.9 The service element shall keep the status parameter number-of-frames-
delivered up to date for all delivery modes including the delivery mode ‘offline’.

3.1.2.10 Status parameters defined in this specification shall not be modified as result of
RCF-UNBIND, RCF-PEER-ABORT, or protocol abort.

3.1.3 PROCESSING OF RCF PROTOCOL DATA UNITS

NOTES

1 The service element shall process RCF PDUs according to the general specifications
in reference [4]. This section only addresses additional checks and processing steps
defined for the RCF service. RCF specific checks defined in reference [3], but not
listed in this section, must be performed by the application.

2 It is noted that 3.1.2 defines further processing requirements for PDUs with respect to
update of status information. Annex A3 defines the checks that operation objects
perform when the methods VerifyInvocationArguments() and

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page 3-5 September 2005

VerifyReturnArguments() are called. Reference [4] contains specifications
defining how the service element handles error codes returned by these methods.

3.1.3.1 RCF START

3.1.3.1.1 When receiving a RCF–START invocation, the service element shall perform the
following checks:

a) if the delivery mode is ‘offline’, the start time must not be null;

b) if the start time is defined and the delivery mode is ‘online’:

1) the start time must be equal to or later than the start time of the scheduled
provision period of the service instance; and

2) the start time must be earlier than the stop time of the scheduled provision period.

c) if the delivery mode is ‘offline’:

1) the stop time must not be null; and

2) the stop time must be earlier than current time.

NOTE – Reference [3] defines an offline-processing-latency and
requires that the stop time plus the offline processing latency be earlier
than current time. If the application makes use of the offline processing
latency, the associated checks must be performed by the application.

d) if the stop time is defined and the delivery mode is ‘online’, the stop time must be
earlier than or equal to the stop time of the scheduled provision period;

NOTE – If the start time and the stop time are defined, the start time must be earlier
than the stop time. This check shall be performed by the operation object
within the method VerifyInvocationArguments() (see 3.2.1)

e) the global VCID must match one of the entries in the permitted global VCID set.

NOTES

1 This check shall only be performed on the provider side for RCF-START invocations
received from the service user.

2 The service element shall not check the production status, as this could change before
the PDU is processed by the application.

3.1.3.1.2 If any of the checks defined in 3.1.3.1.1 fail, the service element on the provider
side shall not forward the PDU to the application but shall respond with a RCF–START
return with a negative result and the appropriate diagnostic.

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page 3-6 September 2005

NOTE – As specified in reference [4], the service element shall reject PDUs with errors
received from the local application with an appropriate result code.

3.1.3.2 RCF SYNC NOTIFY

3.1.3.2.1 When receiving a RCF–SYNC–NOTIFY invocation, the service element on the
provider side shall perform the following checks:

a) if the delivery mode is ‘offline’, the notification type must not be ‘loss of frame
synchronization’, ‘production status change’, or ‘data discarded due to excessive
backlog’;

b) if the delivery mode is ‘timely online’, the notification type must not be ‘data
discarded due to excessive backlog’.

NOTE – This check cannot be performed on the user side, because the service element
does not have the required information.

3.1.4 SERVICE INSTANCE SPECIFIC OPERATION FACTORY

3.1.4.1 For RCF service instances, the interface ISLE_SIOpFactory specified in
reference [4] shall support creation and configuration of operation objects for the operations
specified in 3.2 with exception of the interfaces IRCF_StatusReport and
ISLE_TransferBuffer.

NOTES

1 The initial values of parameters that shall be set for RCF specific operation objects
are defined in annex A.

2 Status reports and the transfer buffer shall be handled by the API Service Element
without involvement of the application.

3.2 SLE OPERATIONS

3.2.1 The component SLE Operations shall provide operation objects for the following
RCF operations in addition to those specified in reference [4]:

a) RCF–START;

b) RCF–TRANSFER–DATA;

c) RCF–SYNC–NOTIFY;

d) RCF–STATUS–REPORT; and

e) RCF–GET–PARAMETER.

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page 3-7 September 2005

3.2.2 The operation factory shall create the operation objects specified in 3.2.1 when the
requested service type is RCF.

3.2.3 The operation factory shall additionally create the following operation objects
specified in reference [4] when the requested service type is RCF:

a) SLE–BIND;

b) SLE–UNBIND;

c) SLE–PEER–ABORT;

d) SLE–STOP; and

e) SLE–SCHEDULE–STATUS–REPORT.

3.3 SLE APPLICATION

This section summarizes specific obligations of a RCF provider application using the SLE
API.

3.3.1 Following creation of a service instance, and setting of the configuration parameters
defined in reference [4], the application shall set the configuration parameters defined in
3.1.1 via the interface IRCF_SIAdmin.

3.3.2 The application shall update every service instance in the service element with the
status information defined in 3.1.2 by invocation of the appropriate methods in the interface
IRCF_SIUpdate.

3.4 SEQUENCE OF DIAGNOSTIC CODES

Reference [3] requires provider applications that do not perform checks in the sequence of
the diagnostic codes defined in the Recommendation to document the sequence in which
checks are actually performed.

The specification in 3.1.3.1 does not preserve the sequence of the diagnostic codes defined in
reference [3] for the operation RCF–START. This section defines the actual sequence of
checks performed by the API Service Element. For the checks that remain to be performed
by the provider application, the sequence defined in reference [3] is maintained. Applications
applying a different sequence must provide a modified documentation.

3.4.1 SEQUENCE OF RCF START DIAGNOSTIC CODES

3.4.1.1 Codes set by the API Service Element

a) ‘duplicate invoke id’;

b) ‘invalid start time’;

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page 3-8 September 2005

c) ‘invalid stop time’;

d) ‘missing time value’; and

e) ‘invalid global VC ID’.

3.4.1.2 Codes set by the Application

a) ‘out of service’;

b) ‘unable to comply’;

c) ‘invalid stop time’ (for the delivery mode ‘offline’ if an offline processing latency is
used); and

d) ‘other’.

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page A-1 September 2005

ANNEX A

RCF SPECIFIC INTERFACES

(This annex is part of the Recommended Practice)

A1 INTRODUCTION

This annex specifies RCF-specific

a) data types;

b) interfaces for operation objects; and

c) interfaces for service instances.

The specification of the interfaces follows the design patterns, conventions and the additional
conventions described in reference [4].

The presentation uses the notation and syntax of the C++ programming language as specified
in reference [5].

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page A-2 September 2005

A2 RCF TYPE DEFINITIONS

File RCF_Types.h

The following types have been derived from the ASN.1 module CCSDS-SLE-TRANSFER-
SERVICE-RCF-STRUCTURES in reference [3]. The source ASN.1 type is indicated in
brackets. For all enumeration types a special value ; ‘invalid’ is defined, which is returned if
the associated value in the operation object has not yet been set, or is not applicable in case of
a choice.

