[image: image1.emf]
Draft Report Concerning
Space Data System Standards

	xml telemetric & command exchange Core

Draft best practices Report

CCSDS 660.0-M-0.0

Draft Magenta Book
May 10

AUTHORITY

	

	
	Issue:
	Draft Magenta Book, Issue 0.0
	

	
	Date:
	May 10
	

	
	Location:
	Not Applicable
	

	

(WHEN THIS INFORMATIONAL REPORT IS FINALIZED, IT WILL CONTAIN THE FOLLOWING STATEMENT OF AUTHORITY:)

This document has been approved for publication by the Management Council of the Consultative Committee for Space Data Systems (CCSDS) and reflects the consensus of technical panel experts from CCSDS Member Agencies. The procedure for review and authorization of CCSDS Reports is detailed in the Procedures Manual for the Consultative Committee for Space Data Systems.
This document is published and maintained by:

CCSDS Secretariat

Office of Space Communication (Code M-3)

National Aeronautics and Space Administration

Washington, DC 20546, USA

FOREWORD

This report is intended for use by any implementer of the XTCE 1.1 Specification published by CCSDS and the Object Management Group (OMG). It attempts to explain all aspects of XTCE1.1 -- all its elements and attributes and the various ways in which they interact to form cohesive descriptions of telemetry and commanding. It also includes many examples of these various concepts, directly in XML.
It is expected that a normal amount of expansion, deletion, or modification to this Report may occur over time. This Report is therefore subject to CCSDS document management and change control procedures, which are defined in the Procedures Manual for the Consultative Committee for Space Data Systems. Current versions of CCSDS documents are maintained at the CCSDS Web site:

http://www.ccsds.org/
Questions relating to the contents or status of this Report should be addressed to the CCSDS Secretariat at the address on page i.

At time of publication, the active Member and Observer Agencies of the CCSDS were:

Member Agencies
· Agenzia Spaziale Italiana (ASI)/Italy.

· British National Space Centre (BNSC)/United Kingdom.

· Canadian Space Agency (CSA)/Canada.

· Centre National d’Etudes Spatiales (CNES)/France.

· Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)/Germany.

· European Space Agency (ESA)/Europe.

· Federal Space Agency (Roskosmos)/Russian Federation.

· Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.

· Japan Aerospace Exploration Agency (JAXA)/Japan.

· National Aeronautics and Space Administration (NASA)/USA.

Observer Agencies
· Austrian Space Agency (ASA)/Austria.

· Belgian Federal Science Policy Office (BFSPO)/Belgium.

· Central Research Institute of Machine Building (TsNIIMash)/Russian Federation.

· Centro Tecnico Aeroespacial (CTA)/Brazil.

· Chinese AcaCCSDSy of Space Technology (CAST)/China.

· Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia.

· Danish Space Research Institute (DSRI)/Denmark.

· European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)/Europe.

· European Telecommunications Satellite Organization (EUTELSAT)/Europe.

· Hellenic National Space Committee (HNSC)/Greece.

· Indian Space Research Organization (ISRO)/India.

· Institute of Space Research (IKI)/Russian Federation.

· KFKI Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.

· Korea Aerospace Research Institute (KARI)/Korea.

· MIKOMTEK: CSIR (CSIR)/Republic of South Africa.

· Ministry of Communications (MOC)/Israel.

· National Institute of Information and Communications Technology (NICT)/Japan.

· National Oceanic & Atmospheric Administration (NOAA)/USA.

· National Space Program Office (NSPO)/Taipei.

· Space and Upper Atmosphere Research Commission (SUPARCO)/Pakistan.

· Swedish Space Corporation (SSC)/Sweden.

· United States Geological Survey (USGS)/USA.

DOCUMENT CONTROL

	Document
	Title and Issue
	Date
	Status

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

CONTENTS

Section
Page

1-11
Introduction

1.1
Purpose and Scope
1-1
1.2
Applicability
1-1
1.3
XMLSpy Diagrams
1-1
2
Overview
2-3
3
General XTCE Concepts
3-4
3.1
What is XTCE?
3-4
3.2
How XTCE is Constructed
3-4
3.3
XTCE Overview: Core Concepts and Common Elements
3-5
3.3.1
Overall Structure
3-5
3.3.2
NameReferences
3-6
3.3.2.1
Shared NameReference Namespaces
3-7
3.3.2.2
Syntax for NameReferences
3-8
3.3.2.2.1
ParameterInstanceReference Syntax Rules
3-9
3.3.2.3
Suggested Parser/Lexer NameReference Grammar
3-10
3.3.3
Common XTCE Elements
3-10
3.3.3.1
Elements of the NameDescriptionType
3-10
3.3.3.1.1
name Attribute
3-10
3.3.3.1.2
shortDescription Attribute
3-11
3.3.3.1.3
LongDescription Element
3-11
3.3.3.1.4
AliasSet
3-11
3.3.3.1.5
AncillaryDataSet
3-11
3.3.3.2
Comparison Elements of ComparisonType
3-12
3.3.3.2.1
Comparison
3-12
3.3.3.2.1.1
value Attribute
3-13
3.3.3.2.2
ComparisonList
3-13
3.3.3.2.3
Boolean Expression
3-14
3.3.3.2.3.1
Condition
3-15
3.3.3.2.4
CustomAlgorithm
3-15
3.3.3.2.5
MatchCriteria
3-17
3.3.3.2.6
ContextMatch
3-17
3.3.3.3
ParameterInstanceReferences
3-18
3.3.3.4
Size Related Elements
3-19
3.3.3.4.1
FixedValue
3-19
3.3.3.4.2
DynamicValue
3-19
3.3.3.4.3
DiscreteLookupList
3-20
4
XTCE Elements and Attributes
4-22
4.1
The SpaceSystem Element
4-22
4.1.1
Encoding
4-23
4.1.2
xsi:schemaLocation
4-23
4.1.3
xmlns:xtce
4-23
4.1.4
xmlns:xsi
4-23
4.1.5
nameDescription Attributes and Elements
4-24
4.1.6
Header
4-24
4.1.6.1
version Attribute
4-24
4.1.6.2
date Attribute
4-24
4.1.6.3
classification attribute
4-25
4.1.6.4
classificationInstructions Attribute
4-25
4.1.6.5
validationStatus Attribute
4-25
4.1.6.6
AuthorSet Element
4-25
4.1.6.7
NoteSet Element
4-25
4.1.6.8
HistorySet Element
4-25
4.1.6.9
Child SpaceSystem - SpaceSystem Hierarchy
4-25
4.2
TelemetryMetaData - Telemetry
4-26
4.2.1
ParameterTypeSet - ParameterTypes
4-28
4.2.1.1
ParameterType Pattern
4-29
4.2.1.1.1
nameDescription Attributes and Elements
4-30
4.2.1.1.2
baseType Attribute
4-30
4.2.1.1.2.1
Common ParameterType Inheritance Rules
4-31
4.2.1.1.2.2
Specific ParameterType Inheritance Rules
4-32
4.2.1.1.3
UnitSet
4-2
4.2.1.1.4
DataEncodings
4-2
4.2.1.1.4.1
bitOrder Attribute
4-3
4.2.1.1.4.2
ErrorDetectCorrect
4-3
4.2.1.1.4.3
ByteOrderList
4-4
4.2.1.1.4.4
StringDataEncoding
4-5
4.2.1.1.4.4.1
encoding
4-5
4.2.1.1.4.4.2
SizeInBits/Fixed
4-5
4.2.1.1.4.4.3
SizeInBits/TerminationChar
4-6
4.2.1.1.4.4.4
SizeInBits/LeadingSize
4-6
4.2.1.1.4.5
FloatDataEncoding
4-6
4.2.1.1.4.5.1
Encoding Attribute
4-7
4.2.1.1.4.5.2
sizeInBits Attribute
4-7
4.2.1.1.4.5.3
DefaultCalibrator and ContextCalibratorList
4-7
4.2.1.1.4.6
IntegerDataEncoding
4-8
4.2.1.1.4.6.1
encoding Attribute
4-8
4.2.1.1.4.6.2
sizeInBits Attributes
4-9
4.2.1.1.4.6.3
DefaultCalibrator and ContextCalibratorList
4-9
4.2.1.1.4.7
BinaryDataEncoding
4-9
4.2.1.1.4.7.1
From/ToBinaryTransformAlgorithm
4-9
4.2.1.1.4.8
Specifying No DataEncoding - Session Variable Types
4-9
4.2.1.1.4.9
SizeInBits element
4-10
4.2.1.1.5
Numeric Calibrators – FloatDataEncoding and IntegerDataEncoding
4-11
4.2.1.1.5.1
Spline Calibrators
4-11
4.2.1.1.5.1.1
order Attribute
4-12
4.2.1.1.5.1.2
extrapolate Attribute
4-12
4.2.1.1.5.1.3
SplinePoint
4-12
4.2.1.1.5.1.4
SplinePoint - order Attribute
4-12
4.2.1.1.5.2
PolynomialCalibrator
4-13
4.2.1.1.5.2.1
Term
4-13
4.2.1.1.5.2.2
coefficient Attribute
4-13
4.2.1.1.5.2.3
exponent Attribute
4-13
4.2.1.1.5.3
MathOperationCalibrator
4-14
4.2.1.1.6
DefaultAlarm and ContextAlarmList
4-14
4.2.1.2
Alarm Descriptions
4-14
4.2.1.2.1
EnumerationAlarmList - EnumerationAlarm
4-15
4.2.1.2.1.1
alarmLevel Attribute
4-15
4.2.1.2.1.2
enumerationValue Attributes
4-15
4.2.1.2.2
AlarmConditions
4-15
4.2.1.2.3
Numeric Alarms
4-16
4.2.1.2.3.1
StaticAlarmRanges – Fixed Ranges
4-16
4.2.1.2.3.2
ChangeAlarmRanges – Delta Alarm or Change Over Time
4-18
4.2.1.2.3.2.1
changeType Attribute
4-18
4.2.1.2.3.2.2
changeBasis Attribute
4-18
4.2.1.2.3.2.3
spanOfInterestInSamples Attribute
4-18
4.2.1.2.3.2.4
spanOfInterestInSeconds Attribute
4-19
4.2.1.2.3.3
ChangeAlarmRanges - Delta
4-19
4.2.1.2.3.4
ChangeAlarmRanges – Rate of Change
4-19
4.2.1.3
ParameterTypes
4-19
4.2.1.3.1
StringParameterType
4-19
4.2.1.3.1.1
InitialValue Attribute
4-20
4.2.1.3.1.2
RestrictionPattern Attribute
4-20
4.2.1.3.1.3
CharacterWidth Attribute
4-20
4.2.1.3.1.4
StringDataEncoding
4-20
4.2.1.3.1.4.1
Encoding Attribute
4-21
4.2.1.3.1.4.2
SizeInBits Attribute
4-21
4.2.1.3.1.5
SizeRangeInCharacters
4-21
4.2.1.3.1.6
StringAlarm Element
4-22
4.2.1.3.1.6.1
minViolations
4-22
4.2.1.3.1.6.2
defaultAlarmLevel
4-22
4.2.1.3.2
EnumeratedParameterType
4-23
4.2.1.3.2.1
initialValue Attribute
4-23
4.2.1.3.2.2
IntegerDataEncoding Element
4-23
4.2.1.3.2.3
EnumerationList/Enumeration Element
4-24
4.2.1.3.2.4
EnumerationAlarm Element
4-24
4.2.1.3.2.4.1
minViolations
4-24
4.2.1.3.2.4.2
defaultAlarmLevel
4-24
4.2.1.3.3
IntegerParameterType
4-24
4.2.1.3.3.1
validRangeAppliesToCalibrated Attribute
4-25
4.2.1.3.3.2
sizeInBits Attribute
4-25
4.2.1.3.3.3
signed Attribute
4-25
4.2.1.3.3.4
IntegerDataEncoding Element
4-26
4.2.1.3.3.5
toString Element
4-26
4.2.1.3.3.6
ValidRange Element
4-26
4.2.1.3.3.7
StaticAlarmRanges Element
4-26
4.2.1.3.3.8
ChangeAlarm Element
4-26
4.2.1.3.4
BinaryParameterType
4-26
4.2.1.3.4.1
initialValue Attribute
4-27
4.2.1.3.4.2
BinaryDataEncoding Element
4-27
4.2.1.3.4.3
BinaryDataEncoding/SizeInBits
4-27
4.2.1.3.4.4
BinaryDataEncoding/FromBinaryTransformAlgorithm or ToBinaryTransformAlgorithm
4-27
4.2.1.3.5
FloatParameterType
4-28
4.2.1.3.5.1
sizeInBits Attribute
4-28
4.2.1.3.5.2
validRangeAppliesToCalibrated Attribute
4-29
4.2.1.3.5.3
FloatDataEncoding Element
4-29
4.2.1.3.5.4
IntegerDataEncoding Element
4-29
4.2.1.3.5.5
ValidRange Element
4-29
4.2.1.3.6
BooleanParameterType
4-29
4.2.1.3.6.1
oneStringValue Attribute
4-30
4.2.1.3.6.2
zeroStringValue Attribute
4-30
4.2.1.3.6.3
IntegerDataEncoding Element
4-30
4.2.1.3.7
RelativeTimeParameterType
4-30
4.2.1.3.7.1
initialValue Attribute
4-31
4.2.1.3.7.2
units, scale and offset Attribute
4-31
4.2.1.3.7.3
DataEncoding Elements
4-32
4.2.1.3.7.4
ReferenceTime/Offset Element
4-32
4.2.1.3.7.5
ReferenceTime/Epoch Element
4-32
4.2.1.3.7.6
Default and ContextAlarms
4-32
4.2.1.3.8
AbsoluteTimeParameterType
4-32
4.2.1.3.8.1
initialValue Attribute
4-33
4.2.1.3.9
ArrayParameterType
4-33
4.2.1.3.9.1
arrayTypeRef Attribute
4-34
4.2.1.3.9.2
numberOfDimensions Attribute
4-34
4.2.1.3.10
AggregateParameterType
4-34
4.2.1.3.10.1
MemberList/Member Elements
4-35
4.2.1.4
ParameterType and Encoding Tables - Recommendations
4-35
4.2.1.4.1
Uncalibrated ParameterTypes
4-35
4.2.1.4.2
Calibrated ParameterTypes
4-42
4.2.1.4.3
Complex Type Examples
4-47
4.2.1.4.3.1
ArrayParameterType
4-47
4.2.1.4.3.2
AggregateParameterType
4-47
4.2.2
ParameterSet - Parameters
4-47
4.2.2.1
NameDescription
4-48
4.2.2.2
parameterTypeRef Attribute
4-48
4.2.2.3
initialValue Attribute
4-49
4.2.2.3.1
Example
4-49
4.2.2.4
ParameterProperties
4-49
4.2.2.5
dataSource Attribute
4-49
4.2.2.6
readOnly Attribute
4-50
4.2.2.7
SystemName Element
4-50
4.2.2.8
ValidityCondition Element
4-50
4.2.2.9
PhysicalAddressSet Element
4-50
4.2.2.10
TimeAssociation Element
4-51
4.2.2.10.1
parameterRef Attribute
4-51
4.2.2.10.2
instance Attribute
4-52
4.2.2.10.3
useCalibratedValueAttribute
4-52
4.2.2.10.4
interpolateTime Attribute
4-52
4.2.2.10.5
offset Attribute
4-52
4.2.3
ContainerSet – Containers and Telemetry Packets
4-53
4.2.3.1
NameDescription
4-53
4.2.3.2
abstract Attribute
4-54
4.2.3.3
idlePattern Attribute
4-54
4.2.3.4
DefaultRateInStream
4-54
4.2.3.5
RateInStreamSet
4-55
4.2.3.6
BinaryEncoding
4-55
4.2.3.7
EntryList
4-56
4.2.3.7.1
EntryList Entry Pattern
4-57
4.2.3.7.2
ParameterRefEntry
4-57
4.2.3.7.3
ParameterSegmentRefEntry
4-58
4.2.3.7.4
ContainerRefEntry
4-58
4.2.3.7.4.1
Dynamic Container Matching
4-58
4.2.3.7.5
ContainerSegmentRefEntry
4-58
4.2.3.7.6
StreamSegmentRefEntry
4-59
4.2.3.7.7
IndirectParameterRefEntry
4-59
4.2.3.7.8
ArrayParameterRefEntry
4-60
4.2.3.7.8.1
lastEntryForThisArrayInstance
4-60
4.2.3.7.9
Modifying Entries
4-60
4.2.3.7.9.1
LocationInContainerBits
4-61
4.2.3.7.9.1.1
referenceLocation Attribute
4-61
4.2.3.7.9.1.2
Integer Address Offset
4-62
4.2.3.7.9.2
RepeatEntry - Super-Sampling/Super-Commutated
4-62
4.2.3.7.9.2.1
Count
4-63
4.2.3.7.9.2.2
Offset
4-63
4.2.3.7.9.2.3
Offset/@offsetSizeInBits
4-64
4.2.3.7.9.3
IncludeCondition
4-64
4.2.3.8
BaseContainer – Container Inheritance
4-64
4.2.3.8.1
containerRef Attribute
4-66
4.2.3.8.2
RestrictionCriteria
4-66
4.2.3.8.3
NextContainer
4-67
4.2.3.8.4
Container Inheritance as an Operation
4-68
4.2.3.8.4.1
Inheritance Rules
4-68
4.2.3.8.4.2
Inheritance Example
4-69
4.2.4
MessageSet
4-70
4.2.5
StreamSet
4-71
4.2.6
AlgorithmSet
4-72
4.2.6.1
CustomAlgorithm
4-72
4.2.6.2
MathAlgorithm
4-73
4.3
CommandMetaData - Commanding
4-73
4.3.1
Command ParameterTypeSet
4-74
4.3.1.1
Command ParameterType and Encoding Table
4-75
4.3.1.2
Alarms
4-75
4.3.2
Command ParameterSet - Parameters
4-75
4.3.3
ArgumentTypeSet - ArgumentTypes
4-76
4.3.3.1
ArgumentType Inheritance
4-76
4.3.3.2
ArgumentType Tables
4-76
4.3.4
MetaCommandSet – Metacomands, Command Descriptions
4-76
4.3.4.1
NameDescription
4-77
4.3.4.2
abstract Attribute
4-77
4.3.4.3
BaseMetaCommand
4-77
4.3.4.3.1
metaCommandRef Attribute
4-77
4.3.4.3.2
ArgumentAssignmentList Element
4-78
4.3.4.3.3
MetaCommand Inheritance
4-78
4.3.4.4
MetaCommand/CommandContainer – Command Packet
4-80
4.3.4.4.1
ParameterRefEntry
4-81
4.3.4.4.2
ContainerRefEntry
4-81
4.3.4.4.3
ArgumentRefEntry
4-81
4.3.4.4.4
FixedValueEntry
4-81
4.3.4.5
BaseContainer
4-82
4.3.4.5.1
containerRef Attribute
4-83
4.3.4.5.2
RestrictionCriteria
4-83
4.3.4.5.3
Rules for MetaCommand/CommandContainer Inheritance
4-83
4.3.4.6
ArgumentList
4-83
4.3.4.7
MetaCommand – Additional Elements
4-85
4.3.4.8
TransmissionConstraintList
4-86
4.3.4.9
DefaultSignificance
4-87
4.3.4.9.1
spaceSystemAtRisk Attribute
4-87
4.3.4.9.2
reasonForWarning Attribute
4-87
4.3.4.9.3
consequenceLevel Attribute
4-87
4.3.4.10
ContextSignificanceList
4-87
4.3.4.11
Interlock
4-88
4.3.4.11.1
scopeToSpaceSystem Attribute
4-88
4.3.4.11.2
verificationToWaitFor Attribute
4-88
4.3.4.11.3
verificationProgressPercentage Attribute
4-89
4.3.4.11.4
suspendable Attribute
4-89
4.3.4.12
VerifierSet
4-89
4.3.4.12.1
NameDescription
4-90
4.3.4.12.2
ComparisonList Element
4-90
4.3.4.12.3
ContainerRef Element
4-90
4.3.4.12.4
ParameterValueChange Element
4-91
4.3.4.12.5
CustomAlgorithm Element
4-91
4.3.4.12.6
BooleanExpression Element
4-91
4.3.4.12.7
Comparison Element
4-91
4.3.4.12.8
CheckWindow Element
4-91
4.3.4.12.9
CheckWindowAlgorithm Element
4-91
4.3.4.13
ParameterToSetList
4-92
4.3.4.14
ParametersToSuspendAlarmsOnSet
4-92
4.3.4.15
Other Parts of MetaCommandSet
4-93
4.3.4.16
MetaCommandRef
4-94
4.3.4.17
BlockMetaCommand
4-94
4.3.5
CommandContainerSet – CommandContainer
4-95
4.3.5.1
CommandContainerSet Inheritance Rules
4-95
4.3.6
StreamSet
4-96
4.3.7
AlgorithmSet
4-96
4.4
ServiceSet - Services
4-96
4.4.1
Element ContainerRefSet
4-97
4.4.2
Element MessageRefSet
4-97
5
Advanced Topics
5-98
5.1
Concrete Containers, Abstract Containers and Plain Containers
5-98
5.1.1
The Plain Container
5-98
5.1.2
The Abstract Container
5-98
5.1.3
The Concrete Container
5-99
5.2
Modifying an Entry
5-99
5.2.1
Addressing Using LocationInContainerInBits
5-100
5.2.1.1
With a ParameterRefEntry
5-100
5.2.1.2
With a ContainerRefEntry
5-103
5.2.2
RepeatEntry
5-104
5.2.3
IncludeCondition
5-104
5.2.4
In Combination
5-105
5.3
Using Plain, Abstract and Concrete Containers to Build Packaging Definitions
5-106
5.3.1
Container Inheritance Concepts
5-107
5.3.1.1
Processing a Conceptual Container Inheritance Tree
5-107
5.3.1.2
Treating BaseContainer as an Operation
5-107
5.3.1.2.1
Container Inheritance: Building up the EntryList
5-108
5.3.2
Other items in Container Inheritance
5-111
5.3.3
CommandContainerSet Inheritance
5-111
5.4
Dynamic Container Matching
5-112
5.5
MetaCommand Inheritance
5-117
5.5.1
MetaCommand/CommandContainer Inheritance
5-117
5.5.2
Treating BaseMetaCommand as an Operation
5-118
5.5.2.1
Extended Command Example
5-119
5.5.2.2
Processing the Example
5-122
5.6
Referencing that Crosses Sides
5-125
5.7
Reference Scope
5-125
5.7.1
In SpaceSystem Hierarchies
5-125
5.7.2
In RestrictionCriteria
5-126
5.7.3
In IncludeCondition
5-126
5.8
Issues with Array Parameters
5-127
5.9
Defining Session Variables
5-128
5.10
Defining Pseudo-Parameters
5-129
6
Telemetry Container Patterns
6-131
6.1
Telemetry Packet Patterns
6-131
6.1.1
Basic Pattern
6-131
6.1.2
An Optional Secondary Header
6-132
6.1.3
A More Complex Pattern
6-132
6.1.4
With Dynamic SecondaryHeader Matching
6-133
7
Commands and Command Container Patterns
7-134
7.1
Command Patterns
7-134
7.1.1
Simple Pattern
7-134
7.1.2
Complex Pattern
7-134
7.1.3
Generic Pattern
7-134
8
Suggestions for Creating and Parsing XTCE documents
8-136
8.1
JAXB Case Study
8-136
8.1.1
XJC
8-137
8.1.2
XJC Configuration File
8-137
8.1.3
Marshalling and Unmarshalling
8-137
8.1.4
Unmarshalling Example
8-138
8.1.5
Marshalling Example
8-138
8.1.6
Marshaller XML Output
8-141
8.1.7
Other Data Binding Issues
8-141
8.2
A Basic Roundtrip Conversion Process
8-142
9
Complete Example
9-144
9.1
Telemetry Packet Example
9-144
9.1.1
XTCE Representation
9-145
9.2
Command Example
9-147
9.2.1
XTCE Representation
9-148
Appendix A
9-152
Appendix B
9-156
Appendix C
9-160
Appendix D
9-162