Antenna Id Format [AntennaId]
typedef enum RCF_AntennaIdFormat
{
 rcfAF_global = 0,
 rcfAF_local = 1,
 rcfAF_invalid = -1
} RCF_AntennaIdFormat;

Reference [3] defines a local form (LF) and a global form (GF) for the antenna identifier.
The local form is a string of octets and the global form is an ASN.1 object identifier.

RCF Get Parameter Diagnostic [DiagnosticRcfGet]
typedef enum RCF_GetParameterDiagnostic
{
 rcfGP_unknownParameter = 0,
 rcfGP_invalid = -1
} RCF_GetParameterDiagnostic;

RCF Start Diagnostic [DiagnosticRcfStart]
typedef enum RCF_StartDiagnostic
{
 rcfSD_outOfService = 0,
 rcfSD_unableToComply = 1,
 rcfSD_invalidStartTime = 2,
 rcfSD_invalidStopTime = 3,
 rcfSD_missingTimeValue = 4,
 rcfSD_invalidGvcId = 5,
 rcfSD_invalid = -1
} RCF_StartDiagnostic;

Channel Type
typedef enum RCF_ChannelType
{
 rcfCT_MasterChannel = 0,
 rcfCT_VirtualChannel = 1,
 rcfCT_invalid = -1
} RCF_ChannelType;

Global VCID [GlobalVcId]
typedef struct RCF_Gvcid

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page A-3 September 2005

{
 RCF_ChannelType type;
 unsigned long scid; /* 0 to 1023 */
 unsigned long version; /* 0 to 3 */
 unsigned long vcid; /* 0 to 63 */
} RCF_Gvcid;

The elements of the structure have been defined as ‘long’ to avoid padding by the compiler.
The member vcId is only defined if type is set to rcfCT_VirtualChannel.

Lock Status [LockStatus]
typedef enum RCF_LockStatus
{
 rcfLS_inLock = 0,
 rcfLS_outOfLock = 1,
 rcfLS_notInUse = 2, /*only for
 sub-carrier lock */
 rcfLS_unknown = 3,
 rcfLS_invalid = -1
} RCF_LockStatus;

Notification Type [Notification]
typedef enum RCF_NotificationType
{
 rcfNT_lossFrameSync = 0,
 rcfNT_productionStatusChange = 1,
 rcfNT_excessiveDataBacklog = 2,
 rcfNT_endOfData = 3,
 rcfNT_invalid = -1
} RCF_NotificationType;

Production Status [RcfProductionStatus]
typedef enum RCF_ProductionStatus
{
 rcfPS_running = 0,
 rcfPS_interrupted = 1,
 rcfPS_halted = 2,
 rcfPS_invalid = -1
} RCF_ProductionStatus;

/RCF Parameter Names [RcfGetParameter]
typedef enum RCF_ParameterName
{
 rcfPN_bufferSize = 4,
 rcfPN_deliveryMode = 6,
 rcfPN_latencyLimit = 15,
 rcfPN_permittedGvcidSet = 24,
 rcfPN_reportingCycle = 26,
 rcfPN_requestedGvcid = 28,
 rcfPN_returnTimeoutPeriod = 29,
 rcfPN_invalid = -1
} RCF_ParameterName;

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page A-4 September 2005

Parameters that can be read using a RCF–GET–PARAMETER operation. The parameter
name values are taken from the type ParameterName in ASN.1 module CCSDS-SLE-
TRANSFER-SERVICE-COMMON-TYPES in reference [3].

Delivery Modes
typedef enum RCF_DeliveryMode
{
 rcfDM_timelyOnline = sleDM_rtnTimelyOnline,
 rcfDM_completeOnline = sleDM_rtnCompleteOnline,
 rcfDM_offline = sleDM_rtnOffline,
 rcfDM_invalid = -1
} RCF_DeliveryMode;

The delivery modes are defined as a subset of SLE_DeliveryMode in reference [4].

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page A-5 September 2005

A3 RCF OPERATION OBJECTS

A3.1 RCF START OPERATION

Name IRCF_Start
GUID {638A73E0-7FE6-11d3-9F15-00104B4F22C0}
Inheritance: IUnknown – ISLE_Operation – ISLE_ConfirmedOperation
File IRCF_Start.H

The interface provides access to the parameters of the confirmed operation RCF–START.

Synopsis
#include <RCF_Types.h>
#include <ISLE_ConfirmedOperation.H>
interface ISLE_Time;

#define IID_IRCF_Start_DEF { 0x638a73e0, 0x7fe6, 0x11d3, \
 { 0x9f, 0x15, 0x0, 0x10, 0x4b, 0x4f, 0x22, 0xc0 } }

interface IRCF_Start : ISLE_ConfirmedOperation
{
 virtual const ISLE_Time*
 Get_StartTime() const = 0;
 virtual const ISLE_Time*
 Get_StopTime() const = 0;
 virtual const RCF_Gvcid*
 Get_Gvcid() const = 0;
 virtual RCF_StartDiagnostic
 Get_StartDiagnostic() const = 0;
 virtual void
 Set_StartTime(const ISLE_Time& time) = 0;
 virtual void
 Put_StartTime(ISLE_Time* ptime) = 0;
 virtual void
 Set_StopTime(const ISLE_Time& time) = 0;
 virtual void
 Put_StopTime(ISLE_Time* ptime) = 0;
 virtual void
 Set_Gvcid(const RCF_Gvcid& id) = 0;
 virtual void
 Put_Gvcid(RCF_Gvcid* pid) = 0;
 virtual void
 Set_StartDiagnostic(RCF_StartDiagnostic diagnostic) = 0;
};

Methods

const ISLE_Time* Get_StartTime() const;

Returns the reception time of the first frame to be delivered, or NULL if the parameter is not
defined.

const ISLE_Time* Get_StopTime() const;

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page A-6 September 2005

Returns the reception time of the last frame to be delivered, or NULL if the parameter is not
defined.

const RCF_Gvcid* Get_Gvcid() const;

Returns the global VCID requested by the service user, or a NULL pointer if the parameter
has not been set.

RCF_StartDiagnostic Get_StartDiagnostic() const;

Returns the value of the diagnostic code.

Precondition: the result is negative, and the diagnostic type is set to ‘specific’.

void Set_StartTime(const ISLE_Time& time);

Copies the argument to the receive time of the first frame to be delivered.

void Put_StartTime(ISLE_Time* ptime);

Stores the argument as receive time of the first frame to be delivered.

void Set_StopTime(const ISLE_Time& time);

Copies the argument to the receive time of the last frame to be delivered.

void Put_StopTime(ISLE_Time* ptime);

Stores the argument as receive time of the last frame to be delivered.

void Set_Gvcid(const RCF_Gvcid& id);

Copies the elements of the structure passed as argument to the parameter global VCID.

void Put_Gvcid(RCF_Gvcid* pid);

Stores the input argument to the parameter global VCID.

void Set_StartDiagnostic(RCF_StartDiagnostic diagnostic);

Sets the result to ‘negative’, the diagnostic type to ‘specific’, and stores the value of the
diagnostic code passed by the argument.

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page A-7 September 2005

Initial Values of Operation Parameters after Creation

Parameter Created directly Created by Service Instance

start time NULL NULL

stop time NULL NULL

global VCID NULL NULL

START diagnostic ‘invalid’ ‘invalid’

Checking of Invocation Parameters

Parameter Required condition

start time if the start and the stop time are used, must be earlier than stop time

stop time if the start and the stop time are used, must be later than start time

global VCID must not be NULL

 type must not be ‘invalid’

 spacecraft identifier if the version number is 0 (version 1)
 must be a value on the range 0 to 1023;
if the version number is 1 (version 2)
 must be a value in the range 0 to 255;
otherwise
 no checks are applied.

 version number must be either 0 or 1

 VC ID if the type is ‘virtual channel’ AND the version number is 0 (version 1)
 must be a value in the range 0 to 7;
if the type is ‘virtual channel’ AND the version number is 1 (version 2)
 must be a value in the range 0 to 63;
otherwise
 no checks are applied.

NOTE – In the above table, the parameter ‘version number’ refers to the transfer frame
version number, not the version of the RCF service.

Additional Return Codes for VerifiyInvocationArguments()

SLE_E_TIMERANGE specification of the start and stop times is inconsistent.
SLE_E_INVALIDID the global VC ID (spacecraft ID, version number, and VC ID)

is invalid.

Checking of Return Parameters

Parameter Required condition

START diagnostic must not be ‘invalid’ if the result is ‘negative’ and the diagnostic type is
‘specific’

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page A-8 September 2005

A3.2 RCF TRANSFER DATA OPERATION

Name IRCF_TransferData
GUID {638A73E1-7FE6-11d3-9F15-00104B4F22C0}
Inheritance: IUnknown – ISLE_Operation
File IRCF_TransferData.H

The interface provides access to the parameters of the operation RCF-TRANSFER-DATA.

Synopsis
#include <RCF_Types.h>
#include <ISLE_Operation.H>
interface ISLE_Time;

#define IID_IRCF_TransferData_DEF { 0x638a73e1, 0x7fe6, 0x11d3, \
 { 0x9f, 0x15, 0x0, 0x10, 0x4b, 0x4f, 0x22, 0xc0 } }

interface IRCF_TransferData : ISLE_Operation
{
 virtual const ISLE_Time*
 Get_EarthReceiveTime() const = 0;
 virtual RCF_AntennaIdFormat
 Get_AntennaIdFormat() const = 0;
 virtual const SLE_Octet*
 Get_AntennaIdLF(size_t& size) const = 0;
 virtual const int*
 Get_AntennaIdGF(int& length) const = 0;
 virtual char*
 Get_AntennaIdGFString() const = 0;
 virtual int
 Get_DataLinkContinuity() const = 0;
 virtual const SLE_Octet*
 Get_PrivateAnnotation(size_t& size) const = 0;
 virtual SLE_Octet*
 Remove_PrivateAnnotation(size_t& size) = 0;
 virtual const SLE_Octet*
 Get_Data(size_t& size) const = 0;
 virtual SLE_Octet*
 Remove_Data(size_t& size) = 0;
 virtual void
 Set_EarthReceiveTime(const ISLE_Time& time) = 0;
 virtual void
 Put_EarthReceiveTime(ISLE_Time* ptime) = 0;
 virtual void
 Set_AntennaIdLF(const SLE_Octet* id, size_t size) = 0;
 virtual void
 Set_AntennaIdGF(const int* id, int length) = 0;
 virtual void
 Set_AntennaIdGFString(const char* id) = 0;
 virtual void
 Set_DataLinkContinuity(int numFrames) = 0;
 virtual void
 Set_PrivateAnnotation(const SLE_Octet* pannotation,
 size_t size) = 0;
 virtual void
 Put_PrivateAnnotation(SLE_Octet* pannotation,
 size_t size) = 0;
 virtual void
 Set_Data(const SLE_Octet* pdata, size_t size) = 0;
 virtual void

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page A-9 September 2005

 Put_Data(SLE_Octet* pdata, size_t size) = 0;
};

Methods

virtual const ISLE_Time* Get_EarthReceiveTime() const;

Returns the earth receive time of the frame delivered, if the parameter has been set in the
object. Returns NULL otherwise.

RCF_AntennaIdFormat Get_AntennaIdFormat() const;

Returns the format of the antenna identifier (octet string or object identifier) or ‘invalid’
when the parameter has not been set.

const SLE_Octet* Get_AntennaIdLF(size_t& size) const;

Returns the antenna identifier in the local form, i.e. a string of octets.

Arguments
size the number of octets in the antenna ID (1 to 16)

Precondition: Get_AntennaIdFormat() returns rcfAF_local.

const int* Get_AntennaIdGF(int& length) const;

Returns the antenna identifier in the global form, i.e. an object identifier as defined by
ASN.1. In C++ this is represented as a sequence of integers.

Arguments
length the number of elements in the antenna ID

Precondition: Get_AntennaIdFormat() returns rcfAF_global.

char* Get_AntennaIdGFString() const;

Returns the antenna ID as a character string formatted as a dot separated list of numbers. The
string is allocated on the heap and must be deleted by the client.

Precondition: Get_AntennaIdFormat() returns rcfAF_global.

int Get_DataLinkContinuity() const;

Returns the data link continuity parameter, if the parameter has been set in the object, or –2 if
the parameter has not been set. A valid value can be –1, 0, or any positive number.

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page A-10 September 2005

const SLE_Octet* Get_PrivateAnnotation(size_t& size) const;

Returns a pointer to the private annotation in the object or NULL if the private annotation has
not been set.

Arguments
length the length of the private annotation in bytes

SLE_Octet* Remove_PrivateAnnotation(size_t& size);

Returns the private annotation data and removes them form the object. The memory
allocated by the parameter must be released by the client. If the parameter has not been set
returns NULL.

Arguments
length the length of the private annotation in bytes

const SLE_Octet* Get_Data(size_t& size) const;

Returns a pointer to the frame in the object or NULL if the frame has not been inserted.