List of Figures

3-10Figure 1: NameDescription

3-12Figure 2: Comparison

3-13Figure 3: ComparisonList

3-14Figure 4: BooleanExpression

3-15Figure 5: Condition

3-16Figure 6: InputAlgorithm

3-17Figure 7: MatchCriteria

3-18Figure 8: ContextCalibrator

3-18Figure 9: ParameterInstanceRef

3-19Figure 10: IntegerValue

3-20Figure 11: DynamicValue

3-20Figure 12: DiscreteLookup

4-22Figure 13: SpaceSystem Root

4-24Figure 14: Header

4-26Figure 15: SpaceSystem Tree Diagram

4-27Figure 16: TelemetryMetaData

4-28Figure 17: ParameterTypes

4-29Figure 18: FloatParameter

4-30Figure 19: Relationship of ParameterType Elements

4-2Figure 20: Unit

4-3Figure 21: ErrorDetectCorrect

4-5Figure 22: StringDataEncodingType

4-7Figure 23: FloatDataEncoding

4-8Figure 24: DefaultCalibrator

4-8Figure 25: IntegerDataEncoding

4-9Figure 26: BinaryDataEncoding

4-10Figure 27: Optional Choice for Encodings

4-11Figure 28: Spline Calibrator Graph

4-11Figure 29: SplineCalibrator

4-13Figure 30: PolynomialCalibrator

4-14Figure 31: DefaultAlarm

4-15Figure 32: EnumerationAlarm

4-15Figure 33: AlarmCondition

4-16Figure 34: StaticAlarmRanges

4-17Figure 35: Visual Depiction of Alarm Range Bands

4-18Figure 36: ChangeAlarmRanges

4-20Figure 37: StringParameterType

4-21Figure 38: StringDataEncoding

4-22Figure 39: StringAlarm

4-23Figure 40: EnumeratedParameterType

4-25Figure 41: IntegerParameterType

4-27Figure 42: BinaryParameterType

4-28Figure 43: FloatParameterType

4-30Figure 44: BooleanParameterType

4-31Figure 45: RelativeTimeParameterType

4-33Figure 46: AbsoluteTimeParameterType

4-34Figure 47: ArrayParameterType

4-35Figure 48: AggregateParameterType

4-48Figure 49: Parameter

4-49Figure 50: ParameterProperties

4-51Figure 51: PhysicalAddress

4-51Figure 52: TimeAssociation

4-53Figure 53: The SequenceContainer Element

4-54Figure 54: DefaultRateInStream

4-55Figure 55: RateInStreamSet

4-56Figure 56: The EntryList Element

4-57Figure 57: Inside of ParameterRefEntries

4-59Figure 58: StreamSegmentEntry

4-61Figure 59: The LocationInContainerInBits Element

4-63Figure 60: The RepeatEntry Element

4-64Figure 61: The IncludeCondition Element

4-65Figure 62: The BaseContainer Element

4-65Figure 63: Extending SequenceContainers

4-70Figure 64: UML Representation of Example Containers

4-71Figure 65: Message

4-71Figure 66: Streams

4-72Figure 67: Algorithm

4-73Figure 68: The CommandMetaData Element

4-75Figure 69: Relationship of Command ParameterType Elements (and ArgumentType)

4-77Figure 70: The 1st Part of MetaCommand

4-77Figure 71: BaseMetaCommand

4-81Figure 72: The MetaCommand/CommandContainer EntryList

4-82Figure 73: The Base Element from CommandContainer

4-82Figure 74: Extending MetaCommand/CommandContainers

4-84Figure 75: The Argument Element

4-85Figure 76: The 2nd Part of MetaCommand

4-86Figure 77: TransmissionConstraint

4-87Figure 78: DefaultSignificance

4-88Figure 79: ContextSignificance

4-88Figure 80: Interlock

4-89Figure 81: Verifiers

4-90Figure 82: CommandVerifiers

4-92Figure 83: ParameterToSet

4-93Figure 84: ParametersToSuspendAlarmsOn

4-93Figure 85: MetaCommandSet

4-94Figure 86: BlockMetaCommand

4-95Figure 87: Extending CommandContainers

4-96Figure 88: Services

5-100Figure 89: EntryList Addressing

5-115Figure 90: Using IncludeConditions

5-115Figure 91: Using Dynamic Container Matching

5-117Figure 92: Dynamic Container Match Example

5-126Figure 93: Refs should not “move” inadvertently through processing

5-126Figure 94: Definitions are Sticky

6-131Figure 95: Basic Container Inheritance Pattern

6-132Figure 96: Including a Secondary Header

6-132Figure 97: Common Telemetry Root Container

6-133Figure 98: Dynamic Container Matching of Secondary Headers

7-134Figure 99: Simple Command Pattern

7-134Figure 100: Basic Command Inheritance Pattern

7-135Figure 101: Mission MetaCommand

List of Tables

4-31Table 1: Common ParameterType Inheritance Rules

4-32Table 2 - Specific Parametertype Inheritance Rules

4-13Table 3: Exponent and Coefficient Table

4-35Table 4: Settings for Uncalibrated StringParameterType

4-36Table 5: Settings for Uncalibrated Unsigned IntegerParameterType

4-36Table 6: Settings for Uncalibrated Signed IntegerParameterType

4-37Table 7: Settings for Uncalibrated BCD IntegerParameterType

4-38Table 8: Settings for Uncalibrated FloatParameterType

4-39Table 9: Settings for Uncalibrated EnumeratedParameterType

4-39Table 10: Settings for Uncalibrated BinaryParameterType

4-40Table 11: Settings for Uncalibrated BooleanParameterType

4-40Table 12: Settings for Uncalibrated Relative and AbsoluteParameterTypes

4-41Table 13: Settings for Alternative Uncalibrated ParameterTypes

4-42Table 14: Settings for Calibrated Unsigned IntegerParameterType

4-42Table 15: Settings for Calibrated Signed IntegerParameterTypes

4-43Table 16: Settings for Calibrated BCD IntegerParameterType

4-44Table 17: Settings for Calibrated FloatParameterType

4-45Table 18: Settings for Calibrated FloatParameterType from Integer

4-68Table 19: Container Inheritance Rules

4-78Table 20: MetaCommand Inheritance Rules

5-101Table 21: PrevEntry Example

5-101Table 22: ContainerStart Example

5-102Table 23: ContainerEnd Example

5-102Table 24: NextEntry Example

5-103Table 25: ContainerAbsolute (SizeInBits = 144)

5-103Table 26: Container (SizeInBits = 160)

5-104Table 27: Container: Resolved (SizeInBits = 160)

5-106Table 28: Plain Container

9-144Table 29: Telemetry Packet Example

9-147Table 30: Command and Command Packet Example

1 Introduction
1.1 Purpose and Scope

This document describes the many features of XTCE1.1 or, colloquially, XTCE. XTCE is an XML Schema for describing various aspects of telemetry and commanding. It may be used as an exchange mechanism -- a neutral format between parties – or as a native format if desired. It is generally oriented towards exchange, principally to describe telemetry, telemetry “blocks” (e.g. packets or minor frames), commands and command blocks – and a certain amount of behavior associated with them (such as limit checks or command priority). It is telemetry and command format neutral.
This document follows the annotation within the XTCE1.1 Schema which is considered canon; it expands upon it and should be considered canonical.

1.2 Applicability

XTCE was designed from the context of telemetry and commanding processing, in particular from the perspective of the ground segment and mission operations. As such it is oriented towards the long tradition within the industry of describing the telemetry and command format and each individual block of data in that format that is sent to the ground for mission operations or from it to to the remote vehicle.
In the industry at this time a myriad of such descriptive formats exist to hold this information. Many, if not all, of them are largely proprietary and tied to specific ground system applications, vendors and organizations.

Often in various aspects of the mission lifecycle the need arises to change description formats – and it is here that XTCE can come into play.

By providing a neutral format all users can write to, the need for specific convertors decreases and given time and a longer term view – XTCE can increase the interoperability between various ground system applications, either between vendors, within an organization, or perhaps even across organizations.

1.3 XMLSpy Diagrams

The report uses diagrams generated from the commercial application XMLSpy which shows the XTCE Schema in a visual manner, a brief guide to these diagrams is included below.

	XMLSpy Image
	Description
	Graphical Symbol Meaning

	[image: image2.png]Space System B3

	Solid Box
	Required XML element in document

	[image: image3.png]

	Box with Dashed lines
	Optional XML element in document

	[image: image4.png]

	Sequence Box
	Ordered set of elements (qualifier for number often present)

	[image: image5.png]

	Choice Box
	Choice from child elements presented (qualifiers present)

	[image: image6.png]

	Attributes Box
	Attributes are within an element name, such as <element attribute=”myAttributeContent”>

2 Overview

An XTCE document describes a space system, where the space system is divided into two principal sections: one for telemetry metadata and another for command metadata (where ‘meta’ means “information about”). An XTCE space system may be hierarchical; each space system may contain sub-space systems, and so on.
Telemetry items are described using the element Parameter and the associated elements called ParameterTypes. ParameterTypes describe many aspects of individual telemetry items such as link encoding, alarms, and calibration information. Many of these elements are optional and can be applied in a variety of ways.

Telemetry parameter descriptions may be formed into descriptive blocks called containers. These containers describe packaging: a packet or a minor frame for example. Containers can be formed in a variety of ways to describe packaging as meets the needs of individual users. Containers make use of an inheritance mechanism to complete each description, and in particular marking identifying areas and their expected values within packets or minor frames. This inheritance mechanism is somewhat unique to XTCE and many new XTCE users can find it confusing.
Commanding shares many of the same basic elements with telemetry but there are differences. Commands have Arguments and these have an ArgumentType. There are also command Parameters and ParameterType. These elements are very similar in terms of construction but are subtly different in terms of meaning. A certain amount of behavior associated with commanding can be described as well – things like command significance and side effects. Once again, most of these various items are optional and not all need to be used by a particular mission.
Command descriptions also use an inheritance mechanism – a command may extend another to produce a new command description by inheriting some functionality from one command to another.
The final form of inheritance in XTCE is ParameterType and ArgumentType inheritance – this may be useful if particular device exists in several locations on a space system with the same telemetry for example but that differs in certain aspects of a limit checking or calibration – ParameterType inheritance is one optional way of handling this case.

In terms of the contents of this Report, Sections 3 cover general XTCE concepts that are helpful to understand before reading through the other sections. Section 4 begins the long march through describing all the elements attributes, examples are given where appropriate.
Section 5 describes advanced concepts that are not readily apparent from the schema annotation or gleaned just by looking through the schema, more complete examples are presented to reinforce the ideas.
Section 6 and Section 7 put the concepts together and show a break down of describing a telemetry packet and command (and related command packet).
Section 8 discusses programming and XTCE, and Section 9 presents a detailed an example.
Four Appendices are also included: Appendix A contains the XML for a full example, Appendix B has a grammar for an aspect of XTCE for a parser, Appendix C contains a configuration file for JAXB and Appendix D contains XTCE 1.1 Schema keys that have been fixed.
3 General XTCE Concepts

3.1 What is XTCE?

XTCE is an XML Schema for describing many aspects of telemetry and commanding that has historically been needed by space missions to decommutate telemetry and build commands on the ground. It contains rules for element names, element order, attributes and their content. These rules are used to construct XTCE XML documents and are used by XML parsers to verify them.

Additional validation may be warranted for certain aspects of XTCE that are not completely described by the schema (e.g. name references) or if XTCE usage is further constrained by the end user.
Once XTCE files are constructed and validated, they can then be processed by software in a variety of ways depending on the user needs. One approach is to use XTCE as an exchange mechanism for telemetry and command descriptions with other users. Another approach would be to use it as a native format for a telemetry and command processing system. Aside from these two basic uses, there may be other approaches for its use as well.
Because XTCE is a broad specification, it likely contains a superset of the descriptive capabilities needed by most users. The result is that many will wish to agree ahead of time with others that they will be exchanging data with which specific aspects of XTCE are being used.
Doing so well in advance is recommended because when in place, such constraints will allow exchange to proceed without information loss between parties.
3.2 How XTCE is Constructed

XTCE is an XML schema constructed using the W3C Schema language, a standard for constructing the rules for a particular XML. Although from the user standpoint XTCE may simply look like a series of elements and attributes with specific names, the XTCE schema itself is really a collection of schema types and derived schema types using the XML schema language.
In order to avoid confusion it is useful to define certain terminology that may occur in this document or in discussion with others, some of which have been discussed up to this point:

· XML Schema Language – a W3C standard for building specific rules for your XML

· XTCE Schema – the rules for any XTCE XML file

· XTCE file or XTCE instance document – an XML files that validates against the XTCE schema using an XML parser

· XML Parser – a program that reads in XML schemas and then validates specific XML files against it

· XML Schema Types – the base types used to form the XML Schema language

· Derived XML Schema Types – new schema types created for a specific XML schemas such as XTCE

· XTCE Schema Types – the created types that form the XTCE schema

· Element or Tag – in XML, items formed using angle brackets, the term element and tag are interchangeable:
· <Element>Content</Element>

· In this document, the location of elements and attributes in XTCE schema may be described using a path-like designation such as:

· /topElement/middleElement/endElement
· This helps orient its location within the schema for the reader

· Attribute – in XML attributes are include in a specific element such as:
· <Element attribute=”myAttributeContent”>Content</Element>

· In textual descriptions attributes will often be proceeded by a “@” such as:

· “@attribute” or “Element/@attribute”
· Annotation – descriptive information within XTCE Schema itself

· The XTCE annotation is considered canon. However it is also terse – this document expands it but does not knowingly contradict it
· In some cases a special ‘appinfo’ annotation is included whenever an additional validity check must be performed that is not describable in the W3C schema language

Many of the XTCE schema types are reused to create the various elements within XTCE giving it in many cases a repetitive but familiar look. This aspect will be particularly noticeable to programmers using XTCE, especially if the XTCE schema types have been mapped to programming language classes which are then used to parse or create XTCE documents.
3.3 XTCE Overview: Core Concepts and Common Elements
This section introduces certain core XTC concepts. In addition several elements that re-appear throughout the XTCE schema are described here and then simply referenced later in the report due to their repetitive nature.
3.3.1 Overall Structure

XTCE consists of the following simplified top-level XML structure; note this is not the precise syntax of XTCE but is useful for illustrative purposes:

<xtce:SpaceSystem> <!-- the root element in XTCE -->

<xtce:TelemetryMetaData/> <!-- telemetry description section -->

<xtce:CommandMetaData/> <!-- command description section -->

<xtce:SpaceSystem/> <!-- optional child sub-SpaceSystems (recursive) -->
</xtce:SpaceSystem>
Each of these top-level elements has many child elements and attributes, for example TelemetryMetaData has the following child element (in abbreviated form):

<xtce:TelemetryMetaData> <!-- telemetry description section -->

<xtce:ParameterTypeSet/> <!-- user types, holds calibration, limits, link info, etc -->

<xtce:Parameter/> <!-- user telemetry items: name, links to ParameterType -->

<xtce:ContainerSet/> <!-- user packaging for telemetry items, packets or minor frames -->
</xtce:TelemetryMetaData>

Commanding in XTCE shares many descriptive elements with telemetry and adds a few of its own:

<xtce:CommandMetaData> <!-- command description section -->
<xtce:ParameterTypeSet/> <!-- parameter type area for commands -->
<xtce:ArgumentTypeSet/> <!-- argument types, similar to above -->
<xtce:MetaCommandSet/> <!-- cmd description area, arguments, packets etc… -->
<xtce:CommandContainerSet/> <!—common items referenced above -->
</xtce:CommandMetaData>

Each of these elements has many child elements as well and many, if not most, are optional. In addition each element often has several attributes; many of these attributes have default values and don’t necessarily appear in the instance documents.
3.3.2 NameReferences

In many areas it is desirable to reference items in other areas in the document. In XTCE this is done with a text pointer which is called a NameReference.
XTCE NameReferences are string pointers to another item within XTCE; that reference consists of the name of the item of interest and may be preceded by an optional path to its location in the XTCE file. The path portion is formed by SpaceSystem names and it has the same general rules associated with directory names in Unix/Linux systems.
In XTCE the attribute “@name” occurs in many elements and it is this attribute that is the final item of interest in a NameReference. For example a Parameter defined in ParameterSet refers to a ParameterType in ParameterTypeSet using a NameReference; the NameReference in this case would consist of the user supplied name in the attribute @name of the ParameterType in question.
A NameReference may be formed in such a way as to refer to items in the local SpaceSystem or in other SpaceSystems within an XTCE document using the optional path designation.
The rules governing NameReferences are as follows:

· If a NameReference is only the name of the item being referenced, it is an unqualified NameReference. Unqualified NameReferences refer to either an item in the local SpaceSystem or, if it does not exist in the local SpaceSystem, then all SpaceSystems in the SpaceSystem tree above it will be searched to find a match

· If a NameReference consists of the name of the item and a path, it is a qualified NameReference. A qualified NameReference refers to an item specifically pointed to by the path and no other item. The path is formed using SpaceSystem names and some optional but reserved special characters. The path may be in a relative or absolute form.
· Note: Using unqualified or relative qualified NameReferences is the recommended practice as this may make it easier to include a SpaceSystem into a larger SpaceSystem document. (e.g. include an individual satellite XTCE document into an encapsulating constellation document)

For qualified NameReferences, the path portion is formed using a Unix-like directory construct separated by “/” and allowing “.” and “..” special characters. The items between the separators are formed by using SpaceSystem names (from the @name of SpaceSystem).