Arguments
length the length of the frame in bytes

SLE_Octet* Remove_Data(size_t& size);

Returns the frame and removes it form the object. The memory allocated by the frame must
be released by the client. If the parameter has not been set returns NULL.

Arguments
length the length of the frame in bytes

void Set_EarthReceiveTime(const ISLE_Time& time);

Copies the value of the argument to the earth receive time.

void Put_EarthReceiveTime(ISLE_Time* ptime);

Stores the argument to the parameter earth receive time.

void Set_AntennaIdLF(const SLE_Octet* id, size_t size);

Sets the antenna id format to ‘local form’ and the antenna id to the value of the argument.
The local form of the antenna id is a string of octets.

void Set_AntennaIdGF(const int* id, int length);

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page A-11 September 2005

Sets the antenna id format to ‘global form’ and the antenna id to the value of the argument.
The global form the antenna id is an object identifier as defined by ASN.1, represented as a
sequence of integers.

void Set_AntennaIdGFString(const char* id);

Sets the antenna id format to ‘global form’ and the antenna id to the value of the argument. If
the argument is badly formatted, the parameter is reset to its initial state, i.e. ‘not set’.

Arguments
id an object identifier formatted as a dot separated list of numbers

void Set_DataLinkContinuity(int numFrames);

Sets the parameter data link continuity to the value of the argument.

void Set_PrivateAnnotation(const SLE_Octet* pannotation, size_t
size);

Copies size bytes from the argument pannotation to the parameter private annotation.

Arguments
pannotation pointer to the private annotation
length the length of the annotation in bytes

void Put_PrivateAnnotation(SLE_Octet* pannotation, size_t size);

Stores the argument pannotation to the parameter private annotation.

Arguments
pannotation pointer to the private annotation
length the length of the annotation in bytes

void Set_Data(const SLE_Octet* pdata, size_t size);

Copies size bytes from the argument pdata to the parameter ‘data’.

Arguments
pdata pointer to the data
length the length of the data in bytes

void Put_Data(SLE_Octet* pdata, size_t size);

Stores the argument pdata to the parameter ‘data’.

Arguments

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page A-12 September 2005

pdata pointer to the data
length the length of the data in bytes

Initial Values of Operation Parameters after Creation

Parameter Created directly Created by Service Instance

earth receive time NULL NULL

antenna id NULL NULL

antenna id format ‘invalid’ ‘invalid’

data link continuity -2 -2

private annotation NULL NULL

data NULL NULL

Checking of Invocation Parameters

Parameter Required condition

earth receive time must not be NULL

antenna id must not be NULL

data link continuity must be > -2

data must not be NULL

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page A-13 September 2005

A3.3 RCF SYNC NOTIFY OPERATION

Name IRCF_SyncNotify
GUID {638A73E2-7FE6-11d3-9F15-00104B4F22C0}
Inheritance: IUnknown – ISLE_Operation
File IRCF_SyncNotify.H

The interface provides access to the parameters of the unconfirmed operation
RCF-SYNC-NOTIFY.

Synopsis
#include <RCF_Types.h>
#include <ISLE_Operation.H>
interface ISLE_Time;

#define IID_IRCF_SyncNotify_DEF { 0x638a73e2, 0x7fe6, 0x11d3, \
 { 0x9f, 0x15, 0x0, 0x10, 0x4b, 0x4f, 0x22, 0xc0 } }

interface IRCF_SyncNotify : ISLE_Operation
{
 virtual RCF_NotificationType
 Get_NotificationType() const = 0;
 virtual const ISLE_Time*
 Get_LossOfLockTime() const = 0;
 virtual RCF_LockStatus
 Get_CarrierDemodLock() const = 0;
 virtual RCF_LockStatus
 Get_SubCarrierDemodLock() const = 0;
 virtual RCF_LockStatus
 Get_SymbolSyncLock() const = 0;
 virtual RCF_ProductionStatus
 Get_ProductionStatus() const = 0;
 virtual void
 Set_LossOfFrameSync(const ISLE_Time& time,
 RCF_LockStatus symbolSyncLock,
 RCF_LockStatus subCarrierDemodLock,
 RCF_LockStatus carrierDemodLock) = 0;
 virtual void
 Set_ProductionStatusChange(RCF_ProductionStatus status) = 0;
 virtual void
 Set_DataDiscarded() = 0;
 virtual void
 Set_EndOfData() = 0;
};

Methods

RCF_NotificationType Get_NotificationType() const;

Returns the type of the notification.

const ISLE_Time* Get_LossOfLockTime() const;

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page A-14 September 2005

Returns the time at which the frame synchronizer lost lock.

Precondition: notification type is ‘loss of frame synchronization’.

RCF_LockStatus Get_CarrierDemodLock() const;

Returns the lock status of the carrier demodulation process.

Precondition: notification type is ‘loss of frame synchronization’.

RCF_LockStatus Get_SubCarrierDemodLock() const;

Returns the lock status of the sub-carrier demodulation process.

Precondition: notification type is ‘loss of frame synchronization’.

RCF_LockStatus Get_SymbolSyncLock() const;

Returns the lock status of the symbol synchronization process.

Precondition: notification type is ‘loss of frame synchronization’.

RCF_ProductionStatus Get_ProductionStatus() const;

Returns the production status.

Precondition: notification type is ‘production status change’.

void Set_LossOfFrameSync(const ISLE_Time& time,
 RCF_LockStatus symbolSyncLock,
 RCF_LockStatus subCarrierDemodLock,
 RCF_LockStatus carrierDemodLock);

Sets the notification type to ‘loss of frame synchronization’ and the notification values as
specified by the arguments.

Arguments
time the time at which the frame synchronizer lost lock
symbolSyncLock the lock status of the symbol synchronization process
subCarrierDemodLock the lock status of the sub-carrier demodulation process
carrierDemodLock the lock status of the carrier demodulation process

void Set_ProductionStatusChange(RCF_ProductionStatus status);

Sets the notification type to ‘production status change’ and the notification value as defined
by the argument.

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page A-15 September 2005

void Set_DataDiscarded();

Sets the notification type to ‘data discarded due to excessive backlog’.

void Set_EndOfData();

Sets the notification type to ‘end of data’.

Initial Values of Operation Parameters after Creation

Parameter Created directly Created by Service Instance

notification-type ‘invalid’ ‘invalid’

loss of lock time NULL NULL

symbol-sync-lock-
status

‘invalid’ ‘invalid’

subcarrier-lock-status ‘invalid’ ‘invalid’

carrier-lock-status ‘invalid’ ‘invalid’

production-status ‘invalid’ ‘invalid’

Checking of Invocation Parameters

Parameter Required condition

notification-type must not be ‘invalid’

loss of lock time if notification type is ‘loss of frame synchronization’ must not be NULL

symbol-sync-lock-
status

if notification type is ‘loss of frame synchronization’ must not be
‘invalid’ or 'not in use'

subcarrier-lock-status if notification type is ‘loss of frame synchronization’ must not be
‘invalid’

carrier-lock-status if notification type is ‘loss of frame synchronization’ must not be
‘invalid’ or 'not in use'

production-status if notification type is ‘production status change’ must not be ‘invalid’

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page A-16 September 2005

A3.4 RCF STATUS REPORT OPERATION

Name IRCF_StatusReport
GUID {638A73E3-7FE6-11d3-9F15-00104B4F22C0}
Inheritance: IUnknown – ISLE_Operation
File IRCF_StatusReport.H

The interface provides access to the parameters of the unconfirmed operation
RCF-STATUS-REPORT.

Synopsis
#include <RCF_Types.h>
#include <ISLE_Operation.H>

#define IID_IRCF_StatusReport_DEF { 0x638a73e3, 0x7fe6, 0x11d3, \
 { 0x9f, 0x15, 0x0, 0x10, 0x4b, 0x4f, 0x22, 0xc0 } }

interface IRCF_StatusReport : ISLE_Operation
{
 virtual unsigned long
 Get_NumFrames() const = 0;
 virtual RCF_LockStatus
 Get_FrameSyncLock() const = 0;
 virtual RCF_LockStatus
 Get_CarrierDemodLock() const = 0;
 virtual RCF_LockStatus
 Get_SubCarrierDemodLock() const = 0;
 virtual RCF_LockStatus
 Get_SymbolSyncLock() const = 0;
 virtual RCF_ProductionStatus
 Get_ProductionStatus() const = 0;
 virtual void
 Set_NumFrames(unsigned long count) = 0;
 virtual void
 Set_FrameSyncLock(RCF_LockStatus status) = 0;
 virtual void
 Set_CarrierDemodLock(RCF_LockStatus status) = 0;
 virtual void
 Set_SubCarrierDemodLock(RCF_LockStatus status) = 0;
 virtual void
 Set_SymbolSyncLock(RCF_LockStatus status) = 0;
 virtual void
 Set_ProductionStatus(RCF_ProductionStatus status) = 0;
};

Methods

unsigned long Get_NumFrames() const;

Returns the total number of frames delivered.

RCF_LockStatus Get_FrameSyncLock() const;

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page A-17 September 2005

Returns the lock status of the frame synchronization process.

RCF_LockStatus Get_CarrierDemodLock() const;

Returns the lock status of the carrier demodulation process.

RCF_LockStatus Get_SubCarrierDemodLock() const;

Returns the lock status of the sub-carrier demodulation process.

RCF_LockStatus Get_SymbolSyncLock() const;

Returns the lock status of the symbol synchronization process.

RCF_ProductionStatus Get_ProductionStatus() const;

Returns the production status.

void Set_NumFrames(unsigned long count);

Sets the total number of frames delivered as defined by the argument.

void Set_FrameSyncLock(RCF_LockStatus status);

Sets the frame synchronizer lock status as defined by the argument.

void Set_CarrierDemodLock(RCF_LockStatus status);

Sets the carrier demodulator lock status as defined by the argument.

void Set_SubCarrierDemodLock(RCF_LockStatus status);

Sets the sub-carrier demodulator lock status as defined by the argument.

void Set_SymbolSyncLock(RCF_LockStatus status);

Sets the symbol synchronizer lock status as defined by the argument.

void Set_ProductionStatus(RCF_ProductionStatus status);

Sets the production status as defined by the argument.

Initial Values of Operation Parameters after Creation

Parameter Created directly

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page A-18 September 2005

Parameter Created directly

number-of-frames 0

frame-sync-lock-status ‘invalid’

symbol-sync-lock-status ‘invalid’

subcarrier-lock-status ‘invalid’

carrier-lock-status ‘invalid’

production-status ‘invalid’

NOTE — The interface ISLE_SIOpFactory does not support creation of status
report operation objects, as this operation is handled by the service instance internally.

Checking of Invocation Parameters

Parameter Required condition

frame-sync-lock-status must not be ‘invalid’ or 'not in use'

symbol-sync-lock-status must not be ‘invalid’ or 'not in use'

subcarrier-lock-status must not be ‘invalid’

carrier-lock-status must not be ‘invalid’ or 'not in use'

production-status must not be ‘invalid’

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page A-19 September 2005

A3.5 RCF GET PARAMETER OPERATION

Name IRCF_GetParameter
GUID {638A73E4-7FE6-11d3-9F15-00104B4F22C0}
Inheritance: IUnknown – ISLE_Operation – ISLE_ConfirmedOperation
File IRCF_GetParameter.H

The interface provides access to the parameters of the confirmed operation
RCF-GET-PARAMETER.

Synopsis
#include <RCF_Types.h>
#include <ISLE_ConfirmedOperation.H>

#define IID_IRCF_GetParameter_DEF { 0x638a73e4, 0x7fe6, 0x11d3, \
 { 0x9f, 0x15, 0x0, 0x10, 0x4b, 0x4f, 0x22, 0xc0 } }

interface IRCF_GetParameter : ISLE_ConfirmedOperation
{
 virtual RCF_ParameterName
 Get_RequestedParameter() const = 0;
 virtual RCF_ParameterName
 Get_ReturnedParameter() const = 0;
 virtual RCF_DeliveryMode
 Get_DeliveryMode() const = 0;
 virtual unsigned short
 Get_LatencyLimit() const = 0;
 virtual unsigned long
 Get_TransferBufferSize() const = 0;
 virtual const RCF_Gvcid*
 Get_RequestedGvcid() const = 0;
 virtual const RCF_Gvcid*
 Get_PermittedGvcidSet(size_t& size) const = 0;
 virtual RCF_Gvcid*
 Remove_PermittedGvcidSet(size_t& size) = 0;
 virtual unsigned long
 Get_ReportingCycle() const = 0;
 virtual unsigned long
 Get_ReturnTimeoutPeriod() const = 0;
 virtual RCF_GetParameterDiagnostic
 Get_GetParameterDiagnostic() const = 0;
 virtual void
 Set_RequestedParameter(RCF_ParameterName name) = 0;
 virtual void
 Set_DeliveryMode(RCF_DeliveryMode mode) = 0;
 virtual void
 Set_LatencyLimit(unsigned short limit) = 0;
 virtual void
 Set_TransferBufferSize(unsigned long size) = 0;
 virtual void
 Set_RequestedGvcid(const RCF_Gvcid* id) = 0;
 virtual void
 Put_RequestedGvcid(RCF_Gvcid* pid) = 0;
 virtual void
 Set_PermittedGvcidSet(const RCF_Gvcid* idSet,
 size_t size) = 0;
 virtual void
 Put_PermittedGvcidSet(RCF_Gvcid* idSet,
 size_t size) = 0;

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page A-20 September 2005

 virtual void
 Set_ReportingCycle(unsigned long cycle) = 0;
 virtual void
 Set_ReturnTimeoutPeriod(unsigned long period) = 0;
 virtual void
 Set_GetParameterDiagnostic(RCF_GetParameterDiagnostic
 diagostic) = 0;
};

Methods

RCF_ParameterName Get_RequestedParameter() const;

Returns the identification of the parameter whose value shall be returned.