Many NameReferences share a common namespace per SpaceSystem which are enforced by the “keys” at the top-level of the XTCE Schema. The keys are used to check for name uniqueness in certain major elements within a SpaceSystem.
Note: there are known bugs in these keys for XTCE1.1 – they do not enforce proper XTCE name attribute namespace semantics – see Appendix D.
3.3.2.1 Shared NameReference Namespaces
There are certain elements in XTCE that have a name attribute which are essentially shared between CommandMetaData and TelemetryMetaData. The following are considered to have shared namespaces:
· TelemetryMetaData/ParameterSet and CommandMetaData/ParameterSet

· TelemetryMetaData/ParameterTypeSet and CommandMetaData/ParameterTypeSet

· TelemetryMetaData/ContainerSet and CommandMetaData/CommandContainerSet

· TelemetryMetaData/ContainerSet, CommandMetaData/CommandContainerSet and MetaCommand/CommandContainer

In effect, the above rules mean that a NameReference to a ParameterType from a Parameter in TelemetryMetaData/ParameterSet may refer to either CommandMetaData or TelemetryMetaData ParameterTypeSets (although it would be typical to search on the same “side” the item doing the referring to is defined first)
If NameReference construction is careless, counter-intuitive results may occur in some implementations. For example, this shows an unintended NameReference side-effect on a Parameter and ParameterType.

<xtce:SpaceSystem name="SameNamespace">
 <xtce:TelemetryMetaData>
 <xtce:ParameterSet>
 <xtce:Parameter name="myParameter" parameterTypeRef="AType"/>
 </xtce:ParameterSet>
 </xtce:TelemetryMetaData>
 <xtce:CommandMetaData>
 <xtce:ParameterSet>
 <xtce:Parameter name="myParameter" parameterTypeRef="BType"/>
 </xtce:ParameterSet>
 </xtce:CommandMetaData>
</xtce:SpaceSystem>
The two Parameter names (i.e. myParameter) collide due to their being in the same SpaceSystem name namespace; even a qualified NameReference to /SameNameSpace/myParameter refers to both descriptions equally. This construct is technically illegal according to the keys but because the keys are incorrect, XML parsers will accept it.
In addition to the above example NameReference rules can lead to some other potentially confusing constructions.

<xtce:SpaceSystem name="namespace">
 <xtce:TelemetryMetaData>
 <xtce:ParameterSet>
 <xtce:Parameter name="myParameter" parameterTypeRef="myParameterType"/>
 </xtce:ParameterSet>
 </xtce:TelemetryMetaData>
 <xtce:CommandMetaData>
 <xtce:ParameterTypeSet>
 <xtce:StringParameterType name="myParameterType">
 <xtce:UnitSet/>
 </xtce:StringParameterType>
 </xtce:ParameterTypeSet>
 </xtce:CommandMetaData>
</xtce:SpaceSystem>
Here the unqualified NameReference “myParameterType” perhaps unintentionally references to the StringParameterType “myParameterType” in CommandMetaData because they are in the same SpaceSystem namespace.

Given these aspects of NameReferences and namespaces - care should be taken with name uniqueness to avoid namespace collisions.

3.3.2.2 Syntax for NameReferences

NameReferences in XTCE are strings although they are governed by annotation which outlines a more restricted syntax:

Used when referencing a directory style "NameType". All characters are legal.* All name references use a Unix ‘like’ name referencing mechanism across the SpaceSystem Tree (e.g., SimpleSat/Bus/EPDS/BatteryOne/Voltage) where the '/', ‘..’ and ‘.’ are used to navigate through the hierarchy. The use of an unqualified name will search for an item in the current SpaceSystem first, then if none is found, in progressively higher SpaceSystems. A SpaceSystem is a name space (i.e., a named type declared in CommandMetaData is also declared in TelemetryMetaData - and vice versa).

But because the name of an item being referred is placed on the end of a NameReference, the rules for @names themselves also come into play (essentially the above statement that “All characters are legal” is not completely correct when this is taken into account). Name attributes in XTCE usually come from the NameDesecriptionType and the @name attribute itself is a NameType.
Unfortunately the NameType is a restricted string with the pattern of [a-zA-Z0-9_\-]*.
Thus the NameReference syntax which names and @name is in the end governed by the pattern as well:
 {Optional Path}Name – where Optional Path consists of sequences of a dot (‘.’), dot-dot (‘..’), or SpaceSystem names, each separated by a slash (‘/’) and optionally beginning with a slash, and then ending in a slash followed by the Name of the item of interest which is restricted by NameType. Further the SpaceSystem names themselves are governed by NameTypes as well.
The rules hold everywhere there is a NameReference in XTCE except where there is a ParameterInstanceRef which adds two optional rules for them.
3.3.2.2.1 ParameterInstanceReference Syntax Rules

ParameterInstanceReferences (see Section 3.3.3.3) add two special syntax variations to NameReferences since they may refer to a field in an AggregrateType or a cell in an Array:
{Optional Path}Name{Optional Field Reference or Optional Array Cell Reference} – where the Optional Field References is Aggregate Name followed by dot (‘.’) then the aggregate field name, or the Array Cell Reference is typical array square bracket (‘[]’) notation.
This also implies that the validation in this area is more difficult because a ParameterInstanceReference to an aggregate or array would be in error if does not refer to either a field or array cell specifically.

ArrayInstanceReferences are also somewhat tricky because the actual size of the dimension of array parameter is set in the container. In theory the array parameter could be used in several containers and each could have a different size for the dimensions.

Therefore when the ArrayInstanceReference is used, which one applies? Generally the ArrayInstanceReference is going to be associated with a specific container in a specific SpaceSystem which may be used to check that the index is not outside the bounds of the array. If it is not, then the instance table could have several array parameters of different dimensions and a runtime check will have to occur to make sure it’s in bounds.

Another issue occurs if the desire is to define a session variable array parameter, in this case the dimension sizes are never defined because there is no container.

At least in the first case it is probably better not reuse the same array parameter construct and instead rename and copy the parameter definition if this occurs in a real world scenario. The array session variable case is more difficult – the best solution is to add the array dimension sizing externally to processing software.

Additional information on array dimension size syntax in ArrayInstanceReferences is discussed further in Section 5.8.
3.3.2.3 Suggested Parser/Lexer NameReference Grammar
Rules for enforcing NameReferences syntax rules have been developed and tested using a popular parser/lexer, see Appendix B. It may be possible to implement these rules by using something like String.split() in Java.
3.3.3 Common XTCE Elements
This section will be referred to several times in the sections below as these elements and attributes re-appear throughout XTCE many times in many locations. For example, the MatchCriteria element is used in RestrictionCriteria, ContextsAlarms, and ContextCalibrators among other locations. Often these elements are part of an underlying XTCE schema type which is reused in various places throughout XTCE.
3.3.3.1 Elements of the NameDescriptionType

The elements and attributes associated with the NameDescription element show up in many places in XTCE, the NameDescription schema type is also the root type of many XTCE schema types. There are two variations: one allows for an optional name attribute and in the other the name attribute is mandatory.

[image: image7.png]Blatributes

name

Space SystemType £}

3 —

‘Generated by XmiSpy www.altova.com

Figure 1: NameDescription
3.3.3.1.1 name Attribute

The name of the item in question, usually if there is a name attribute that item can be referenced using a NameReference (see Section 3.3.2) but this may not always be the case for certain elements (such as calibrators which have an optional name but there is simply no place to reference these items from elsewhere in the schema), the format of the name is left to the user to define except as been noted above (Section 3.3.2.2).

<xtce:Parameter name="BatVolt1" parameterTypeRef="VoltageType"/>
3.3.3.1.2 shortDescription Attribute

This attribute is a summary description, usually shorter than the LongDescription. An importing system should specify its acceptable length and precedence over LongDescription keeping in mind annotation says it may be up to eighty characters.
<xtce:Parameter name="BatVolt1" parameterTypeRef="VoltageType" shortDescription="Battery Voltage"/>
3.3.3.1.3 LongDescription Element
This element is intended to provide for a more complete description of the element that is based on the NameDescriptionType.
<xtce:Parameter name="BatVolt1" parameterTypeRef="VoltageType" shortDescription="Battery Voltage">
 <xtce:LongDescription>Battery Voltage from EPS-Subsystem, EPSA_BAT_S7</xtce:LongDescription>
</xtce:Parameter>
In this case more information is provided about where and what subsystem the battery voltage is from. HTML encapsulated in CDATA is allowed within the LongDescription Element.
3.3.3.1.4 AliasSet

Often organizations may have more than one name for a given item, perhaps an official name and then another in common use, AliasSet optionally allows one to define Aliases for this element.

<xtce:Parameter name="BatVolt1" parameterTypeRef="VoltageType" shortDescription="Battery Voltage">
 <xtce:LongDescription>Battery Voltage from EPS-Subsystem, subsystem 7</xtce:LongDescription>
 <xtce:AliasSet>

<xtce:Alias nameSpace="Display" alias="EABVS7_1"/>
 </xtce:AliasSet>
</xtce:Parameter>
In this example an alias is created with a highly human unreadable (made up) naming convention that is representative of the short hand naming conventions often used in mission operations.
Aliases are not visible to NameReferences, however.
3.3.3.1.5 AncillaryDataSet

AncillaryData is used to define tag/value associations for user defined items. Their interpretation is user defined.
<xtce:Parameter name="BatVolt1" parameterTypeRef="VoltageType" shortDescription="Battery Voltage">
 <xtce:LongDescription>Battery Voltage from EPS-Subsystem, subsystem 7</xtce:LongDescription>
 <xtce:AliasSet>

<xtce:Alias nameSpace=" Display" alias=" EABVS7_1"/>
 </xtce:AliasSet>
 <xtce:AncillaryDataSet>
 <xtce:AncillaryData name="LRVSTK">true, max: 3</xtce:AncillaryData>
 </xtce:AncillaryDataSet>
</xtce:Parameter>
Here a system dependent flag is set to value that only make sense for that implementation. AncillaryData can have a MIME type associated with it.
AncillaryData is useful for defining specialty flags or items that are not well represented in XTCE, but because they are not in the schema, care should be taken in defining their intended meaning for any reader of the document.
3.3.3.2 Comparison Elements of ComparisonType
XTCE has several comparison (expression) elements. These are used in alarms (limits) and calibrators, and in RestrictionCriteria, and in other locations that in almost all cases require the evaluation of an expression formed by ParameterInstanceRefs and a value. There are several forms:

3.3.3.2.1 Comparison

The Comparison element allows for the comparison of a single parameter instance against a supplied value using a comparison operator. The parameter instance may be specified although it defaults to zero, the most recent instance, often referred to as the last reported value. The parameterRef refers to the parameter’s description in ParameterSet, although if the comparison is a container area, it refers to the container entries first.
[image: image8.png]xtce:Space SystemType

TelemetryMetaDataType

xtce:ParameterType SetType

G
e e

xtce:MatchCriteriaType

:CommandetaDataType

xtce:ParameterType SetType

-

xte gAlarmType

-
xtce:AlarmConditionsType

Figure 2: Comparison
The useCalibratedValue determines if a calibrated value is used in the comparison, and the comparisonOperator is a list of standard operators: ==, <, <=, >, >=, and !=. The default comparisonOperator is ==.

The useCalibratedValue defaults to true and instance default to zero or the last value which is likely to the desired combination (instance may go forward or back in time).
The simplistic form employing the defaults in this example:

<xtce:Comparison parameterRef="Simple" value="100"/>
And a more complex version that specifies everything looks like:

<xtce:Comparison parameterRef="Complicated" value="99.9919" comparisonOperator=">=" instance="1" useCalibratedValue="false"/>
3.3.3.2.1.1 value Attribute
The value attribute is a string but the comparison may be against a ParameterType that represents a different data type (such as an integer). Depending on the exact scenario the string may need to be converted to a different data type in order to process the comparison

For telemetry parameters, the value should be converted to the ParameterType’s DataEncoding data type – either a string, integer, float or boolean if the useCalibratedValue is false, if the flag is true then the ParameterType’s data type should be used.
In the case of command parameters, the meaning is opposite – if the flag is false, use the data type represented by the ParameterType, otherwise the data type represented by the DataEncoding.
Listing out the legal formats the value may take helps make exchange with others easier – the following are recommendations as the schema at this time does not specifically call them all out.

For numerical integer values – use xsd:integer, xtce:HexadecimalType, xtce:OctalType and xtce:BinaryType rules (the latter place “0x” and “0o” and “0b” before the value itself which will help in parsing the information), while FloatParameterType should use xsd:float or xsd:double depending the needed precision.
For boolean use xsd:boolean and for enumerations specify one of the valid labels for the ParameterType in question.

In the case of RelativeTimeParameterType and AbsoluteTimeParameterType values, use xsd:duration and xsd:dateTime – specifying the time zone is suggested.

3.3.3.2.2 ComparisonList

ComparisonList is simply a list of Comparison elements.

[image: image9.png]xtce:Space SystemType

TelemetryMetaDataType

xtce:ParameterType SetType

G
e e

xtce:MatchCriteriaType

:CommandetaDataType

xtce:ParameterType SetType

-

xte gAlarmType

-
xtce:AlarmConditionsType

Figure 3: ComparisonList
All Comparisons in the ComparisonList must be true in order for ComparisonList to ‘return’ true, this is basically an ‘and’ expression of Comparison.
3.3.3.2.3 Boolean Expression

BooleanExpression allows for the construction of more complex “and or” boolean expressions.
[image: image10.png]xtce:Space SystemType

xtce:TelemetryletaDataType

xtce:ParameterType SetType

=
xtce: StringDataType (exiension)

xtce:StringAlarmType

xtce:AlarmConditionsType

I stce:MatchCrlteriaType

-
xtce:BooleanExpressionType

xtce:CommandMetaDataType

xtce:ParameterType SetType

xtce:StringAlarmType

xtce:AlarmConditionsType

I stce:MatchCrlteriaType

-
xtce:BooleanExpressi

Figure 4: BooleanExpression

The element Condition is similar to Comparison but constructed slightly differently and values or other Parameters may be used on both sides of the comparison operator using a Condition. BooleanExpressions can be complex; here is a nonsensical expression as a BooleanExpression:
(ParameterAndValue == 100) AND (ParameterAndParameter >= TheOtherParameter) AND ((P2 <= P3) OR (P4 != 99))

<xtce:BooleanExpression>

<xtce:ANDedConditions>

<xtce:Condition>

<xtce:ParameterInstanceRef parameterRef="ParameterAndValue"/>

<xtce:ComparisonOperator>==</xtce:ComparisonOperator>

<xtce:Value>100</xtce:Value>

</xtce:Condition>

<xtce:Condition>

<xtce:ParameterInstanceRef parameterRef="ParameterAndParameter"/>

<xtce:ComparisonOperator>>=</xtce:ComparisonOperator>

<xtce:ParameterInstanceRef parameterRef="TheOtherParameter"/>

</xtce:Condition>

<xtce:ORedConditions>

<xtce:Condition>

<xtce:ParameterInstanceRef parameterRef="P2"/>

<xtce:ComparisonOperator><=</xtce:ComparisonOperator>

<xtce:ParameterInstanceRef parameterRef="P3"/>

</xtce:Condition>

<xtce:Condition>

<xtce:ParameterInstanceRef parameterRef="P4"/>

<xtce:ComparisonOperator>!=</xtce:ComparisonOperator>

<xtce:Value>99</xtce:Value>

</xtce:Condition>

</xtce:ORedConditions>

</xtce:ANDedConditions>
</xtce:BooleanExpression>
3.3.3.2.3.1 Condition

Condition is similar to but differs with Comparison in that it allows one to provide two Parameter instances or a value, instead of just the value as in Comparison (specify using the same rules as described in Section 3.3.3.2.1.1). It is a child element of BooleanExpression.
[image: image11.png]xtce:Space SystemType

-
xtce:TelemetryletaDataType

xtce:ParameterType SetType

=
xtce: StringDataType (exiension)

)

xtce:StringAlarmType

=

o8 e gt v e

xtce:AlarmConditionsType

xtce:MatchCriteriaType

A simple com

———

I'stce:BooleanExpressionType

I

xtce:ComparisonCheckType

xtce:CommandMetaDataType

xtce:ParameterType SetType

)

xtce:StringAlarmType

xtce:MatchCriteriaType

I'stce:BooleanExpre

I

xtce:ComparisonCheckType

Figure 5: Condition

In addition the ComparisonOperator is an element and must be explicitly set – there is no default value for it. This can be seen in the example above.
Note that some XML applications have difficulty with an element of the same name in a sequence. Often a workaround is available so that the underlying XML can be processed directly by the end user which alleviates the issue.

3.3.3.2.4 CustomAlgorithm
CustomAlgorithm allows for the specification of an algorithm that can be processed to produce a result. This is element used in a number of locations throughout XTCE. It is often specified in a construct along with Comparison, ComparisonList, or BooleanExpression and is meant to be used to represent processing that cannot be done with those elements.
Due to its nature the use of this element is highly specific to each user as there is no standard algorithm language prescribed by XTCE.
Similar to other large elements this item starts as a NameDescription and has been expanded to include the list of parameters and constants that are inputs to the algorithm. There is an optional sub-element that allows the algorithm code to be transferred as text, but there is no expectation that the target system will automatically utilize the code. CustomAlgorithm is an InputAlgorithmType and related to AlgorithmSet (See Section 4.2.6).
[image: image12.png]] xtce:Comparison

-
xtce:InputAlgorithmType

Batributes

b
[

Batributes

xtce:ExternalAlgorithm Q, implementationName

algorithmLocation

‘Generated by XmiSpy www.altova.com

Figure 6: InputAlgorithm
The following is a simple example of the type of information that could be held in CustomAlgorithm, various options allow for a great deal of additional flexibility.

<xtce:ContextMatch>
 <xtce:CustomAlgorithm name="SimpleRemoteAlgorithm">

<xtce:ExternalAlgorithmSet>

 <xtce:ExternalAlgorithm algorithmLocation="http://MyMission/Algorithms/CalcOrbit" implementationName="Java"/>

</xtce:ExternalAlgorithmSet>
 </xtce:CustomAlgorithm>
</xtce:ContextMatch>

Once again this is going to be an area that is highly user specific and should be used with that in mind.

3.3.3.2.5 MatchCriteria

MatchCriteria is an XTCE schema type that groups the expression elements described above together. This schema type is used in many locations in XTCE although the term “MatchCriteria” itself does not show up as an element name itself.

[image: image13.png]MatchCriteriaType

tce:Comparison B

xtce:ComparisonList B

xtce:BooleanExpression B
xtce:CustomAlgorithm B

Generated by XmISpy

www.altova.com

Figure 7: MatchCriteria
For example, elements in alarms, calibrators, BaseContainer/RestrictionCriteria, and other locations use the MatchCriteriaType and these elements will be referred here when discussed.
3.3.3.2.6 ContextMatch

Contexts describe when certain calibrations or alarms are active – the context is user defined and may be used by missions to enable or disable certain functionality based on the evaluation of an expression. Specific contexts for missions are used by ContextAlarms and ContextCalibrators, and the context is defined in a ContextMatch element.