RCF_ParameterName Get_ReturnedParameter() const;

Returns the identification of the parameter whose value is reported.

RCF_DeliveryMode Get_DeliveryMode() const;

Returns the delivery mode of the service instance.

Precondition: the returned parameter is delivery-mode.

unsigned short Get_LatencyLimit() const;

Returns the latency limit defined by service management. If the delivery mode is ‘offline’
returns zero.

Precondition: the returned parameter is latency-limit.

unsigned long Get_TransferBufferSize() const;

Returns the size of the transfer buffer as the maximum number of RCF–TRANSFER–DATA
invocations and RCF–SYNC–NOTIFY invocations that can be stored in the buffer.

Precondition: the returned parameter is transfer-buffer-size.

const RCF_Gvcid* Get_RequestedGvcid() const;

Returns the requested global VCID if that has been set. Otherwise returns a NULL pointer.
This parameter is only meaningful if the VCID has been set by a START operation.

Precondition: the returned parameter is ‘requested global VCID’.

const RCF_Gvcid* Get_PermittedGvcidSet(size_t& size) const;

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page A-21 September 2005

Returns the set of global VCIDs to which the service instance has access. If the parameter has
not been set or the set has been removed, returns a NULL pointer.

Precondition: the returned parameter is ‘permitted global VCID set’.

RCF_Gvcid* Remove_PermittedGvcidSet(size_t& size);

Returns the list of global VCIDs to which the service instance has access and removes the list
from the object. If the parameter has not been set or the list has been removed, returns a
NULL pointer.

Precondition: the returned parameter is ‘permitted global VCID set’.

unsigned long Get_ReportingCycle() const;

Returns the reporting cycle requested by the user if periodic reporting is active. If reporting is
not active, returns zero.

Precondition: the returned parameter is ‘reporting cycle’.

unsigned long Get_ReturnTimeoutPeriod() const;

Returns the return timeout period used by the provider.

Precondition: the returned parameter is ‘return timeout period’.

RCF_GetParameterDiagnostic Get_GetParameterDiagnostic() const;

Returns the diagnostic code.

Precondition: the result is negative, and the diagnostic type is set to ‘specific’.

void Set_RequestedParameter(RCF_ParameterName name);

Sets the parameter for which the provider shall report the value.

void Set_DeliveryMode(RCF_DeliveryMode mode);

Sets the returned parameter name to ‘delivery mode’ and the value as defined by the
argument.

void Set_LatencyLimit(unsigned short limit);

Sets the returned parameter name to ‘latency limit’ and the value as defined by the argument.

void Set_TransferBufferSize(unsigned long size);

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page A-22 September 2005

Sets the returned parameter name to ‘transfer buffer size’ and the value as defined by the
argument.

void Set_RequestedGvcid(const RCF_Gvcid* id);

Sets the returned parameter name to ‘requested global VCID’ and copies its value from the
argument.

void Put_RequestedGvcid(RCF_Gvcid* pid);

Sets the returned parameter name to ‘requested global VCID’ and stores the argument as the
value of this parameter.

void Set_PermittedGvcidSet(const RCF_Gvcid* idSet, size_t size);

Sets the returned parameter name to ‘permitted global VCID set’ and copies its value from
the argument.

void Put_PermittedGvcidSet(RCF_Gvcid* idSet, size_t size);

Sets the returned parameter name to ‘permitted global VCID set’ and stores the argument as
the value of this parameter.

void Set_ReportingCycle(unsigned long cycle);

Sets the returned parameter name to ‘reporting cycle’ and the value as defined by the
argument.

void Set_ReturnTimeoutPeriod(unsigned long period);

Sets the returned parameter name to ‘return timeout period’ and the value as defined by the
argument.

void Set_GetParameterDiagnostic(RCF_GetParameterDiagnostic
diagostic);

Sets the result to ‘negative’, the diagnostic type to ‘specific’, and stores the value of the
diagnostic code passed by the argument.

Initial Values of Operation Parameters after Creation

Parameter Created directly Created by Service Instance

requested parameter ‘invalid’ ‘invalid’

returned parameter ‘invalid’ ‘invalid’

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page A-23 September 2005

delivery-mode ‘invalid’ ‘invalid’

latency-limit 0 0

transfer-buffer-size 0 0

requested-global-VCID NULL NULL

permitted-global-VCID-
set

NULL NULL

reporting-cycle 0 0

return-timeout-period 0 0

GET PARAMETER diagnostic ‘invalid’ ‘invalid’

Checking of Invocation Parameters

Parameter Required condition

requested parameter must not be ‘invalid’

Checking of Return Parameters

Parameter Required condition

returned parameter must be the same as ‘requested parameter’

delivery-mode If the returned parameter is ‘delivery mode’ must not be ‘invalid’

transfer-buffer-size If the returned parameter is ‘transfer buffer size' must not be 0

requested-global-VCID [V1:] if the returned parameter is ‘requested global VCID’ must not be
NULL and must have the following structure

[V2:] if the returned parameter is ‘requested global VCID’ must either
be NULL or must have the following structure

 Type must not be ‘invalid’

 spacecraft ID if the version number is 0 (version 1)
 must be a value on the range 0 to 1023;
if the version number is 1 (version 2)
 must be a value in the range 0 to 255;
otherwise
 no checks are applied.

 version number must be either 0 or 1

 VCID if the type is ‘virtual channel’ AND the version number is 0 (version 1)
 must be a value in the range 0 to 7
if the type is ‘virtual channel’ AND the version number is 1 (version 2)
 must be a value in the range 0 to 63
otherwise
 no checks are applied

permitted-global-VCID-
set

if the returned parameter is ‘permitted global VCID set’ must not be
NULL

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page A-24 September 2005

Parameter Required condition

return-timeout-period If the returned parameter is ‘return timeout period’ must not be 0

GET PARAMETER diagnostic must not be ‘invalid’ if the result is ‘negative’ and the diagnostic type is
‘specific’

NOTE — In the above table, the parameter ‘version number’ refers to the transfer frame
version number, not the version of the RCF service.