[image: image14.png]xtce:Space SystemType

i |
R
{ xestendor

elemetryletaDataType

xtce:ParameterType SetType

xtce:lntegerDataType (exiension)

i |
R

I stceiintegerDataEncodingType

F
xtce:ContextCalibratorType

Figure 8: ContextCalibrator
For example a context that a user might wish to define would be mission phase, one approach would be to create a session variable of enumerated stages, and supply these as comparisons in the contexts of interest.
3.3.3.3 ParameterInstanceReferences
A ParameterInstanceRef is a NameReference to the named parameter’s value during command and telemetry processing as well as a reference to its definition in the XTCE document.

[image: image15.png]xtce:Space SystemType

-
xtce:TelemetryletaDataType

xtce:ParameterType SetType

=
xtce: StringDataType (exiension)

)

xtce:StringAlarmType

=

o8 e gt v e

xtce:AlarmConditionsType

xtce:MatchCriteriaType

A simple com

———

I'stce:BooleanExpressionType

I

xtce:ComparisonCheckType

xtce:CommandMetaDataType

xtce:ParameterType SetType

)

xtce:StringAlarmType

xtce:MatchCriteriaType

I'stce:BooleanExpre

I

xtce:ComparisonCheckType

Figure 9: ParameterInstanceRef
The value may be defined in a conceptual value table or in a container; the container takes precedence if the ParameterInstanceRef is defined in that area.

The parameterRef attribute refers to its description in the XTCE document, and the instance is the version of the decommutated value to use – an instance of zero means the last decommutated value of the named Parameter (last recorded value) with negative instances going back in time. The useCalibratedValue attribute specifies whether the raw or calibrated value is to be used if the parameter has a calibrator.
Both instance and useCalibratedValue have default values of zero and true respectively, as such they do not often appear in an instance document.
While positive instances can be specified (representing recorded values forward in time), such designations may be considered suspect in most cases.

3.3.3.4 Size Related Elements

Several elements are used throughout the schema when a size needs to be specified, for example for the SizeInBits element. It appears where flexibility is needed to capture size in a variety of ways. The elements related to this are in an XTCE schema type called IntegerValueType:

[image: image16.png]xtee:

xtce:DynamicValue &

Uses 2 paramers rsance
chian e vae, The paramets
3k may be opronaly sdpmed
5y = ok i o 2
e ol eeons

ixedValue

Coeare ez e Do e vae. Ay
e oy b rovided s
deschy o v e v Dy wtna
el Cimmmlgorm may b et

xtce:DiscreteL ookupList B

Lookup 2 vake wsng the okup st
supplad. Use the frt macch fou

‘Generated by XmiSpy www.altova.com

Figure 10: IntegerValue
3.3.3.4.1 FixedValue

Specifies the exact size as an integer:

<xtce:SizeInBits>

<xtce:FixedValue>11</xtce:FixedValue>
</xtce:SizeInBits>
3.3.3.4.2 DynamicValue

Use a ParameterInstanceRef (see Section 3.3.3.3) to look up the size in the named parameter value table, the value may be adjusted using the slope and intercept of a line.
[image: image17.png]IntegerValueType E3

 xtee:FixedValue

xtce:DynamicValue

xtce:ParameterlnstanceRef G3-H

xtce:LinearAdjustment E1—

‘Generated by XmiSpy

www.altova.com

Figure 11: DynamicValue
Its instance and calibrated designation may also be specified although defaults are provided.
<xtce:DynamicValue>

<xtce:ParameterInstanceRef parameterRef="SizeFromThisParameter"/>

<xtce:LinearAdjustment intercept="25" slope="8"/>
</xtce:DynamicValue>

In the example, look up instance zero of “SizeFromThisParameter”, multiply it by 8 and add 25.

3.3.3.4.3 DiscreteLookupList
A list of element DiscreteLookup, each of which contains a condition and associated value – the value from the first true condition is returned. The condition is constructed from a MatchCriteria (see Section 3.3.3.2.5). Note that the comparisons are ParameterInstanceRefs.
[image: image18.png]xtee:FixedValue

xtce:DynamicValue

s » pramerer e
cbran he vae, The paremete
Ve may e cptonaly sdpsied
by 2 e forton ar s
i o bt evessirs s
ookun he vaoe.. AnvEhng
more ompes and =
Dynamciaie wieh s

integerValueType E} Clemmlorim may be used
Corvare v va:
Ve may be provided
it o vs e vae n s
prames.

{ xtce:iscreteLookupLi 9—(=3

Lookup 2 vake wsng the okup st
supplad. Use the frt macch fou

‘Generated by XmiSpy

Figure 12: DiscreteLookup
A large variety of constructions are possible with this element, this example simulates checking the value of a single parameter, which results in different returned sizes.
<xtce:DiscreteLookupList>

<xtce:DiscreteLookup value="10">

<xtce:Comparison parameterRef="P1" value="1"/>

</xtce:DiscreteLookup>

<xtce:DiscreteLookup value="25">

<xtce:Comparison parameterRef="P1" value="2"/>

</xtce:DiscreteLookup>

<xtce:DiscreteLookup value="711">

<xtce:Comparison parameterRef="P1" value="3"/>

</xtce:DiscreteLookup>

</xtce:DiscreteLookupList>

Here the value of 10, 25 or 711 will be returned depending on which condition is true.

4 XTCE Elements and Attributes

This section describes the remaining XTCE element and attributes, their function and in many cases supplying an example, it refers to the sections above as needed.
4.1 The SpaceSystem Element

The SpaceSystem element forms the root of an XTCE instance document. It contains elements for describing telemetry and command descriptions and many other attributes and elements associated with documentation, document management, streams, and services, among others.
A SpaceSystem may be defined recursively so that child SpaceSystems forms a hierarchical tree-like definition that matches either a logical or physical view of a particular space system; the meaning of space system is left to the user.

[image: image19.png]*********** -
I stce:SpacesystemType

Blatributes

shortDescription

SpaceSystem

The ROOT Eaman

constraints

‘Generated by XmiSpy www.altova.com

Figure 13: SpaceSystem Root
The root SpaceSystem has several attributes that an XML parser uses to properly parse the file as follows.
4.1.1 Encoding

All valid XML document must have a version/encoding element at the top that takes the form:

<?xml version=”1.0” encoding=”UTF-8”?>

Other options are possible. The encoding is specified before the document root element (i.e. before the first SpaceSystem – see example below).
4.1.2 xsi:schemaLocation

Set the schema to the official location via the URL:
"http://www.omg.org/space/xtce http://www.omg.org/spec/XTCE/20061101/06-11-06.xsd"
Many XML tools will automatically load the document in question from the URL. If this is not acceptable to an organization due to concerns about connectivity, the official XTCE schema should be placed in a well known location on its file system.
Although the exact name of the schema may be important to an organization, it is not important in terms of validation. However it can become an issue during exchange because both ends of an exchange should validate their XTCE files and if the schema location itself differs between users then this will be an issue.
As such many users may find it easier to put the schema location in a relative path such as follows:

"http://www.omg.org/space/xtce 06-11-06.xsd"
Another popular XTCE schema location designation has been:

"http://www.omg.org/space/xtce SpaceSystemV1.1.xsd"
It should be noted many XML software packages can override xsi:SchemaLocation regardless of what has been captured in the document. Many organizations may want to invoke this feature when sharing XTCE files with others to ensure there are no processing issues in terms of schema location.

For example the popular DOM XML parser provides a mechanism for associating XML Schemas within an application by setting the attribute associated with the SCHEMA_SOURCE property with local information, for JAXP this is called JAXP_SCHEMA_SOURCE.
4.1.3 xmlns:xtce

Set the namespace to “xtce”, this is preferred over an implied namespace:
"http://www.omg.org/space/xtce"
This means that any XTCE element in the XTCE file will have the “xtce:” inserted before the element name, this is the recommended approach.
4.1.4 xmlns:xsi

Must be set to: “http://www.w3.org/2001/XMLSchema-instance”
<?xml version=”1.0” encoding=”UTF-8”?>

<xtce:SpaceSystem
 name=""

 xsi:schemaLocation="http://www.omg.org/space/xtce http://www.omg.org/spec/XTCE/20061101/06-11-06.xsd"

 xmlns:xtce="http://www.omg.org/space/xtce"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>
4.1.5 nameDescription Attributes and Elements
See Section 3.3.3.1 for a description of the elements and attributes associated with name, shortDescription, LongDescription, AliasSet and AncillaryDataSet.

4.1.6 Header

The SpaceSystem element Header contains several documentation-oriented elements important to missions. It is likely that only the root SpaceSystem needs to have this element set, or to ignore this element except in the root SpaceSystem.
[image: image20.png]xtce:Space SystemType

tributes

SpaceSystem |

xtce:HeaderType

Blatributes

‘Generated by XmiSpy

www.altova.com

Figure 14: Header
4.1.6.1 version Attribute

The version attribute is left to the end user to define; one popular version schema is major.minor.increment.
4.1.6.2 date Attribute

The date attribute’s format is left up to the end user to define.
4.1.6.3 classification attribute

The content of the classifications attribute is left to the end user.

4.1.6.4 classificationInstructions Attribute

The content of the classificationInstructions attribute is left up to the end user.

4.1.6.5 validationStatus Attribute

The content of the validationStatus attribute is left up to the end user.
4.1.6.6 AuthorSet Element
Authors of the document are placed within the AuthorSet element. The content of the Author element itself is left up to the end user.
4.1.6.7 NoteSet Element
The NoteSet element allows capturing of notes associated with the file, the Note contents are set at the discretion of the end user.

4.1.6.8 HistorySet Element
The HistorySet element allows the capture of document creation history; it is set at the discretion of the end user.

4.1.6.9 Child SpaceSystem - SpaceSystem Hierarchy

A SpaceSystem may have one r more child SpaceSystems, forming a hierarchy of SpaceSystem elements, any number of levels may be created to form a tree representation for an entire space system as meets the needs of the user.
A SpaceSystem tree may map nicely to various views of the space system but it adds complexity to the XTCE document processing (especially NameReferences). As such one SpaceSystem may suffice for many users which simplifies the NameReferences – but at a cost of representation:

[image: image21.emf]SpaceSystem Root

-name

-description

-authors/versioning

-history

TLM CMD

SpaceSystem ChildA

-name

-description

-authors/versioning

-history

TLM CMD

SpaceSystem ChildB

-name

-description

-authors/versioning

-history

TLM CMD

SpaceSystem ChildC

-name

-description

-authors/versioning

-history

TLM CMD

SpaceSystem ChildCa

-name

-description

-authors/versioning

-history

TLM CMD

SpaceSystem ChildAa

-name

-description

-authors/versioning

-history

TLM CMD

SpaceSystem ChildAb

-name

-description

-authors/versioning

-history

TLM CMD

Figure 15: SpaceSystem Tree Diagram
<xtce:SpaceSystem name="Root">

<xtce:SpaceSystem name="ChildA">

<xtce:SpaceSystem name="ChildAa"/>

<xtce:SpaceSystem name="ChildAb"/>

</xtce:SpaceSystem>

<xtce:SpaceSystem name="ChildB"/>

<xtce:SpaceSystem name="ChildC">

<xtce:SpaceSystem name="ChildCa"/>

</xtce:SpaceSystem>
</xtce:SpaceSystem>
Note that in the above example the various child elements and attributes are not being shown for the purposes of brevity.

4.2 TelemetryMetaData - Telemetry
Telemetry description information is captured in the TelemetryMetaData area of SpaceSystem.

[image: image22.png]SpaceSystem

RooT Eaman

xtce:Space SystemType

ROOT Emant

xtce:TelometryMetaData B

constraints

‘Generated by XmiSpy

www.altova.com

Figure 16: TelemetryMetaData
TelemetryMetaData contains elements for ParameterTypes, Parameters, Containers, Messages, Streams and Algorithms. With these elements, one can create descriptions for many areas of telemetry and how they are packaged such as a CCSDS Packet.

For example XTCE allows one to describe the following forms of telemetry:

· Uncalibrated Parameters

· Calibrated Parameters

· System Supplied Parameters

· Derived Parameters

Parameters in this case refer to the individual telemetry samples sent from the remote system to the ground (i.e. a mnemonic). Those values from XTCE’s standpoint have a data type on the link (a source data type) which describes how the value is encoded on it, and a data type for the receiving system (a destination data type) among other items related to fully describing the parameter. Between the source and destination data types is a conversion which in the case of calibrated parameters is usually a polynomial or linear function or simply implied otherwise and left to the receiving system to define and process.

The source data type and receiving system destination data type are captured with one of the ParameterType elements. Additional child elements include calibrators, alarms, valid range and so forth – these elements vary slightly by ParameterType but are shared by many as well.

Containers are used to group parameters into common blocks which ultimately can be used to describe abstract structures (formats) like the CCSDS Packet format, ESA PUS or minor frames.

Messages, Streams and Algorithms are described below generally are not absolutely needed if the purpose of XTCE is to cover telemetry parameters, telemetry container and commanding.

4.2.1 ParameterTypeSet - ParameterTypes
ParameterTypes are defined in ParameterTypeSet – each Parameter has a ParameterType through a NameReference. ParameterTypes contain the bulk of the descriptive information related to individual telemetry items, while the Parameter itself has little in comparison.

Many of the ParameterTypes are similar to each other as they are constructed using the same underlying schema types, and hence follow a similar pattern. Because of this the overall pattern is introduced in this section followed by specific sections for each individual ParameterType.
[image: image23.png]xtce:Space SystemType

ROOT Emant

TelemetryMetaDataType

Figure 17: ParameterTypes
In general most of the ParameterTypes consist of a documentation area, an encoding area, an alarm area, and within the encoding area a calibration area.

4.2.1.1 ParameterType Pattern

The basic ParameterType pattern is typified by FloatParameterType as shown below:
[image: image24.png]xtce:Space SystemType

elemetryletaDataType

F
xtce:ParameterType SetType

loatDataType (extension)

Figure 18: FloatParameter

The ParameterTypes defines the relationship between the bits on the link (the source data type) and the destination data type (likely the receiving ground system), alarms and calibrators may be specified as well; the pattern looks like:

[image: image25.emf]Encoded Link

Data Type

ValidRange

Check

Calibration

Check

Host Data

Type

Alarm Check

DataEncoding

-Integer

-Float

-String

-Binary

ParamterType

-String

-Enumerated

-Binary

-Integer

-Float

-Boolean

-Absolute/

RelativeTime

-Array

-Aggregate

Figure 19: Relationship of ParameterType Elements
It should be noted that the ValidRange check is only applicable to IntegerParameterTypes and FloatParameterTypes.
Each ParameterType has four possible DataEncodings; although certain combinations are not explicitly defined for the various ParameterTypes, see Section 4.2.1.1.4.
In addition, the calibrators and alarms vary slightly by ParameterType and will be defined in Sections 4.2.1.1.4.5.3, 4.2.1.1.4.6.3, 4.2.1.1.5, 4.2.1.1.6, 4.2.1.2.

4.2.1.1.1 nameDescription Attributes and Elements
See Section 3.3.3.1 for a description of the elements and attributes associated with name, shortDescription, LongDescription, AliasSet and AncillaryDataSet.

4.2.1.1.2 baseType Attribute

Some ParameterTypes may optionally inherit from other ParameterTypes to form a new ParameterType description. The String, Enumerated, Binary, Integer, Float and Boolean ParameterTypes have a @baseType and can therefore extend other ParameterTypes.

In general certain broad rules apply:
· ParameterTypes may only inherit from other ParameterTypes (ArgumentTypes may only extend other ArgumentTypes) that have a baseType attribute
· Inheritance may only occur between the same ParameterType (i.e. IntegerParameterTypes may only inherit from another IntegerParameterType)
· Only certain elements and attributes may be overridden or inherited by the child, in some cases these are specific to each ParameterType
· baseType NameReferences that form loops are illegal
· Empty or unspecified content does not override explicit content

· The result of the inheritance must be a valid XTCE ParameterType construction

4.2.1.1.2.1 Common ParameterType Inheritance Rules

The main purpose of the type inheritance mechanism is to narrow a more general parameter description that is applicable to many parameters in a system, not to allow for any addition or override any element or attribute.

Generally speaking the underlying ParameterType/DataEncoding relationship cannot be changed.

For example it may be desirable to add an alarms specific to a device that is represented in more than one location on a SpaceSytem.
As such there is a fairly narrow list of elements and attributes per type that the baseType inheritance mechanism can apply to, they are:

Table 1: Common ParameterType Inheritance Rules

	Element or Attribute
	Inheritance Rule

	 @name
	Not inherited by child

	 @shortDescription
	Not inherited by child

	 @baseType
	N/A

	 @initialValue
	The child overrides parent’s shortDescription if supplied, otherwise the child gets the parent’s content if it is present

	 LongDescription
	Not inherited by child

	 AliasSet
	Not inherited by child

	 AncillaryDataSet
	Child’s content prefixed to parent’s content if present

	 UnitSet
	The child’s UnitSet will override the parent’s if it has content (is non-empty), otherwise it gets the parent’s UnitSet. An empty UnitSet cannot override one that has content.

	 DataEncodings
	The DataEncodings and most of their child elements cannot be overridden or changed by the child. However the calibrator elements can be set or overridden by the child. An empty (or unspecified) DataEncoding cannot override one with content. Likewise if the parent has no DataEncoding, the child cannot specify a DataEncodings as these actions fundamentally change the nature of the original ParameterType. The DataEncoding specified in the child, it should match that of the parent.

	DataEncoding/DefaultCalibrator
	The child may override the parent’s content or inherit the parent’s content

	DataEncoding/ContextCalibrator
	The child may add calibrators which are prefixed to any specified by the parent, otherwise the child inherits any specified by the parent

	BinaryDataEncoding/TransformAlgorithm
	FromBinaryTransformationAlgorithm and ToBinaryTransformationAlgorthm can be overridden by the child if specified in the parent, otherwise the child inherits the parent’s content

	 DefaultAlarm
	The child overrides the parent’s if supplied, otherwise the child gets the parent’s content if it is present

	 ContextAlarmList
	The child’s content is prefixed to the parent’s content if it present

4.2.1.1.2.2 Specific ParameterType Inheritance Rules
Certain items are specific to each ParameterType, they are listed here.
Table 2 - Specific Parametertype Inheritance Rules
	Element or Attribute
	Inheritance Rule

	StringParameterType/@restrictionPattern
	The child overrides the parent’s if supplied, otherwise the child gets the parent’s content if it is present

	StringParmeterType/@characterWidth
	The child may not override parent content

	StringParameterType/ SizeRangeInCharacters
	The child overrides the parent’s if supplied, otherwise the child gets the parent’s content if it is present

	EnumeratedParameterType/EnumerationList
	The child may add enumerations which are prefixed to the parent’s.

	IntegerParameterType/@sizeInBits
	The child cannot override the parent including default values, the child gets the parent’s value even if it specifies a different value

	IntegerParameterType/@signed
	The child cannot override the parent, the child gets the parent’s value even if specifies a different value

	IntegerParameterType/@validRangeAppliesToCalibrated
	The child cannot override the parent, the child gets the parent’s value even if specifies a different value

	IntegerParameterType/toString
	The child overrides the parent’s if supplied, otherwise the child gets the parent’s content if it is present

	IntegerParameterType/ValidRange
	The child overrides the parent’s if supplied; otherwise the child gets the parent’s content if it is present. An empty ValidRange cannot override one with content.

	FloatParameterType/@sizeInBits
	The child cannot override the parent, the child gets the parent’s value even if specifies a different value

	FloatParameterType /@validRangeAppliesToCalibrated
	The child cannot override the parent, the child gets the parent’s value even if specifies a different value

	FloatParameterType /toString
	The child overrides the parent’s if supplied, otherwise the child gets the parent’s content if it is present

	FloatParameterType /ValidRange
	The child overrides the parent’s if supplied; otherwise the child gets the parent’s content if it is present. An empty ValidRange cannot override one with content.

	BooleanParameterType/@oneStringValue
	The child cannot override the parent, the child gets the parent’s value even if specifies a different value

	BooleanParameterType/@zeroStringValue
	The child cannot override the parent, the child gets the parent’s value even if specifies a different value

StringParameterType Example

The following is the original base ParameterType; it defines a general “status message” which is simply a string of a fixed length.

<xtce:StringParameterType name="StatusMsgType">

<xtce:UnitSet/>

<xtce:StringDataEncoding>

<xtce:SizeInBits>

<xtce:Fixed>

<xtce:FixedValue>160</xtce:FixedValue>

</xtce:Fixed>

</xtce:SizeInBits>

</xtce:StringDataEncoding>

</xtce:StringParameterType>

A particular “PSU-B” subsystem ParameterType extends the base ParameterType – only strings that start with “PSU-B:” are allowed. The extending type inherits the string encoding from the parent, and simply adds a restriction pattern and alarm.

 <xtce:StringParameterType name="PSU-B_MsgType" restrictionPattern="^PSU-B:" baseType="StatusMsgType">

<xtce:UnitSet/>
<xtce:StringDataEncoding/>

<xtce:DefaultAlarm>

<xtce:StringAlarmList>

<xtce:StringAlarm matchPattern="PSU-B: LL0V OUT" alarmLevel="warning"/>

</xtce:StringAlarmList>

</xtce:DefaultAlarm>
 </xtce:StringParameterType>

The following shows what is really being constructed if all the element and attributes were combined into a single ParameterType.

<xtce:StringParameterType name="ResultsOfInheritance_PSU-B_Msg" restrictionPattern="^PSU-B:">

<xtce:UnitSet/>

<xtce:StringDataEncoding>

<xtce:SizeInBits>

<xtce:Fixed>

<xtce:FixedValue>160</xtce:FixedValue>

</xtce:Fixed>

</xtce:SizeInBits>

</xtce:StringDataEncoding>

<xtce:DefaultAlarm>

<xtce:StringAlarmList>

<xtce:StringAlarm matchPattern="PSU-B: LL0V OUT" alarmLevel="warning"/>

</xtce:StringAlarmList>

</xtce:DefaultAlarm>
</xtce:StringParameterType>
4.2.1.1.3 UnitSet

Units are defined in the UnitSet area within each ParameterType; it is a required element but it may have empty content.

[image: image26.png]xtce:Space SystemType

i |
R
{ xestendor

xtce:TelemetryletaDataType

I stce:ParameterTypesetType

xtce: StringDataType (exiension)

Figure 20: Unit

Unit elements in UnitSet are used together to build more complex formulas – for example to define “meter/sec” (meters per second), two Unit elements would be defined one with a content of “meter”, a power of 1 (default), and factor of 1 (default), the second unit element would be defined with a content of “sec”, a power of -1, and factor 1. The result is a formula of “meter * sec^-1” or “meter/sec”.

In essence Unit terms are multiplied together to form a more complex formula as is needed.
<xtce:UnitSet>

<!--this is meters/sec or meters * seconds^-1-->

<xtce:Unit>meters</xtce:Unit>

<xtce:Unit power="-1">second</xtce:Unit>
</xtce:UnitSet>
It should be noted that in practice, many implementation only support one Unit in UnitSet and simply give the unit string only, ignoring the other attributes as well.
This is usually the easiest approach since most systems support a unit string and having to parse these strings in a consistent manner to put them into UnitSet is difficult.

4.2.1.1.4 DataEncodings

The DataEncoding elements in most of the ParameterTypes describe bits on a link from a source. The four supported encodings are StringDataEncoding, IntegerDataEncoding, FloatDataEncoding and BinaryDataEncoding. Each is described fully below; their calibrators are in Section 4.2.1.1.4.5.3, 4.2.1.1.4.6.3 and 4.2.1.1.5.

The encodings follow a pattern as well and share certain elements and attributes, these will be described first.
4.2.1.1.4.1 bitOrder Attribute

Use this attribute to specify that the most significant bit (msb) of an item is first in the stream or that its least significant bit (lsb) is first in the stream. The default is mostSignificantBitFirst.
4.2.1.1.4.2 ErrorDetectCorrect

Describe parity or CRC checks that may be employed in the transmission of information on the link.
[image: image27.png]DataEncodingType E}

xtce:ErrorDetectCorrectType

Batributes

type.

xice:Parity B}

B posiion sars with 2

bitsFromReference

reference

Batributes

reference

|

Blatrues }

xtce:Term @7 coefficient | | |
s exponent] | |

o oo |

‘Generated by XMLSpy

www.altova.com

Figure 21: ErrorDetectCorrect

Parity – describe the type (even or odd), the offset (bitsFromReference), and where the offset should be applied (start or end) of the item in question.

Reference=start

· offset=0 -- the first bit in the stream of the item

· offset=1 -- the 2nd bit in the stream of the item

· offset=length of item-2 -- the last bit in the stream of the item

· length of item -1 – parity location

Reference=end

· offset=0 -- the last bit in the stream of the item

· offset=1 -- the 2nd to last bit in the stream of the item

· offset=length of item-1 -- the first bit in the stream of the item

· length of item -1 – parity location

Parity calculation direction: from location (reference, bitsFromReference) to last bit of the item, not including the parity bit itself.
CRC – describe the offset (bitsFromReference) and the reference (start or end), and then polynomial itself (see Section 4.2.1.1.5.2 which reuses the same Schema types). Other CRC details may need to be stored in AncillaryData. BitsFromReference and reference are similar to Parity.
4.2.1.1.4.3 ByteOrderList

The ByteOrderList element allows one to specify the order of byte transmission of an item. If the element is unspecified this should be interpreted as meaning that the most significant byte (MSB) is transmitted first in the stream. Otherwise a list can be constructed to describe a variety of transmission byte orderings.

To construct a new ordering, recognize that the first Byte element in the list corresponds to the first item in the stream and its byteSignificance attribute is then used to weight the other Byte’s order relative to each other in the list. For example if the first Byte has the lowest byteSignificance in terms of its value, it would be the least significant byte (LSB) in the list, if it has the highest value it would be the MSB.
<xtce:IntegerDataEncoding bitOrder="leastSignificantBitFirst" sizeInBits="24">

<xtce:ByteOrderList>

<xtce:Byte byteSignificance="2"/>

<xtce:Byte byteSignificance="1"/>

<xtce:Byte byteSignificance="0"/>

</xtce:ByteOrderList>
</xtce:IntegerDataEncoding>
For purposes of consistency the LSB should be given the value of zero and the MSB a value of ByteOrderList length minus one. For example, in a four Byte ByteOrderList, the MSB would have a value of three (3) and the LSB would have a value of zero (0).
In the above example, a 24-bit item is downlinked – the 3rd byte (2 - MSB) is to be received first, then the 2nd (1 - middle) byte, and finally the 1st byte (0 - LSB). Within each byte in this construction the bits are ordered from low-bit first to high-bit.
It is worth noting this construction differs from many network orderings which specify both MSB byte ordering and most significant bit (msb) orderings.
In addition special care may be required if the items are not exact multiples of a byte. For example using the above construction but with a sizeInBits="20" then the processing system should know that the MSB which is the first byte received here will in fact be only four bits long.
Also recognize that this element can be used in conjunction with the bitOrder attribute which is present in every DataEncoding, although the bit ordering applies to the entire construction, it’s not possible to order the bits of each individual Byte.
Finally understand that this element does not describe an item’s onboard byte ordering necessarily, for example that the onboard data type is big endian or little endian. It simply describes the byte ordering of an item’s transmission.
4.2.1.1.4.4 StringDataEncoding

StringDataEncoding supports the description of either UTF-8 or UTF-16 encoding of Unicode strings.

[image: image28.png]xtce:Space SystemType

elemetryletaDataType

-
xtce:ParameterType SetType

xtce:StringDataEncodingType

Figure 22: StringDataEncodingType
4.2.1.1.4.4.1 encoding

UTF-8 or UTF-16 may be defined. It is left up to users to define the UTF-16 byte order.
4.2.1.1.4.4.2 SizeInBits/Fixed
Set to a fixed bit length either by value, DynamicValue or DiscreteValueLookup. See Section 3.3.3.4 for a description of these elements.

4.2.1.1.4.4.3 SizeInBits/TerminationChar
TerminationChar specifies the character that terminates the string; it is similar to the C-string style string termination concept. Specify the value of the Unicode character of interest as xsd:hexBinary, the processing system should then convert this to the encoding specified, either UTF-8 or UTF-16.
<xtce:StringDataEncoding>

<xtce:SizeInBits>

<xtce:TerminationChar>0000</xtce:TerminationChar>

</xtce:SizeInBits>
</xtce:StringDataEncoding>

Note that using TerminationChar will likely make this ParameterType of variable length, possibly affecting other description areas.

4.2.1.1.4.4.4 SizeInBits/LeadingSize

LeadingSize is similar to the string length specification in Pascal strings; the string length is specified first before the characters themselves. This element the length in bits of that size tag, which leads the rest of the characters, the default is 16 bits.
<xtce:StringDataEncoding>

<xtce:SizeInBits>

<xtce:LeadingSize sizeInBitsOfSizeTag="17"/>

</xtce:SizeInBits>
</xtce:StringDataEncoding>

Here, for the purposes of illustration, the leading size is 17-bits, an unlikely value in real life (default is 16). The size should always be interpreted as an unsigned integer. Its bit and byte ordering should follow the specification of the StringDataEncoding enclosing it.
4.2.1.1.4.5 FloatDataEncoding

Supports IEEE754 or MIL-1750a encodings from 32 to 128 bits – various precisions are supported.
[image: image29.png]xtce:Space SystemType

TelemetryMetaDataType

F
xtce:ParameterType SetType

ntegerDataType (exiension)

Figure 23: FloatDataEncoding

4.2.1.1.4.5.1 Encoding Attribute

Either IEEE-754 or MIL-1750A is supported. If another floating point format is needed, use BinaryEncoding and specify the appropriate descriptive items in AncillaryData in the ParameterType.
4.2.1.1.4.5.2 sizeInBits Attribute
Supports sizes 32, 64, or 128 there’s a workaround for MIL-1750A 48-bits, set the value to non-32.
This is because there is a known typo in XTCE1.1, there is no 48-bit option for MIL-1750a extended float. The work around is to select non-32 for MIL-1750a 48-bit extended floats. This issue is already reported and is envisaged to be fixed in the next version of XTCE.
4.2.1.1.4.5.3 DefaultCalibrator and ContextCalibratorList

There are two areas to define calibrators under FloatDataEncoding and IntegerDataEncoding – DefaultCalibrator and ContextCalibrator.

[image: image30.png]xtce:Space SystemType

TelemetryMetaDataType

=
xtce:ParameterType SetType

ngType

Figure 24: DefaultCalibrator

The DefaultCalibrator is an optional element and may be used to define a calibrator that will apply by default, see Sections 4.2.1.1.4.5.3, 4.2.1.1.4.6.3 and 4.2.1.1.5
ContextCalibrator is dependent on some ContextMatch in order for it to be used. ContextMatch is a MatchCriteriaType see Section 3.3.3.2.5 for more explanation.
There can be any number of ContextCalibrators defined in the ContextCalibratorList.
See Section 4.2.1.1.5 for a detailed discussion of the Numeric Calibrators specific to IntegerDataEncoding and FloatDataEncoding.

Contexts have a user defined meaning; anything from mission phase to various forms of special cases may qualify as a context.
4.2.1.1.4.6 IntegerDataEncoding

Items that are data encoded as integers on the link are described with IntegerDataEncoding, a variety of formats are supported.
[image: image31.png]xtce:Space SystemType

elemetryletaDataType

F
xtce:ParameterType SetType

loatDataType (extension)

Rorowscripion

ntegerDataEncodingType

Figure 25: IntegerDataEncoding

4.2.1.1.4.6.1 encoding Attribute
Choose one of:
· unsigned (default)
· twosCompliment [sic]
· onesCompliment [sic]
· BCD (Binary Coded Decimal)

· packedBCD
4.2.1.1.4.6.2 sizeInBits Attributes
The size in bits of the item, 8-bits is the default value, any positive numbers are valid.
4.2.1.1.4.6.3 DefaultCalibrator and ContextCalibratorList

See Section 4.2.1.1.4.5.3 for a general description of Default and ContextCalibrator, and Section 4.2.1.1.5 for a detailed discussion of the Numeric Calibrators specific to IntegerDataEncoding and FloatDataEncoding.
4.2.1.1.4.7 BinaryDataEncoding

BinaryDataEncoding is used to describe items on the links that are either have no real data type or cannot be describe using other encodings.
[image: image32.png]xtce:Space SystemType

elemetryletaDataType

-
xtce:ParameterType SetType

xtce:lntegerDataType (exiension)

inaryDataEncodingType

Figure 26: BinaryDataEncoding
4.2.1.1.4.7.1 From/ToBinaryTransformAlgorithm

CustomAlgorithm-like description elements to describe the conversion from the binary format to the destination format or the other way around, see Section 3.3.3.2.4 for description of CustomAlgorithm.
4.2.1.1.4.8 Specifying No DataEncoding - Session Variable Types

All the DataEncodings are optional (note the dotted line around the choice in the diagram below) – specifying a ParameterType without a DataEncoding means it is a “session variable type” whose value will be supplied by the system.

[image: image33.png]xtce:Space SystemType

elemetryletaDataType

xtce:ParameterType SetType

xtce:lntegerDataType (exiension)

Figure 27: Optional Choice for Encodings
Session variables are conceptually supplied by the system in some way, how they would be supplied is not defined in XTCE.
To define a session variable, a Parameter would reference a ParameterType that has no data encoding element.
There are various places where a session variable may be useful such as in various MatchCriteria areas such as RestrictionCriteria, calibrators, alarms and so forth.

<xtce:TelemetryMetaData>

 <xtce:ParameterTypeSet>
 <xtce:StringParameterType name="SystemNameType">
 <xtce:UnitSet/>
 </xtce:StringParameterType>
 </xtce:ParameterTypeSet>
</xtce:TelemetryMetaData>
Here the string session variable type SystemNameType has been defined whose value will be supplied by the system in some way which is not defined.

Session variables may define almost anything that is not explicitly part of the telemetry or command stream or directly available in the items. For example a mission phase may be represented as EnumerationPrameterType (and Parameter).
Ideally the child element of Parameter/ParameterProperies/@dataSource should set this value to “local”.
Session variables can be combined with CustomAlgorithm to describe to a degree how they are actually formed, perhaps as some of form of pseudo-telemetry; these variables may be used in XTCE comparisons and conditions as is appropriate – if this is the case the attribute dataSource should be set to “derived.”
4.2.1.1.4.9 SizeInBits element
See section 3.3.3.4 for the description of this element.
4.2.1.1.5 Numeric Calibrators – FloatDataEncoding and IntegerDataEncoding
DefaultCalibrator and ContextCalibrator may support polynomial, spline or more general mathematical expression calibrators for FloatParameterType and IntegerParameterType.

Note that the DefaultCalibrator and ContextCalibrator associated with FloatDataEncoding and IntegerDataEncoding are NameDescription types; they can be optionally named, have aliases or AncillaryData.
4.2.1.1.5.1 Spline Calibrators

Linear calibrators maybe be represented with the SplineCalibrators element if the order attribute is set to 1 (the default); other order values have additional meaning (see section 4.2.1.1.5.1.1).

[image: image34.png]Output Value

300
250
200
150
100

50

Input Value

Figure 28: Spline Calibrator Graph

The linear (Spline) calibrator maps in input value to an output value which may be represented by the above graph.

[image: image35.png]xtce:Space SystemType

i |
R
¢+ cerhoader B

elemetryletaDataType

xtce:ParameterType SetType

ntegerDataType (exiension)

i |
R

-

xtce:CalibratorType

Figure 29: SplineCalibrator

The “raw” attribute refers to “input” and “calibrated” refers to the “output” in Figure 29: SplineCalibrator.

4.2.1.1.5.1.1 order Attribute

If order attribute is set to 1, it means a linear calibrator. An order value of:

· zero – a stepwise function
· one – a linear calibrator

· two – a quadratic spline
· three – a cubic spline
· four or more – and so forth
Because of the various forms associated with splines, more information may need to be supplied in XTCE to support them in a general manner.

4.2.1.1.5.1.2 extrapolate Attribute

If extrapolate is set to true the values past the end-points of the specified spline will be extrapolated.
4.2.1.1.5.1.3 SplinePoint

Each point represents a mapping from an input value (raw) to an output value (calibrated).

<xtce:SplineCalibrator>
 <xtce:SplinePoint raw="1" calibrated="10"/>
 <xtce:SplinePoint raw="2" calibrated="100"/>
 <xtce:SplinePoint raw="3" calibrated="500"/>
</xtce:SplineCalibrator>
The following shows the use of some legal double-type values:
<xtce:SplineCalibrator>
 <xtce:SplinePoint raw="1" calibrated="10.4222E0"/>
 <xtce:SplinePoint raw="2" calibrated="100.78E-2"/>
 <xtce:SplinePoint raw="3" calibrated="INF"/>

</xtce:SplineCalibrator>
4.2.1.1.5.1.4 SplinePoint - order Attribute

The order attribute in SplinePoint is a known XTCE 1.1 typo and should be ignored.
4.2.1.1.5.2 PolynomialCalibrator

Polynomial calibration is supported by the PolynomialCalibrator element.

[image: image36.png]xtce:Space SystemType

i |
R
{ xestendor

TelemetryMetaDataType

xtce:ParameterType SetType

ngDataType (extension)

i |
R

xtce:IntegerDataEncodingType

-
et 2

xtce:CalibratorType

Figure 30: PolynomialCalibrator

The polynomial description consists of a series of Term elements with attributes coefficient and exponent.

4.2.1.1.5.2.1 Term

Use Term to describe a single polynomial term for the polynomial equations.
4.2.1.1.5.2.2 coefficient Attribute

Specify the coefficient of the term of a polynomial equation.
4.2.1.1.5.2.3 exponent Attribute

The exponent of the term, non-negative integer values only, for example the following equation:
 y = 0.5 + 1.5x + -0.045x2 + 1.25x3 + 0.0025x4
Would be represented in table as:

Table 3: Exponent and Coefficient Table

	Exponent
	Coefficient

	0
	0.5

	1
	1.5

	2
	-0.045

	3
	1.25

	4
	0.0025

And the XTCE representation of that is:
<xtce:PolynomialCalibrator>
 <xtce:Term exponent="0" coefficient="0.5"/>
 <xtce:Term exponent="1" coefficient="1.5"/>
 <xtce:Term exponent="2" coefficient="-0.045"/>
 <xtce:Term exponent="3" coefficient="1.25"/>
 <xtce:Term exponent="4" coefficient="2.5E-3"/>
</xtce:PolynomialCalibrator>
4.2.1.1.5.3 MathOperationCalibrator

Describe calibration using a variety of possible mathematical operators and operands in the MathOperationType, see Section 4.2.6.2 for a discussion of this type.

4.2.1.1.6 DefaultAlarm and ContextAlarmList

Most ParameterTypes have a DefaultAlarm and ContextAlarmList although each alarm is slightly tuned per ParameterType.

[image: image37.png]xtce:Space SystemType

pS=z

xtce:TelemetryletaDataType

=
xtce:ParameterType SetType

—
ngDataType (extension)

xtce:EnumeratedDataType (exiension)

IO

[

0 10000;

| xtce:BinaryDataType (extension |

o

r

xtce:CommandMetaDataType

=
xtce:ParameterType SetType

—
ngDataType (extension)

umeratedDataType (extens?

.
|
|
|

xtce:FloatDataType (extension)

D00

=

Figure 31: DefaultAlarm
The DefaultAlarm applies when no defined ContextAlarm is active.

ContextAlarms are defined for certain contexts and take precedence over the default alarm, the first context to evaluate to true is used to indicate determine which alarm to process.
A ContextAlarm has a ContextMatch which is a MatchCriteria; see Section 3.3.3.2.5 for a further description of MatchCriteria.

Any number of ContextAlarms may be defined for ParameterTypes that support them in the ContextAlarmList.
Various Alarm description options are described in Section 4.2.1.2.

4.2.1.2 Alarm Descriptions

The following are the various Alarm descriptions available for each ParameterType which is specified in their DefaultAlarm and ContextAlarmList areas. The options are described below although specific options vary by ParameterType.

Five alarm levels are supported: Watch, Warning, Distress, Critical and Severe.