The interface ensures consistency between the returned parameter name and the parameter
value, as the client cannot set the returned parameter name. Therefore, this consistency need
not be checked on the provider side. The checks defined above only need to be performed
when the return is received by the service user.

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page A-25 September 2005

A4 RCF SERVICE INSTANCE INTERFACES

A4.1 SERVICE INSTANCE CONFIGURATION

Name IRCF_SIAdmin
GUID {638A73E5-7FE6-11d3-9F15-00104B4F22C0}
Inheritance: IUnknown
File IRCF_SIAdmin.H

The interface provides write and read access to the RCF-specific service instance
configuration-parameters. All configuration parameters must be set as part of service
instance configuration. When the method ConfigCompleted() is called on the
interface ISLE_SIAdmin, the service element checks that all required parameters have
been set and returns an error when the configuration is not complete.

Configuration parameters must not be set after successful return of the method
ConfigCompleted(). The effect of invoking these methods at a later stage is undefined.

As a convenience for the application, the interface provides read access to the configuration
parameters, except for parameters used to initialise the status report. If retrieval methods are
called before configuration, the value returned is undefined.

Synopsis
#include <RCF_Types.h>
#include <SLE_SCM.H>

#define IID_IRCF_SIAdmin_DEF { 0x638a73e5, 0x7fe6, 0x11d3, \
 { 0x9f, 0x15, 0x0, 0x10, 0x4b, 0x4f, 0x22, 0xc0 } }

interface IRCF_SIAdmin : IUnknown
{
 virtual void
 Set_DeliveryMode(RCF_DeliveryMode mode) = 0;
 virtual void
 Set_LatencyLimit(unsigned short limit) = 0;
 virtual void
 Set_TransferBufferSize(unsigned long size) = 0;
 virtual void
 Set_PermittedGvcidSet(const RCF_Gvcid* idSet,
 size_t size) = 0;
 virtual void
 Set_InitialProductionStatus(RCF_ProductionStatus status) = 0;
 virtual void
 Set_InitialFrameSyncLock(RCF_LockStatus status) = 0;
 virtual void
 Set_InitialCarrierDemodLock(RCF_LockStatus status) = 0;
 virtual void
 Set_InitialSubCarrierDemodLock(RCF_LockStatus status) = 0;
 virtual void
 Set_InitialSymbolSyncLock(RCF_LockStatus status) = 0;
 virtual RCF_DeliveryMode
 Get_DeliveryMode() const = 0;
 virtual unsigned short
 Get_LatencyLimit() const = 0;

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page A-26 September 2005

 virtual unsigned long
 Get_TransferBufferSize() const = 0;
 virtual const RCF_Gvcid*
 Get_PermittedGvcidSet(size_t& size) const = 0;
};

Methods

void Set_DeliveryMode(RCF_DeliveryMode mode);

Sets the delivery mode of the service instance.

void Set_LatencyLimit(unsigned short limit);

Sets the latency limit in seconds for transmission of the transfer buffer. If the delivery mode
is offline, the parameter need not be set.

void Set_TransferBufferSize(unsigned long size);

Sets the maximum number of RCF–TRANSFER–DATA invocations and RCF–SYNC–
NOTIFY invocations that shall be stored in one transfer buffer PDU.

void Set_PermittedGvcidSet(const RCF_Gvcid* idSet, size_t size);

Sets the set of global VCIDs to which the service instance has access. This set must not be
empty and all members must be valid global VCIDs.

void Set_InitialProductionStatus(RCF_ProductionStatus status);

Sets the value of the production status at the time of configuration. The parameter is used to
initialise status report parameters. If the delivery mode is ‘offline’, this parameter need not
be set.

void Set_InitialFrameSyncLock(RCF_LockStatus status);

Sets the lock status of the frame synchronization process at the time of configuration. The
parameter is used to initialise status report parameters. If the delivery mode is ‘offline’, this
parameter need not be set.

void Set_InitialCarrierDemodLock(RCF_LockStatus status);

Sets the lock status of the carrier demodulation process at the time of configuration. The
parameter is used to initialise status report parameters. If the delivery mode is ‘offline’, this
parameter need not be set.

void Set_InitialSubCarrierDemodLock(RCF_LockStatus status);

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page A-27 September 2005

Sets the lock status of the sub-carrier demodulation process at the time of configuration. The
parameter is used to initialise status report parameters. If the delivery mode is ‘offline’, this
parameter need not be set.

void Set_InitialSymbolSyncLock(RCF_LockStatus status);

Sets the lock status of the symbol synchronization process at the time of configuration. The
parameter is used to initialise status report parameters. If the delivery mode is ‘offline’, this
parameter need not be set.

RCF_DeliveryMode Get_DeliveryMode() const;

Returns the value of the parameter delivery-mode.

unsigned short Get_LatencyLimit() const;

Returns the value of the parameter latency-limit.

unsigned long Get_TransferBufferSize() const;

Returns the value of the parameter transfer-buffer-size.

const RCF_Gvcid* Get_PermittedGvcidSet(size_t& size) const;

Returns the set of global VCIDs to which the service instance has access.

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page A-28 September 2005

A4.2 UPDATE OF SERVICE INSTANCE PARAMETERS

Name IRCF_SIUpdate
GUID {638A73E6-7FE6-11d3-9F15-00104B4F22C0}
Inheritance: IUnknown
File IRCF_SIUpdate.H

The interface provides methods to update parameters that shall be reported to the service user
via the operation STATUS-REPORT. In order to keep this information up to date the
appropriate methods of this interface must be called whenever the information changes,
independent of the state of the service instance.

The interface provides read access to the parameters set via this interface and to parameters
accumulated or derived by the API according to the specifications in 3.1. The API sets the
parameters to the initial values specified at the end of this section when the service instance is
configured. Parameter values retrieved before configuration are undefined.

In the delivery mode ‘offline’, status reporting is not supported. Therefore configuration
parameters used to initialise the status report need not be supplied and the status information
need not be updated. If the initial values and updates are not supplied, the retrieval methods
return the values defined at the end of this section. Values accumulated by the service
element are kept up to date for all delivery modes, including the mode ‘offline’.