4.2.1.2.1 EnumerationAlarmList - EnumerationAlarm
Enumerations have a unique alarm type which consists of a list of one or more elements that contain attributes alarmLevel and enumerationValue.
[image: image38.png]xtce:Space SystemType

i |
R
¢+ cerhoader B

TelemetryMetaDataType

xtce:ParameterType SetType

Figure 32: EnumerationAlarm

4.2.1.2.1.1 alarmLevel Attribute

One of: normal, watch, warning, distress, critical, or severe.
4.2.1.2.1.2 enumerationValue Attributes

A specific enumeration label associated with a value.
<xtce:EnumerationAlarmList>
 <xtce:EnumerationAlarm alarmLevel="warning" enumerationValue="NUM_RANGE_ERR"/>
</xtce:EnumerationAlarmList>
The label should be specified here, although the attribute uses the term “value” in the name.

4.2.1.2.2 AlarmConditions

AlarmConditions may be used to specify alarm conditions.
[image: image39.png]xtce:Space SystemType

i |
R
{ xestendor

xtce:TelemetryletaDataType

I stce:ParameterTypesetType

xtce:NumericAlarmType

Figure 33: AlarmCondition

Each alarm level (Watch, etc…) is a MatchCriteria; see Section 3.3.3.2.5 for a discussion of the MatchCriteriaType.

<xtce:AlarmConditions>
 <xtce:WarningAlarm>
 <xtce:Comparison parameterRef="BAT1VOLT1" value="12.4" comparisonOperator=">"/>
 </xtce:WarningAlarm>
</xtce:AlarmConditions>

Here the calibrated value of parameter instance zero (last recorded value) is compared to 12.4, if it is greater than the alarm level is set to Warning.
The various levels are optional but the alarm “returns” the most severe level to test true.
4.2.1.2.3 Numeric Alarms

Numeric alarms are a associated with FloatParameterType and IntegerParameterType, the term “Numeric Alarms” refers to the StaticAlarmRanges and ChangeRateAlarm elements which are child elements in FloatParameterType and IntegerParameterType in their alarm area.

4.2.1.2.3.1 StaticAlarmRanges – Fixed Ranges

StaticAlarmRanges describe fixed alarm numeric ranges. XTCE only supports inside-alarms of StaticAlarmRanges, if outside alarms are needed they are left to end user to create from the elements that are here as a special case.

StaticRangesAlarm appear as follows for the five supported range elements.

[image: image40.png]xtce:Space SystemType

i |
R
g cesheader B

=
xtce:TelemetryletaDataType

xtce:ParameterType SetType

xtce:NumericAlarmType

xtce:AlarmRangesType

r —
| xtce:FloatRangeType

Figure 34: StaticAlarmRanges

Inside alarms have the normal range inside the least severe range and graphically appear as follows:

[image: image41.emf]Normal

Watch

Warning

Distress

Critical

Severe

Figure 35: Visual Depiction of Alarm Range Bands
(colors are non-normative to XTCE Specification)
<xtce:StaticAlarmRanges>
 <xtce:WarningRange minInclusive="-5" maxInclusive="5"/>
 <xtce:CriticalRange minInclusive="-20" maxInclusive="20"/>
</xtce:StaticAlarmRanges>
In the above example the ranges are as follows:

· the normal range is -5 < x < 5

· the warning range is -20 < x <= -5 and 5 <= x < 20

· the critical range is x <= -20 and x >= 20
The more severe ranges are weighted more heavily than the less severe ranges in the sense that they clip the underlying range.

For example taking each range independently in the above definition results in:

· Green/Normal: -Inf to +Inf

· Warning: x <= -5 or x >= 5

· Critical: x <= -20 or x >= 20

However the more severe ranges clip the less severe ranges, producing the bands defined above.

In XTCE the “min” specification always implies that it “points” toward –Infinity, whereas the “max” band always points towards +Infinity.

Unfortunately there is no explicit way to flip these various designations to produce some other form of banding such as inside alarms.
Creative approaches may be possible however.
4.2.1.2.3.2 ChangeAlarmRanges – Delta Alarm or Change Over Time
The ChangeAlarmRanges is used to describe delta or change over time alarm. Delta alarms compares multiple samples of a given parameter to determine if the difference that exceeds some limit, change over time compares value over a time period
[image: image42.png]xtce:Space SystemType

xtce:TelemetryletaDataType

xtce:ParameterType SetType

xtce:NumericAlarmType

:AlarmRangesType (extension)

r —
| xtce:FloatRangeType

changeBasis |
gk

Figure 36: ChangeAlarmRanges

ChangeAlarmRanges are similar to StaticAlarmRanges and similar rules apply.

4.2.1.2.3.2.1 changeType Attribute

A value of changePerSample designates a delta style alarm whereas a value of changePerSecond is a rate style alarm
4.2.1.2.3.2.2 changeBasis Attribute

If the value is absoluteChange, the absolute value change between samples is calculated, whereas if the value is set to percentageChange, the percentage change between samples is calculated instead.
4.2.1.2.3.2.3 spanOfInterestInSamples Attribute

The default value of one means every sample is used in the calculations whereas if the value is two every other sample is used in the calculation, and so on. Ignore this attribute if changeType is set to changePerSecond.
4.2.1.2.3.2.4 spanOfInterestInSeconds Attribute

This attribute defaults to zero, however it should be set to a positive value if changeType is set to changePerSecond. If so, ignore attribute spanOfInterestInSamples.
4.2.1.2.3.3 ChangeAlarmRanges - Delta
The ChangeAlarmRanges element forms a delta style alarm when changeType is set changePerSample as in this example.

<xtce:ChangeAlarmRanges changeBasis="absoluteChange" changeType="changePerSample" spanOfInterestInSamples="1">
 <xtce:SevereRange maxInclusive="10" minInclusive="-10"/>
</xtce:ChangeAlarmRanges>
In this example the alarm ranges are the following per sample:
· normal range: -10 < x < 10

· severe range: x <= -10 and x >= 10
4.2.1.2.3.4 ChangeAlarmRanges – Rate of Change

The ChangeAlarmRanges element can also be used to detect rates of change instead of the simpler delta form shown above.
By slightly varying the attributes, the delta alarm can be changed to detect rate of change – in this case a percentage rate of change:

<xtce:ChangeAlarmRanges changeBasis="percentageChange" changeType="changePerSecond" spanOfInterestInSeconds="1">
<xtce:SevereRange maxInclusive="10" minInclusive="-10"/>
</xtce:ChangeAlarmRanges>
In this example the alarm ranges are the following per second:
· normal range: -10% < x < 10%

· severe range: x <= -10% and x >= 10%

4.2.1.3 ParameterTypes

XTCE has eleven ParameterTypes. They are presented here but only those items not previously discussed in the proceeding sections will be described in detail. Items like NameDescription, Encodings, and Calibrators are more fully described in Section 4.2.1.
4.2.1.3.1 StringParameterType

StringParameterType describe UTF encoded Unicode strings; the encoding will likely be StringDataEncoding.
[image: image43.png]xtce:Space SystemType

elemetryletaDataType

xtce:ParameterType SetType

restrictionPattern §

Figure 37: StringParameterType

4.2.1.3.1.1 InitialValue Attribute
Use \u for Unicode escapes characters – see Java for an example.
4.2.1.3.1.2 RestrictionPattern Attribute
Restrict the string giving a regular expression. See java.util.regexp for a description of regular expressions.
4.2.1.3.1.3 CharacterWidth Attribute
If unspecified assume the system can hold the entire Unicode set, otherwise the number of bits supported can be specified here.
4.2.1.3.1.4 StringDataEncoding

For most application a StringParameterType will have a StringDataEncoding. BinaryDataEncoding could be used if the StringDataEncoding element cannot describe the string encoding properly for a particular system. FloatDataEncoding or IntegerDataEncoding are not explicitly defined for StringParameterType.
[image: image44.png]xtce:Space SystemType

TelemetryMetaDataType

xtce:ParameterType SetType

-
xtce: StringDataType (exiension)

Rorowscripion

xtce:StringDataEncodingType

Figure 38: StringDataEncoding
4.2.1.3.1.4.1 Encoding Attribute
Select UTF-8 or UTF-16 encoding of Unicode, note that UTF-8 and UTF-16 may be represented by multi-unit sequences, so these factors need to be accounted for in the size.

4.2.1.3.1.4.2 SizeInBits Attribute
See Section 4.2.1.1.4.4 for a description of these elements.
4.2.1.3.1.5 SizeRangeInCharacters

Clip the character set, the values are given as integers, hex, binary, or octal – specify using the Unicode range, the processing system should convert to the specified encoding: UTF-8 or UTF-16.

<xtce:SizeRangeInCharacters minInclusive="0x00" maxInclusive="0x7F"/>
In the example, the character range is clipped to ASCII.
4.2.1.3.1.6 StringAlarm Element
[image: image45.png]xtce:Space SystemType

i |
R
{xiceHendor 3

elemetryletaDataType

xtce:ParameterType SetType

ngDataType (xtenson) |

xtce:StringAlarmType

defaultAlarml |

Figure 39: StringAlarm
Set an alarm against an associated string pattern, for a discussion of regular expressions see the Java package regex java.util.regex.
4.2.1.3.1.6.1 minViolations

The number of successive instances that meet the alarm conditions for the alarm to trigger; applies to default alarm level as well.
4.2.1.3.1.6.2 defaultAlarmLevel

The alarm level for strings not matched in the StringAlarmList.

<xtce:StringParameterType name="" restrictionPattern="^REDALERT">

<xtce:UnitSet/>

<xtce:StringDataEncoding>

<xtce:SizeInBits>

<xtce:Fixed>

<xtce:FixedValue>40</xtce:FixedValue>

</xtce:Fixed>

</xtce:SizeInBits>

</xtce:StringDataEncoding>

<xtce:DefaultAlarm minViolations="3" defaultAlarmLevel="warning">

 <xtce:StringAlarmList>

 <xtce:StringAlarm alarmLevel="critical" matchPattern="SHIELDS DOWN TO"/>

 </xtce:StringAlarmList>

</xtce:DefaultAlarm>
</xtce:StringParameterType>

A somewhat silly example, the StringParameterType is restricted to strings that start with “REDALERT”, in this case the critical alarm regarding “SHIELDS DOWN TO” is ignored three times. Any other “REDALERT” string defaults to simply warning level.

4.2.1.3.2 EnumeratedParameterType

EnumeratedParameterType supports the description of enumerations – a list of values and associated labels.
[image: image46.png]xtce:Space SystemType

i |
R
{xiceHendor 3

xtce:TelemetryletaDataType

I

xtce:ParameterType SetType

=
xtce: StringDataType (exiension)

i |
R

xtce:EnumeratedDataType (exiension)

Rorowscripion

T

Figure 40: EnumeratedParameterType
4.2.1.3.2.1 initialValue Attribute
The intialValue using one of the defined labels – the mapping to the labels value is left to the implementation.

4.2.1.3.2.2 IntegerDataEncoding Element
Most if not all enumerated encodings are likely to be IntegerDataEncoding, either calibrated or uncalibrated. Other encodings may be possible such as BinaryDataEncoding, StringDataEncoding and FloatDataEncoding, although their behavior is not explicitly defined.
4.2.1.3.2.3 EnumerationList/Enumeration Element
Specify the value/label pairs of the enumeration

<xtce:EnumerationList>

<xtce:Enumeration label="Off" value="1"/>

<xtce:Enumeration label="On" value="2"/>

<xtce:Enumeration label="Tripped" value="3"/>

<xtce:Enumeration label="NotWorking" value="4"/>

</xtce:EnumerationList>
4.2.1.3.2.4 EnumerationAlarm Element
Specify and alarm level and enumeration value to trip the alarm, the enumerationValue is a string so specify it as one of the labels, it is slightly misnamed.

<xtce:EnumerationAlarmList>

<xtce:EnumerationAlarm alarmLevel="distress" enumerationValue="Tripped"/>
</xtce:EnumerationAlarmList>
4.2.1.3.2.4.1 minViolations

The number of successive instances that meets the alarm conditions for the alarm to trigger, note: applies to any default alarm levels as well.
4.2.1.3.2.4.2 defaultAlarmLevel

The alarm level for label/values not matched in the EnumerationAlarmList.
4.2.1.3.3 IntegerParameterType

IntegerParameterType captures integer telemetry definitions.
[image: image47.png]xtce:Space SystemType

xtce:TelemetryletaDataType

xtce:ParameterType SetType

xtce:NumericAlarmType

Figure 41: IntegerParameterType
4.2.1.3.3.1 validRangeAppliesToCalibrated Attribute
For telemetry this attribute should be ignored as XTCE telemetry ValidRange is defined as taking place before calibration (Section 4.2.1.1). The valid range itself can be defined in the element ValidRange (Section 4.2.1.3.3.6).
Commanding is different however, see Section 4.3.1 for a description of command ValidRange.

4.2.1.3.3.2 sizeInBits Attribute
This attribute should match or exceed the precision needed to capture the DataEncoding, whether it is calibrated or not – a designation that will not should produce a warning message.
4.2.1.3.3.3 signed Attribute
Set to unsigned if encoding is unsigned; default is signed.
4.2.1.3.3.4 IntegerDataEncoding Element
Most IntegerParameterTypes will also select IntegerDataEncoding, either uncalibrated or calibrated. BinaryDataEncoding may be an option for cases – StringDataEncoding or FloatDataEncoding is undefined for IntegerParameterType and their use would be user dependent.

4.2.1.3.3.5 toString Element
One of the few places in XTCE that has any information regarding display, use this to show how to print the integer on the screen if desired.

4.2.1.3.3.6 ValidRange Element
For telemetry, apply a ValidRange check before calibration (if present) or before conversion to the destination data type (if not present). This is always an uncalibrated check for telemetry, so there is no need to specify attribute validRangeAppliesToCalibrated in instance documents, its value should be ignored. See Section 4.3.1 for a discussion of this element for commanding. Note that it is possible to define an empty ValidRange because the two attributes are optional – if this occurs a warning may be appropriate as it is probably not what was intended by the user.
4.2.1.3.3.7 StaticAlarmRanges Element
Set up static alarm ranges; see Section 4.2.1.2.3.1 for a discussion of static ranges

4.2.1.3.3.8 ChangeAlarm Element
Delta or change in time alarms, see Section 4.2.1.2.3.2
4.2.1.3.4 BinaryParameterType

A general purpose “data type-less” type, use it to describe a block of bits that cannot be captured for whatever reason with the other ParameterTypes, such as “blob data”. If the ToBinary/FromBinary algorithms are not used, the way this item needs to be treated must be known ahead of time by an implementation.
[image: image48.png]xtce:Space SystemType

i |
R
{xiceHendor 3

TelemetryMetaDataType

[stce:ParameterTypesetType

ngDataType (extension)

i |
R

naryDataEnco

ngType

Figure 42: BinaryParameterType
4.2.1.3.4.1 initialValue Attribute
Specify the initial value in hex binary; bits are truncated from the leftmost (MSB).

4.2.1.3.4.2 BinaryDataEncoding Element
Typically BinaryDataEncoding would be used with BinaryParameterType, the other encodings are not explicitly defined but not illegal either.
4.2.1.3.4.3 BinaryDataEncoding/SizeInBits
Specify the length with SizeInBits using FixedValue, DynamicValue or DiscreteLookup.
4.2.1.3.4.4 BinaryDataEncoding/FromBinaryTransformAlgorithm or ToBinaryTransformAlgorithm

Optional element to capture custom algorithm for transforming binary data encoded data to destination data type.
4.2.1.3.5 FloatParameterType

Use FloatParameterType to describe either a float data encoding (source data type) or an integer data encoding calibrated (source data type) to a destination float data type.
[image: image49.png]xtce:Space SystemType

i |
R
{xiceHendor 3

elemetryletaDataType

xtce:ParameterType SetType

ingeApy i |
e ‘\

r —
| xtce:FloatRangeType

Figure 43: FloatParameterType
4.2.1.3.5.1 sizeInBits Attribute
Use this attribute to describe the precision of the output of a calibrator, typically an integer count. Use 32 to mean single precision, and 64 for double, 80 for extended, 128 for quad precision, and so on. Otherwise the destination should match or exceed the precision needed by the encoding.

For example if a the FloatDataEncoding is 32-bits, the FloatParameterType sizeInBits should be at least 32-bits.
Or if the IntegerDataEncoding has calibrator, and the FloatParameterType sizeInBits is set to 64, this should be interpreted to mean the calibrator outputs a double precision value.

If the precision cannot be met by an implementation or there is a mismatch in the specified sizeInBits, warnings should be issued when processing the XTCE file.

For example if a FloatParameterType has its sizeInBits set to 32 bits, and the FloatDataEncoding has its sizeInBits set to 64, then this is loss of precision and probably not what was intended – checking for such items and issuing warnings is appropriate (and then matching or exceeding the precision specified by the FloatDataEncoding in this case).

4.2.1.3.5.2 validRangeAppliesToCalibrated Attribute
This attribute should be ignored as in XTCE it is assumed that the ValidRange check is always applied before calibration (see 4.2.1.1). The case is different for commanding; this is discussed in section 4.3.1.
4.2.1.3.5.3 FloatDataEncoding Element
FloatDataEncoding supports IEEE or MIL-1750 format directly. If other formats are needed, BinaryDataEncoding can be used to supply the basic information, and AncillaryData can be employed in a user specific manner to supply other aspects of the format – this would be unique to that user however and need to be appropriately documented for exchange.
4.2.1.3.5.4 IntegerDataEncoding Element
If IntegerDataEncoding is defined in FloatParameterType it is used designate a raw count to engineering unit conversion. The calibrator would be defined in the IntegerDataEncoding element.
4.2.1.3.5.5 ValidRange Element
Similar to element of the same name in IntegerParameterType (See 4.2.1.3.3.6) but tuned for floating point, the issues are the same concerning ValidRange and the attribute validRangeAppliesToCalibrated.
4.2.1.3.6 BooleanParameterType

Describe true/false items; this is a restricted form of enumeration.
[image: image50.png]xtce:Space SystemType

elemetryletaDataType

xtce:ParameterType SetType

—
xtce:BooleanDataType (exiension)

Rorowscripion

Figure 44: BooleanParameterType
4.2.1.3.6.1 oneStringValue Attribute
Set the string associated with value 1, the default is ‘True’.
4.2.1.3.6.2 zeroStringValue Attribute
Set the string associated with value 0, the default is ‘False’.
4.2.1.3.6.3 IntegerDataEncoding Element
Use IntegerDataEncoding, other encodings may be possible but are undefined.
4.2.1.3.7 RelativeTimeParameterType

A relative time description offset from some absolute time.
[image: image51.png]xtce:Space SystemType

i |
R
{ xestendor

TelemetryMetaDataType

xtce:ParameterType SetType

Rorowscripion

Figure 45: RelativeTimeParameterType
4.2.1.3.7.1 initialValue Attribute
Format the string to an xsd:duration - see javax.xml.datatype for an implementation of this type. See XML Schema data types section of the specification for a complete description of it.
Chances are the time specified will be less than a second – for example PT0.5S is half a second.

But longer time spans can be specified such as: -P120D (-120 days) and P1Y2M3DT10H30M (1 year, 2 months, 3 days, 10 hours and 30 minutes).

4.2.1.3.7.2 units, scale and offset Attribute
Supply units related specifically to time, scale supplies a scaling factor for the encoded value, and offset an offset.

4.2.1.3.7.3 DataEncoding Elements
Use IntegerDataEncoding -- BinaryDataEncoding may be necessary for some cases, the other encodings are not defined.
4.2.1.3.7.4 ReferenceTime/Offset Element
Reference another time parameter, allowing for the stringing together of a several disparate but related time parameters so that they can be assembled into one coherent time variable.
It may be easier in some cases to ignore Offset and supply time field knowledge outside of XTCE, and then simply specify the entire length of the time field in a single IntegerDataEncoding in the TimeParameterType.
4.2.1.3.7.5 ReferenceTime/Epoch Element
Specify a starting epoch for the date. This schema type is a union between xsd:date and the string TAI. TAI stands for International Atomic Time, taken from the French: Temps Atomique International, that’s January 1, 1958.
4.2.1.3.7.6 Default and ContextAlarms

Alarms may be specified for RelativeTimeParameterType. The alarm forms include AlarmConditions, CustomAlarm and StaticRangeAlarms which are the same as in the other ParameterTypes.
The ChangePerSecondAlarmRanges are used to describe when its rate of change is either too fast or too slow. Its attribute “@timeUnits” specifies the unit of time.
4.2.1.3.8 AbsoluteTimeParameterType

Describe absolute time values, similar to RelativeTimeParameterType in construction except there are no alarms.
[image: image52.png]xtce:Space SystemType

i |
R
¢ ceihoader B

elemetryletaDataType

xtce:ParameterType SetType

eDataType

Rorowscripion

I stce:ReferenceTimeType

Figure 46: AbsoluteTimeParameterType
The same issue regarding using ReferenceTime/Offset occurs in this ParameterType as well. The user may find it easiest to specify the entire time field as one larger IntegerDataEncoding, and then specify the segments or fields in AncillaryData, or supply the information externally. The ReferenceTime/Epoch can be used to hold the epoch however.

These types of variations should be thoroughly documented for purposes of exchange.
4.2.1.3.8.1 initialValue Attribute
Use the XML Schema dateTime type to describe absolute time initialValues. See javax.xml.datatype.XMLGregorianCalendar for an implementation of dateTime, and the W3C schema data type specification for a detailed explanation of accepted formats.
Examples include: 2002-10-10T12:00:00-05:00 (noon on 10 October 2002, Central Daylight Savings Time as well as Eastern Standard Time in the United States).
4.2.1.3.9 ArrayParameterType

Used to describe arrays of other ParameterTypes, any number of dimensions is set here only. The dimension sizes are specified at its point of use (through a referring Parameter) in a container.
[image: image53.png]xtce:Space SystemType

i |
R
{ xestendor

xtce:TelemetryletaDataType

xtce:ParameterType SetType

| xtce:ArrayDataTypeType

|

|
|
|
|

Figure 47: ArrayParameterType
4.2.1.3.9.1 arrayTypeRef Attribute
A NameReference to another ParameterType from which the array cell’s are formed (its data type), it should be noted that the ArrayParameterType does not support “arrays of arrays” due to the fact that dimension sizes are set in the EntryList (see ArrayParameterRefEntry in Section 4.2.3.7.8) of containers, and this make no provision to specify “sub-dimension” sizes.
Another issue concerns an aggregate that refers to ArrayParameterType. The parameter in question would refer to an AggregateParameterType. The AggregateParameterType in this case would refer to an ArrayParameterType. In the container, the aggregate parameter would be referred to by ParameterEntryRef, and this means there is no provision given to set the array dimensions in this case either.

Note that an ArrayParameterType that refers to an Aggregate does not present a problem.

4.2.1.3.9.2 numberOfDimensions Attribute
The numbers of dimensions of this array, at this time it is left up to the implementer to determine if the array is sent in the stream in row major order or column major order descriptions (the annotation in ArrayParameterRef hints at row major order but is unclear).
Note that the actual size of each dimension is set in the container EntryList where it is used – see Section 4.2.3.7.8 and the array can be split up in various ways by specifying the start and end indexes among several entries
ParameterInstanceRefs to an array use syntax “ArrayName[index][…]…” similar to C.
4.2.1.3.10 AggregateParameterType

Use to describe aggregates, similar to C-structs or records in other languages.
[image: image54.png]xtce:Space SystemType

TelemetryMetaDataType

-
xtce:ParameterType SetType

xtce:AggregateDataType

Figure 48: AggregateParameterType
4.2.1.3.10.1 MemberList/Member Elements
The list of fields of the aggregate, typeRef is a NameReference to another ParameterType.
ParameterInstanceRefs to an aggregate use the syntax “AggregateName.MemberName”.

Arrays to aggregates is an not supported as has been in discussed in the ArrayParameterType section due to issues associated with setting the array’s dimension sizes.
4.2.1.4 ParameterType and Encoding Tables - Recommendations
The following table provides examples of ParameterTypes and likely encodings that many users will find acceptable for their needs, examples of each are given after the tables. Other ParameterType encodings are left to the end-user to define for their own uses. Default attribute values are used where possible to decrease the size of the description, however this is subjective.
4.2.1.4.1 Uncalibrated ParameterTypes

Table 4: Settings for Uncalibrated StringParameterType
	Destination Side
	Encoding (Source) Side

	ParameterType
	@characterWidth
	DataEncoding
	@encoding
	SizeInBits

	String
	ignore (use default) – interpret as Unicode
	String
	UTF-8
(use default)
	Set to size taking into account codes per character

	String
	ignore (use default) – interpret as Unicode
	String
	UTF-16
	Set to size taking into account codes per character

	UTF-8
	UTF-16

	<xtce:StringParameterType name="UTF8Type">
	<xtce:StringParameterType name="UTF16Type">

	 <xtce:UnitSet/>
	 <xtce:UnitSet/>

	 <xtce:StringDataEncoding>
	 <xtce:StringDataEncoding encoding="UTF-16">

	 <!—Ex. Length in bits is 11 characters,
	 <!-- Length in bits is 11 characters,

	 8-bits per ASCII-type character -->
	 16-bits per character -->

	 <xtce:SizeInBits>

	 <xtce:SizeInBits>

	 <xtce:Fixed>
	 <xtce:Fixed>

	 <xtce:FixedValue>88</xtce:FixedValue>
	 <xtce:FixedValue>176</xtce:FixedValue>

	 </xtce:Fixed>
	 </xtce:Fixed>

	 </xtce:SizeInBits>
	 </xtce:SizeInBits>

	 </xtce:StringDataEncoding>
	 </xtce:StringDataEncoding>

	</xtce:StringParameterType>
	</xtce:StringParameterType>

Table 5: Settings for Uncalibrated Unsigned IntegerParameterType
	Destination Side
	Encoding (Source) Side

	ParameterType
	@signed
	@sizeInBits
	DataEncoding
	@encoding
	@sizeInBits

	Integer
	unsigned
	32
 (use default)
	Integer
	unsigned
 (use default)
	1-7

	Integer
	unsigned
	32
(use default)
	Integer
	unsigned
(use default)
	8
(use default)

	Integer
	unsigned
	32
(use default)
	Integer
	unsigned
(use default)
	9-16

	Integer
	unsigned
	32
(use default)
	Integer
	unsigned
(use default)
	17-32

	Integer
	unsigned
	64
	Integer
	unsigned
(use default)
	33-64

	Integer
	unsigned
	Set to next multiple
	Integer
	unsigned
(use default)
	64+

<xtce:IntegerParameterType name="UnsignedLongType" signed="false">
 <xtce:UnitSet/>
 <xtce:IntegerDataEncoding encoding="unsigned" sizeInBits="32"/>
</xtce:IntegerParameterType>
Table 6: Settings for Uncalibrated Signed IntegerParameterType

	Destination Side
	Encoding (Source) Side

	ParameterType
	@signed
	@sizeInBits
	DataEncoding
	@encoding
	@sizeInBits

	Integer
	signed
(use default)
	32
(use default)
	Integer
	twosCompliment

onesCompliment
signedMagnitude
	2-7

	Integer
	signed
(use default)
	32
(use default)
	Integer
	twosCompliment

onesCompliment

signedMagnitude
	8
(use default)

	Integer
	signed
(use default)
	32
(use default)
	Integer
	twosCompliment

onesCompliment

signedMagnitude
	9-16

	Integer
	signed
(use default)
	32
(use default)
	Integer
	twosCompliment

onesCompliment

signedMagnitude
	17-32

	Integer
	signed
(use default)
	64
	Integer
	twosCompliment

onesCompliment

signedMagnitude
	33-64

	Integer
	signed
(use default)
	Set to next multiple
	Integer
	twosCompliment

onesCompliment

signedMagnitude
	64+

<xtce:IntegerParameterType name="SignedLongType">
 <xtce:UnitSet/>
 <xtce:IntegerDataEncoding sizeInBits="32"/>
</xtce:IntegerParameterType>
Table 7: Settings for Uncalibrated BCD IntegerParameterType

	Destination Side
	Encoding (Source) Side

	ParameterType
	@signed
	@sizeInBits
	DataEncoding
	@encoding
	@sizeInBits

	Integer
	unsigned
	32
(use default)
	Integer
	BCD

packedBCD
	4+ in 4 or 8 bit increments up to values 2^32

	Integer
	unsigned
	32
(use default)
	Integer
	BCD

packedBCD
	8
(use default)

	Integer
	signed
(use default)
	32
(use default)
	Integer
	BCD

packedBCD
	4+ in 4 or 8 bit increments up to values of +/- 2^32-1

	Integer
	signed
(use default)
	32
(use default)
	Integer
	BCD

packedBCD
	8 (use default)

	Integer
	unsigned
	Set to bit precision to hold largest value
	Integer
	BCD

packedBCD
	Size needed to hold value

	Integer
	signed
(use default)
	Set to bit precision to hold max/min values
	Integer
	BCD

packedBCD
	Size needed to hold value

<xtce:IntegerParameterType name="BCD0Thru9">

<xtce:UnitSet/>

<xtce:IntegerDataEncoding sizeInBits="40" encoding="BCD"/>
</xtce:IntegerParameterType>
Table 8: Settings for Uncalibrated FloatParameterType

	Destination Side
	Encoding (Source) Side

	ParameterType
	@sizeInBits
	AncillaryData
	DataEncoding
	@encoding
	@sizeInBits

	Float
	32
(use default)
	
	Float
	IEEE754_1985 (use default)
	32
(use default)

	Float
	64
	
	Float
	IEEE754_1985 (use default)
	64

	Float
	128
	@name=

“IEE754_1985_EXTENDED”
Element holds 80
	Float
	IEEE754_1985 (use default)
	32
(use default) – interpret as 80

	Float
	128
	
	Float
	IEEE754_1985 (use default)
	128

	Float
	32
(use default)
	
	Float
	MILSTD_1750A
	32
(use default)

	Float
	64
	@name=

“MILSTD_1750A_EXTENDED”
Element holds 48
	Float
	MILSTD_1750A
	32
(use default) – interpret as 48

<xtce:FloatParameterType name="SinglePrecisionFloatType">
 <xtce:UnitSet/>
 <xtce:FloatDataEncoding/>
</xtce:FloatParameterType>
Table 9: Settings for Uncalibrated EnumeratedParameterType
	Destination Side
	Encoding (Source) Side

	ParameterType
	DataEncoding
	@encoding
	@sizeInBits

	Enumerated
	Integer
	unsigned (use default)
	1-7

	Enumerated
	Integer
	unsigned (use default)
	8

(use default)

	Enumerated
	Integer
	unsigned (use default)
	9+

<xtce:EnumeratedParameterType name="PowerStateType">
 <xtce:UnitSet/>
 <xtce:IntegerDataEncoding />
 <xtce:EnumerationList>
 <xtce:Enumeration label="ON" value="1"/>
 <xtce:Enumeration label="OFF" value="0"/>
 </xtce:EnumerationList>
</xtce:EnumeratedParameterType>
Table 10: Settings for Uncalibrated BinaryParameterType

	Destination Side
	Encoding (Source) Side

	ParameterType
	DataEncoding
	SizeInBits

	Binary
	Binary
	1+

<xtce:BinaryParameterType name="Blob">

<xtce:UnitSet/>

<xtce:BinaryDataEncoding>

<xtce:SizeInBits>

<xtce:FixedValue>255</xtce:FixedValue>

</xtce:SizeInBits>

</xtce:BinaryDataEncoding>

</xtce:BinaryParameterType>
Table 11: Settings for Uncalibrated BooleanParameterType

	Destination Side
	Encoding (Source) Side

	ParameterType
	DataEncoding
	@encoding
	@sizeInBits

	Boolean
	Integer
	unsigned
(use default)
	1

<xtce:BooleanParameterType name="Boolean">

<xtce:UnitSet/>

<xtce:IntegerDataEncoding sizeInBits="1"/>
</xtce:BooleanParameterType>
Table 12: Settings for Uncalibrated Relative and AbsoluteParameterTypes

	Destination Side
	Encoding (Source) Side

	ParameterType
	DataEncoding
	Attributes and Sizes

	Relative and Absolute
	Integer and String likely
	Follow suggestions above

<xtce: RelativeTimeParameterType name="SecondsTimeType">
 <xtce:Encoding units="seconds">
 <xtce:IntegerDataEncoding sizeInBits="32"/>
 </xtce:Encoding>
 <xtce:ReferenceTime>
 <xtce:OffsetFrom parameterRef="SubSeconds"/>
 </xtce:ReferenceTime>
</xtce:RelativeTimeParameterType>
<xtce:RelativeTimeParameterType name="SubSecondsTimeType">
 <xtce:Encoding scale="0.00001" units="seconds">
 <xtce:IntegerDataEncoding sizeInBits="32"/>
 </xtce:Encoding>
 <xtce:ReferenceTime>
 <xtce:Epoch>TAI</xtce:Epoch>
 </xtce:ReferenceTime>
</xtce:AbsoluteTimeParameterType>
<xtce:ParameterSet>
 <xtce:Parameter name="Time" parameterTypeRef="SecondsTimeType"/>
 <xtce:Parameter name="SubSeconds" parameterTypeRef="SubSecondsTimeType"/>
</xtce:ParameterSet>
<xtce:RelativeTimeParameterType name="SecondsTimeType">
 <xtce:Encoding units="seconds">
 <xtce:IntegerDataEncoding sizeInBits="32"/>
 </xtce:Encoding
 <xtce:ReferenceTime>
 <xtce:OffsetFrom parameterRef="SubSeconds"/>
 </xtce:ReferenceTime>
</xtce:RelativeTimeParameterType>
<xtce:RelativeTimeParameterType name="SubSecondsTimeType">
 <xtce:Encoding scale="0.00001" units="seconds">
 <xtce:IntegerDataEncoding sizeInBits="32"/>
 </xtce:Encoding>
 <xtce:ReferenceTime>
 <xtce:Epoch>TAI</xtce:Epoch>
 </xtce:ReferenceTime>
</xtce:RelativeTimeParameterType>
<xtce:ParameterSet>
 <xtce:Parameter name="Time" parameterTypeRef="SecondsTimeType"/>
 <xtce:Parameter name="SubSeconds" parameterTypeRef="SubSecondsTimeType"/>
</xtce:ParameterSet>
Table 13: Settings for Alternative Uncalibrated ParameterTypes
	Destination Side
	Encoding (Source) Side

	ParameterType
	@sizeInBits
	AncillaryData
	DataEncoding
	SizeInBits

	Integer
	Set to size large enough for precision – use default when possible
	@name=”INTEGER_FORMAT”
Element holds your format name convention
	Binary
	1+

	Float
	Set to size large enough for precision – use default when possible
	@name=”FLOAT_FORMAT”
Element holds your format name convention
	Binary
	1+

	String
	Set to size large enough for precision – use default when possible
	@name=”STRING_FORMAT”
Element holds your format name convention
	Binary
	1+

<xtce:FloatParameterType name="NotVeryCommon">

<xtce:AncillaryDataSet>

 <xtce:AncillaryData name="FLOAT_FORMAT">
Motorola68881PackedDecimalReal

 </xtce:AncillaryData>

</xtce:AncillaryDataSet>

<xtce:UnitSet/>

<xtce:BinaryDataEncoding>

<xtce:SizeInBits>

<xtce:FixedValue>82</xtce:FixedValue>

</xtce:SizeInBits>

</xtce:BinaryDataEncoding>
</xtce:FloatParameterType>
4.2.1.4.2 Calibrated ParameterTypes

In general only certain integer telemetry parameter and float parameters are going to use calibrators and these are shown here.
Table 14: Settings for Calibrated Unsigned IntegerParameterType
	Destination Side
	Encoding (Source) Side

	ParameterType
	@signed
	@sizeInBits
	DataEncoding
	@encoding
	@sizeInBits

	Integer
	unsigned
	Long Precision: 32 (use default)

Long Long Precision: 64
	Integer
	unsigned
(use default)
	1-7

	Integer
	unsigned
	Long Precision: 32 (use default)

Long Long Precision: 64
	Integer
	unsigned
(use default)
	8
(use default)

	Integer
	unsigned
	Long Precision: 32 (use default)

Long Long Precision: 64
	Integer
	unsigned
(use default)
	9-16

	Integer
	unsigned
	Long Precision: 32 (use default)

Long Long Precision: 64
	Integer
	unsigned
(use default)
	17-32

	Integer
	unsigned
	Long Long Precision: 64
	Integer
	unsigned
(use default)
	33-64

	Integer
	unsigned
	Set to next multiple
	Integer
	unsigned
(use default)
	64+

Table 15: Settings for Calibrated Signed IntegerParameterTypes
	Destination Side
	Encoding (Source) Side

	ParameterType
	@signed
	@sizeInBits
	DataEncoding
	@encoding
	@sizeInBits

	Integer
	signed
(use default)
	Long Precision: 32 (use default)

Long Long Precision: 64
	Integer
	twosCompliment

onesCompliment

signedMagnitude
	2-7

	Integer
	signed
(use default)
	Long Precision: 32 (use default)

Long Long Precision: 64
	Integer
	twosCompliment

onesCompliment

signedMagnitude
	8
(use default)

	Integer
	signed
(use default)
	Long Precision: 32 (use default)

Long Long Precision: 64
	Integer
	twosCompliment

onesCompliment

signedMagnitude
	9-16

	Integer
	signed
(use default)
	Long Precision: 32 (use default)

Long Long Precision: 64
	Integer
	twosCompliment

onesCompliment

signedMagnitude
	17-32

	Integer
	signed
(use default)
	Long Long Precision: 64
	Integer
	twosCompliment

onesCompliment

signedMagnitude
	33-64

	Integer
	signed
(use default)
	Set to next multiple
	Integer
	twosCompliment

onesCompliment

signedMagnitude
	64+

Table 16: Settings for Calibrated BCD IntegerParameterType

	Destination Side
	Encoding (Source) Side

	ParameterType
	@signed
	@sizeInBits
	DataEncoding
	@encoding
	@sizeInBits

	Integer
	unsigned
	Long Precision: 32 (use default)

Long Long Precision: 64
	Integer
	BCD

packedBCD
	4+ in 4 or 8 bit increments up to values 2^32

	Integer
	unsigned
	Long Precision: 32 (use default)

Long Long Precision: 64
	Integer
	BCD

packedBCD
	8
(use default)

	Integer
	signed
(use default)
	Long Precision: 32 (use default)

Long Long Precision: 64
	Integer
	BCD

packedBCD
	4+ in 4 or 8 bit increments up to values of +/- 2^32-1

	Integer
	signed
(use default)
	Long Precision: 32 (use default)

Long Long Precision: 64
	Integer
	BCD

packedBCD
	8
(use default)

	Integer
	unsigned
	Set to bit precision to hold largest value
	Integer
	BCD

packedBCD
	Size needed to hold value

	Integer
	signed
(use default)
	Set to bit precision to hold max/min values
	Integer
	BCD

packedBCD
	Size needed to hold value

Table 17: Settings for Calibrated FloatParameterType

	Destination Side
	Encoding (Source) Side

	ParameterType
	@sizeInBits
	AncillaryData
	DataEncoding
	@encoding
	@sizeInBits

	Float
	At least Single Precision: 32 (use default)

Double Precision: 64

Quad Precision: 128
	
	Float
	IEEE754_1985 (use default)
	32
(use default)

	Float
	At least Double Precision: 64

Quad Precision: 128
	
	Float
	IEEE754_1985 (use default)
	64

	Float
	Quad Precision: 128
	@name=

“IEE754_1985_EXTENDED”
	Float
	IEEE754_1985 (use default)
	32
(use default) – interpret as 80

	Float
	Quad Precision: 128
	
	Float
	IEEE754_1985 (use default)
	128

	Float
	At least Single Precision: 32 (use default)

Double Precision: 64

Quad Precision: 128
	
	Float
	MILSTD_1750A
	32
(use default)

	Float
	At least Double Precision: 64

Quad Precision: 128
	@name=

“MILSTD_1750A_EXTENDED”
	Float
	MILSTD_1750A
	32
(use default) – interpret as 48

<xtce:FloatParameterType name="YourType" sizeInBits="64">
 <xtce:UnitSet/>
 <xtce:FloatDataEncoding>
 <xtce:DefaultCalibrator>
 <xtce:PolynomialCalibrator>
 <xtce:Term exponent="0" coefficient="-48.446"/>
 <xtce:Term exponent="1" coefficient="1.4091"/>
 <xtce:Term exponent="2" coefficient="-0.0048"/>
 <xtce:Term exponent="3" coefficient="0"/>
 <xtce:Term exponent="4" coefficient="0"/>
 <xtce:Term exponent="5" coefficient="0"/>
 <xtce:Term exponent="6" coefficient="0"/>
 <xtce:Term exponent="7" coefficient="0"/>
 </xtce:PolynomialCalibrator>
 </xtce:DefaultCalibrator>
 </xtce:FloatDataEncoding>
</xtce:FloatParameterType>
Table 18: Settings for Calibrated FloatParameterType from Integer

	Destination Side
	Encoding (Source) Side

	ParameterType
	@sizeInBits
	DataEncoding
	@encoding
	@sizeInBits

	Float
	Single Precision: 32
(use default)

Double Precision: 64

Quad Precision: 128
	Integer
	unsigned
(use default)
	1-7

	Float
	Single Precision: 32
(use default)

Double Precision: 64

Quad Precision: 128
	Integer
	unsigned
(use default)
	8
(use default)

	Float
	Single Precision: 32
(use default)

Double Precision: 64

Quad Precision: 128
	Integer
	unsigned
(use default)
	9+

	Float
	Single Precision: 32
(use default)

Double Precision: 64

Quad Precision: 128
	Integer
	signed
	2-7

	Float
	Single Precision: 32
(use default)

Double Precision: 64

Quad Precision: 128
	Integer
	signed
	8
(use default)

	Float
	Single Precision: 32
(use default)

Double Precision: 64

Quad Precision: 128
	Integer
	signed
	9+

<xtce:FloatParameterType name="YourType" sizeInBits="64">
 <xtce:UnitSet/>
 <xtce:IntegerDataEncoding sizeInBits="16"/>
 <xtce:DefaultCalibrator>
 <xtce:SplineCalibrator>
 <xtce:SplinePoint raw="0" calibrated="1"/>
 <xtce:SplinePoint raw="65535" calibrated="100"/>
 </xtce:SplineCalibrator>
 </xtce:DefaultCalibrator>
 </xtce:IntegerDataEncoding/>
</xtce:FloatParameterType>
In both case BinaryDataEncoding may be used if necessary, the other DataEncodings are not defined in a similar manner to what is shown in proceeding Uncalibrated Section 4.2.1.4.1., if needed define the Ancillary items in the same manner.