Synopsis
#include <RCF_Types.h>
#include <SLE_SCM.H>

#define IID_IRCF_SIUpdate_DEF { 0x638a73e6, 0x7fe6, 0x11d3, \
 { 0x9f, 0x15, 0x0, 0x10, 0x4b, 0x4f, 0x22, 0xc0 } }

interface IRCF_SIUpdate : IUnknown
{
 virtual void
 Set_ProductionStatus(RCF_ProductionStatus status) = 0;
 virtual void
 Set_FrameSyncLock(RCF_LockStatus status) = 0;
 virtual void
 Set_CarrierDemodLock(RCF_LockStatus status) = 0;
 virtual void
 Set_SubCarrierDemodLock(RCF_LockStatus status) = 0;
 virtual void
 Set_SymbolSyncLock(RCF_LockStatus status) = 0;
 virtual RCF_ProductionStatus
 Get_ProductionStatus() const = 0;
 virtual RCF_LockStatus
 Get_FrameSyncLock() const = 0;
 virtual RCF_LockStatus
 Get_CarrierDemodLock() const = 0;
 virtual RCF_LockStatus
 Get_SubCarrierDemodLock() const = 0;
 virtual RCF_LockStatus
 Get_SymbolSyncLock() const = 0;
 virtual unsigned long

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page A-29 September 2005

 Get_NumFrames() const = 0;
 virtual RCF_Gvcid*
 Get_RequestedGvcid() const = 0;
};

Methods

void Set_ProductionStatus(RCF_ProductionStatus status);

The method must be called whenever the production status changes to set the new value.

void Set_FrameSyncLock(RCF_LockStatus status);

The method must be called whenever the lock status of the frame synchronization process
changes to set the new value.

void Set_CarrierDemodLock(RCF_LockStatus status);

The method must be called whenever the lock status of the carrier demodulation process
changes to set the new value.

void Set_SubCarrierDemodLock(RCF_LockStatus status);

The method must be called whenever the lock status of the sub-carrier demodulation process
changes to set the new value.

void Set_SymbolSyncLock(RCF_LockStatus status);

The method must be called whenever the lock status of the symbol synchronization process
changes to set the new value.

RCF_ProductionStatus Get_ProductionStatus() const;

Returns the value of the production status.

RCF_LockStatus Get_FrameSyncLock() const;

Returns the lock status of the frame synchronization process.

RCF_LockStatus Get_CarrierDemodLock() const;

Returns the lock status of the carrier demodulation process.

RCF_LockStatus Get_SubCarrierDemodLock() const;

Returns the lock status of the sub-carrier demodulation process.

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page A-30 September 2005

RCF_LockStatus Get_SymbolSyncLock() const;

Returns the lock status of the symbol synchronization process.

unsigned long Get_NumFrames() const;

Returns the total number of frames delivered by the service instance. In the delivery mode
timely online this number can be smaller than the number of frames passed to the service
element because data might have been discarded because of excessive backlog.

RCF_Gvcid* Get_RequestedGvcid() const;

Returns a copy of the global VCID requested by the service user, or a NULL pointer if the
service instance is not in the state ‘active’. If a non-NULL pointer is returned, the client must
release the memory allocated by the global VCID.

Initial Parameter Values

Parameter Value

production-status initial production status set via the interface IRCF_SIAdmin, in
the delivery mode ‘offline’ set to ‘invalid’ if not set via
IRCF_SIAdmin

frame-sync-lock-
status

initial frame synchronizer lock set via the interface
IRCF_SIAdmin, in the delivery mode ‘offline’ set to ‘unknown’ if
not set via IRCF_SIAdmin

symbol-sync-lock-
status

initial symbol synchronizer lock set via the interface
IRCF_SIAdmin, in the delivery mode ‘offline’ set to ‘unknown’ if
not set via IRCF_SIAdmin

subcarrier-lock-
status

initial sub-carrier demodulator lock set via the interface
IRCF_SIAdmin, in the delivery mode ‘offline’ set to ‘unknown’ if not
set via IRCF_SIAdmin

carrier-lock-status initial carrier demodulator lock set via the interface
IRCF_SIAdmin, in the delivery mode ‘offline’ set to ‘unknown’ if
not set via IRCF_SIAdmin

number-of-frames-
delivered

0

requested-global-VCID NULL (if NULL, RCF-GET-PARAMETER returns the first element of
the ‘permitted global VCID set’)

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page B-1 September 2005

ANNEX B

ACRONYMS

(This annex is not part of the Recommended Practice)

This annex expands the acronyms used throughout this Recommended Practice.

API Application Program Interface

CCSDS Consultative Committee for Space Data Systems

GUID Globally Unique Identifier

GVCID Global Virtual Channel Identifier

ID Identifier

IEC International Electrotechnical Commission

ISO International Organization for Standardization

MC Master Channel

OMG Object Management Group

PDU Protocol Data Unit

RCF Return Channel Frames

SI Service Instance

SLE Space Link Extension

UML Unified Modelling Language

VC Virtual Channel

PRE-RELEASE

PRE-RELEASE

DRAFT CCSDS RECOMMENDED PRACTICE FOR A SLE RCF SERVICE API

CCSDS 915.2-M-0 Page C-1 September 2005

ANNEX C

INFORMATIVE REFERENCES

(This annex is not part of the Recommended Practice)

[C1] Procedures Manual for the Consultative Committee for Space Data Systems. CCSDS
A00.0-Y-9, Yellow Book, Issue 9, Washington, D.C.: CCSDS, November 2003.

[C2] Cross Support Concept – Part 1: Space Link Extension Services. Report Concerning
Space Data Systems Standards, CCSDS 910.3-G-2, Green Book, Issue 2,
Washington, D.C.: CCSDS, April 2002.

[C3] Space Link Extension – Internet Protocol for Transfer Services. Draft
Recommendation for Space Data System Standards, CCSDS 913.1-W-1, White Book,
Issue 1, Washington, D.C.: CCSDS, To be issued.

[C4] Space Link Extension – Application Program Interface for Transfer Services –
Summary of Concept and Rationale. Draft Report Concerning Space Data System
Standards, CCSDS 914.1-W-1, White Book, Issue 1, Washington, D.C.: CCSDS, To
be issued.

[C5] Space Link Extension – Application Program Interface for Transfer Services –
Application Programmer’s Guide. Draft Report Concerning Space Data System
Standards, CCSDS 914.2-W-1, White Book, Issue 1, Washington, D.C.: CCSDS, To
be issued.

[C6] The COM/DCOM Reference, The Open Group, Doc. Number AX-01, 1999
(http://www.opengroup.org/products/publications/catalog/ax01.htm).

[C7] Unified Modelling Language (UML), Version 1.5, Object Management Group,
formal/2003-03-01, March 2003
(http://www.omg.org/technology/documents/modeling_spec_catalog.htm).

PRE-RELEASE

PRE-RELEASE