4.2.1.4.3 Complex Type Examples
4.2.1.4.3.1 ArrayParameterType

<xtce:ArrayParameterType numberOfDimensions="1" name="BVArray" arrayTypeRef="BatVolt"/>
Note that the sizes of the dimensions are set in a container in ArrayParameterRefEntry.
4.2.1.4.3.2 AggregateParameterType

<xtce:MemberList>

<xtce:Member typeRef="TimeType" name="TimeStart"/>

<xtce:Member typeRef="TimeType" name="TimeEnd"/>

<xtce:Member typeRef="IntType" name="Count"/>

<xtce:Member typeRef="IntType" name="ErrorCnt"/>
</xtce:MemberList>
4.2.2 ParameterSet - Parameters
ParameterSet holds Parameters and Parameters refer to ParameterTypes using a NameReference to form complete mnemonic definitions. Doing so fully describes a single telemetry mnemonic (sample) within XTCE.
A ParameterSet may also define a ParameterRef. This is used to import a Parameter defined in another SpaceSystem into this SpaceSystem ParameterSet.
Parameter unlike ParameterType has few descriptive elements. Often the only attributes set are the name and the parameterTypeRef attributes.
Parameters may share ParameterTypes but care should be taken to manage this properly.

[image: image55.png]xtce:Space SystemType

TelemetryMetaDataType

e
Chnons o

xtce:ParameterSetType

or o3
pions of the b

Figure 49: Parameter
4.2.2.1 NameDescription
See Section 3.3.3.1 for more information on the NameDescription element and attributes: names, shortDescription, LongDescription, AliasSet and AncillaryData
4.2.2.2 parameterTypeRef Attribute

The NameReference to the ParameterType for this Parameter, it may be qualified or unqualified.

ParameterTypes may be shared among Parameters however it may be easier to support one ParameterType for each Parameter only, this approach may mean that some ParameterTypes are copied (although a different name for duplicated ParameterType would need to be given when this occurs).
The other approach which involves sharing ParameterTypes introduces issues of management to ensure shared ParameterTypes are not accidently changed in a way that is not applicable to all the Parameters referring to it.

It is left up to the end user to determine the best options for them in this regard.

4.2.2.3 initialValue Attribute

Any supplied initialValue should be interpreted as a format compatible with the ParameterType referenced. If initialValue is set in Parameter, it will override any initialValue in the ParameterType.
4.2.2.3.1 Example

A typical Parameter construction simply consists of the parameter’s name and parameterTypeRef.

<xtce:Parameter name="MyParameter" parameterTypeRef="MyParameterType"/>
4.2.2.4 ParameterProperties
[image: image56.png]xtce:Space SystemType

elemetryletaDataType

e
Chnons o

or o3
pions of the b

oatonh |

Figure 50: ParameterProperties
4.2.2.5 dataSource Attribute
Use this to further describe a telemetry parameter’s origin or certain attributes (note: that this attribute may be largely ignored on the command side). Some system may make use of these types of attributes and so they could be exchanged.
For telemetry:

· telemetered: even if unspecified, the parameter is considered telemetered, unless it’s a session variable
· derived: a product of an algorithm, often using other telemetered parameters as input

· constant: an unchanging telemetered value

· local: a non-telemetered parameter such a session variable, this is somewhat redundant
For command parameters and arguments
· telemetered/derived/local/constant: do not set or ignore
4.2.2.6 readOnly Attribute
For telemetry, setting the readOnly attribute to true means no user or system process can override its value once the item has started to be received. The initialValue should still be applied first if it is specified.
For commands, ignore the attribute.
4.2.2.7 SystemName Element
Hold the subsystem or system name if SpaceSystem hierarchies are not being used – this would mainly be used if a single SpaceSystem is being defined and all information is essentially in a “flat file”.
In essence this would allow for a single SpaceSystem and one level of named subsystems. Parameters, Arguments, and MetaCommands all have this element. However telemetry containers do not, in which case it would be necessary to mark them with AncillaryData.
4.2.2.8 ValidityCondition Element
Specify optional conditions that must be true for the telemetry to be valid. In some cases parameters are not valid until some event or condition is met. Use this element to capture such behavior. See Section 3.3.3.2.5 for a description of MatchCriteria.
For example suppose one telemetry parameter indicates that a particular subsystem is either “On” or “Off”. And that if its value is “Off”, that a second parameter will hold invalid values until the first parameter is set to “On”.

4.2.2.9 PhysicalAddressSet Element
A way to capture hardware addresses associated with some forms of telemetry.
[image: image57.png]xtce:Space SystemType

TelemetryMetaDataType

e
Chnons o

xtce:ParameterSetType

:ParameterPropertiesType

F
xtce:PhysicalAddressType (exiension)

| xtce:PhysicalAddressTyp

.l

e

Figure 51: PhysicalAddress
What constitutes a hardware address is user defined.
<xtce:PhysicalAddress sourceName="RT" sourceAddress="5">

<xtce:SubAddress sourceName="SA" sourceAddress="27"/>
</xtce:PhysicalAddress>

In the above example the telemetered item is from a MIL-STD-1553 Bus, details about the bus address are captured using PhysicalAddress.
4.2.2.10 TimeAssociation Element
Some parameters are offset in time within a packet or minor frame from a known timestamp, this element allows the capture of that information.
[image: image58.png]xtce:Space SystemType

elemetryletaDataType

e
Chnons o

xtce:ParameterSetType

-
|

or o3
pions of the b

xtce:ParameterPropertiesType

et]

Figure 52: TimeAssociation

Note: If the parameter is used in more than one packet, and the time association needs to change in those different locations – then the parameter description will have to be duplicated. This is a known issue with XTCE1.1.

4.2.2.10.1 parameterRef Attribute
Specify a time reference type, probably to parameter that has an AbsoluteTimeParameterType.
4.2.2.10.2 instance Attribute
Specify which recorded value to use. This means the parameterRef is actually an instance reference, specify the instance number with this attribute. See Section 3.3.3.3 for a discussion of Instance NameReferences.
4.2.2.10.3 useCalibratedValueAttribute
This is part of the instance reference, in the event the referred to time parameter uses a calibrator, set this value true or false as is appropriate.
4.2.2.10.4 interpolateTime Attribute
Match the current absolute time stamp to the wall clock time.
4.2.2.10.5 offset Attribute
Specify the delta offset from a known absolute time stamp, such as one on the packet the parameter is contained in.

Notes: the offset is in the built-in Schema Type date, which is a bug – it should be duration. It is possible to work around the date format to specify some higher resolution time. The following is one example on an easy way to provide a 10us time counter up to 1sec, other approaches may be possible if higher resolutions are needed.
The date format can be encoded as:

· 0001-01-01+00:00 is 100us

· thru 9991-01-01+00:09 totaling 10000 of them or 1 sec
The following example shows this concept:

<xtce:ParameterSet>

<xtce:Parameter parameterTypeRef="IntType" name="P1">

<xtce:ParameterProperties>

 <xtce:TimeAssociation offset="0001-01-01+00:00" parameterRef="PacketTimeStamp"/>

</xtce:ParameterProperties>

</xtce:Parameter>

<xtce:Parameter parameterTypeRef="IntType" name="P2">

<xtce:ParameterProperties>

 <xtce:TimeAssociation offset="0001-01-01+00:01" parameterRef="PacketTimeStamp"/>

</xtce:ParameterProperties>

</xtce:Parameter>

<xtce:Parameter parameterTypeRef="IntType" name="P3">

<xtce:ParameterProperties>

 <xtce:TimeAssociation offset="0001-01-01+00:02" parameterRef="PacketTimeStamp"/>

</xtce:ParameterProperties>

</xtce:Parameter>

<xtce:Parameter parameterTypeRef="IntType" name="P10000">

<xtce:ParameterProperties>

 <xtce:TimeAssociation offset="9991-01-01+00:09" parameterRef="PacketTimeStamp"/>

</xtce:ParameterProperties>

</xtce:Parameter>
</xtce:ParameterSet>
4.2.3 ContainerSet – Containers and Telemetry Packets

ContainerSet holds SequenceContainers (i.e. ‘containers’) which can be used to describe CCSDS packets, minor frames or other data blocks. A single telemetry packet may use several SequenceContainers to form a single packet definition. For example a container may be used to first describe a packet header such a CCSDS Primary Header, and then another container may be used to describe a packet body, before combining them in yet another container.
[image: image59.png]xtce:Space SystemType

I

xtce:TelemetryletaDataType

xtce:ContainerSetType

e I of o porr
o dobnont o

xtce:SequenceContainerType

Rorowscripion

Figure 53: The SequenceContainer Element

The SequenceContainer element lists the parameters in the packet using EntryList, although specific Entry addresses may be specified, the default is that the parameters are listed in the order they appear.
4.2.3.1 NameDescription

See Section 3.3.3.1 for more information on the NameDescription element and attributes: names, shortDescription, LongDescription, AliasSet and AncillaryData
4.2.3.2 abstract Attribute

The abstract is used in conjunction with container inheritance to specify that the container represents an abstraction or generic form and is by itself not an instance of a packet or minor frame (for example).

This flag is often set in an inheritance hierarchy until the construction in question is complete. If for example a CCSDS packet were defined with several levels of inheriting containers, all might be set to abstract until the final container.
These concepts are more fully explored in sections below.
4.2.3.3 idlePattern Attribute

The expected pattern if a container is received when no telemetry is being collected into it – for CCSDS missions this could apply to special idle packets if they are necessary to be described; this attribute may not be appropriate for all formats
<xtce:SequenceContainer name="IdlePacket" idlePattern="0xabba505">

<xtce:EntryList/>

<xtce:BaseContainer containerRef="Header">

<xtce:RestrictionCriteria>

<xtce:Comparison parameterRef="ID" value="2047"/>

</xtce:RestrictionCriteria>

</xtce:BaseContainer>
</xtce:SequenceContainer>
4.2.3.4 DefaultRateInStream

[image: image60.png]=i

Reminsesm & s s 3)
gererste arms when the
‘Concaine s upsted 10
feguandy o 20
nfequanty, b povide
some qudeines for
qeneratng forward k.
Gortanes) pove some
quidelns for spacscaft
Simators o generte
ey conainas. 1F
pecessay, hase rtes may
e defod on s parsoam
=

xtce:BinaryEncoding B

May be sed o ndcate eror
nbenon 2 comecin, cange
byie oder, provideth sze (when

Xcant be darwed), o pafom
some cusom processig

‘Generated by XmiSpy

www.altova.com

Figure 54: DefaultRateInStream

An expected receive rate for the container, the exact action taken if the expected rate is out of range is user defined. Once again this may not be appropriate for all formats or implementations.
<xtce:SequenceContainer name="SlowPacket">
 <xtce:DefaultRateInStream basis="perSecond" minimumValue="1.5" maximumValue="0.5"/>

<xtce:EntryList/>

<xtce:BaseContainer containerRef="CCSDSHeader">

<xtce:RestrictionCriteria>

<xtce:Comparison parameterRef="APID" value="20"/>

</xtce:RestrictionCriteria>

</xtce:BaseContainer>
</xtce:SequenceContainer>
4.2.3.5 RateInStreamSet

[image: image61.png]=i

Reminsesm & s s 3)
gererste arms when the
‘Concaine s upsted 10
feguandy o 20
nfequanty, b povide
some qudeines for
qeneratng forward k.
Gortanes) pove some
quidelns for spacscaft
Simators o generte
ey conainas. 1F
pecessay, hase rtes may
e defod on s parsoam
=

xtce:BinaryEncoding B

May be sed o ndcate eror
nbenon 2 comecin, cange
byie oder, provideth sze (when

Xcant be darwed), o pafom
some cusom processig

‘Generated by XmiSpy

www.altova.com

Figure 55: RateInStreamSet
A set of expected rates may be specified and associated with a stream, see Section 4.2.5.

<xtce:SequenceContainer name="SlowPacket">
 <xtce:RateInStreamSet>
 <xtce:RateInStream streamRef="XBand" basis="perSecond" minimumValue="1" maximumValue="1"/>
 <xtce:RateInStream streamRef="TDRSS" basis="perSecond" minimumValue="2" maximumValue="2"/>
 </xtce:RateInStreamSet>
 <xtce:EntryList/>
 <xtce:BaseContainer containerRef="CCSDSHeader">

<xtce:RestrictionCriteria>

<xtce:Comparison parameterRef="APID" value="20"/>

</xtce:RestrictionCriteria>
 </xtce:BaseContainer>
</xtce:SequenceContainer>
Streams in this case could be defined to represent different communication paths for the container.

4.2.3.6 BinaryEncoding

The BinaryEncoding element can be used to explicitly set the size of the container instead of deriving it from the bit-lengths of its entries; it has the same content as BinaryDataEncoding although much of it should ignored in containers.
Specifically, the Container/BinaryEncoding/@bitOrder and BinaryEncoding/ByteOrderList should be ignored.
The size given may not match those in the entries and it may be appropriate to issue warnings when this is the case, see Section Error! Reference source not found. 5.3.2 for a discussion of container size.

See Section 3.3.3.4 using SizeInBits elements (a child element of BinaryEncoding) to set the size value.
Depending on the complexity of the entries, in particular if the entries have variable sizes, it may be easier to not explicitly set the size of any container.
If one or more entries is of variable length, there is no way to specify the size here as a range, this is one reason to leave the explicitly size off, and simply calculate it from the construction.
4.2.3.7 EntryList

A container’s EntryList is used describe its contents by referencing parameters, containers and streams. The size of a container may be calculated by summing the lengths of the DataEncodings (or segment sizes) of the parameters specified in the EntryList, taking into account various child elements which will be described below, as well as referred to containers and so on.
[image: image62.png]xtce:Space SystemType

i |
R
{ xestendor

e
Chnons o

xtce:ContainerSetType

xtce:SequenceContainerType

=
xtce:EntryListType

xtce:ParameterRefEntryType

Figure 56: The EntryList Element

It is often easier to calculate the size than specify it in the BinaryEncoding provided in SequenceContainer. This is particularly true if any entries are not a fixed size; BinaryEncoding does provide a way to specify a size range.
4.2.3.7.1 EntryList Entry Pattern
The EntryList elements are very similar in construction and follow a pattern like the one shown in Figure 56 for ParameterRefEntry, all the items in EntryList are “RefEntry” named items.
[image: image63.png]xtce:Space SystemType

TelemetryMetaDataType

xtce:ContainerSetType

e I of o porr
o dobnont o

-
xtce:SequenceContainerType

xtce:EntryListType

xtce:ParameterRefEntryType

Thi vy vl aly 52

I

xtce:ArrayParameterRefEntryType

Figure 57: Inside of ParameterRefEntries
As can be seen from the diagram each entry contains an attribute for a NameReference (see Section 3.3.3.1) and then three elements: LocationInContainerInBits, RepeatEntry and IncludeCondition (see Section 4.2.3.7.9.3.
LocationInContainerInBits allows for the explicit setting of an entry’s address (see Section 4.2.3.7.9.1), while RepeatEntry allows the description of a multiple sampled (“super-sampled” or “super-comm’d” or “super-commutated”) Parameter (see Section 4.2.3.7.9.2), and finally IncludeCondition allows for the optional inclusion of an item in the EntryList given some condition (see Section 4.2.3.7.9.3) .

By default and without any specification of LocationInContainerInBits items in the EntryList are assumed to be “packed” together based on their bit-widths.

Using this information the size of the container can be derived. If it is also specified in the BinaryEncoding/SizeInBits element, then the two values should match.
It is also acceptable for Entries to overlap although it is left up to the end-user to define the acceptable use cases – warnings should probably be issued when this does happen even if the behavior is warranted.

Lengthy examples of various forms of EntryLists are shown in Section 5.1.
4.2.3.7.2 ParameterRefEntry

ParameterRefEntry specifies a Parameter defined in a ParameterSet in SequenceContainer.
<xtce:EntryList>
 <xtce:ParameterRefEntry parameterRef="myParameter1"/>
 <xtce:ParameterRefEntry parameterRef="myParameter2"/>
</xtce:EntryList>
The bit-width of the parameter is not set here but is taken from the ParameterType encoding area as has been shown in Section 4.2.1.
4.2.3.7.3 ParameterSegmentRefEntry

The segmented version of ParameterRefEntry means that the segment’s width must be used instead of the width of the parameter itself. Note that if the actual width of the parameter underflows the width specified in the SegmentEntry, that an error or warning should be produced.
<xtce:ParameterSegmentRefEntry parameterRef="P1_BLOB_1024" sizeInBits="116"/>
Here a likely 1024 bit BinaryParameter is segmented to 116 bits.
4.2.3.7.4 ContainerRefEntry

The ContainerRefEntry is used to include another container defined in ContainerSet. The container being referred should be treated as single unit, its addresses resolved first. As the ContainerRefEntry may have LocationInContainerInBits or Repeat elements set, these should be treated against the entire container being inserted into the EntryList.
4.2.3.7.4.1 Dynamic Container Matching

Dynamic container matching is a special XTCE object-oriented case of ContainerRefEntry that occurs when a container being referred to is an abstract container, and it has at least one derived concrete container.
If this occurs then the derived container is inserted if its RestrictionCriteria matches during real-time processing of the incoming stream. Because it’s part of inheritance chain, its EntryList and its parent’s EntryList are inserted.
If no match occurs and the original abstract container being referred to has content in its EntryList, then that container is treated as any other container would be treated and is included.
Further if multiple derived containers of that abstract container match, all will be dynamically included as a union.

See Section 5.3.3 for full explanation of this concept.
4.2.3.7.5 ContainerSegmentRefEntry

The segmented version of ContainerRefEntry is similar to the other segmented entries – in this case the segment size should reduce from the end of the referenced container. If the referenced container’s size underflows the specified segment an error or warning should be produced.
<xtce:ContainerSegmentRefEntry containerRef="LARGE_CCD_IMAGE" sizeInBits="32768"/>
Here the image is too large and it is going to be segmented across more than one container. The optional order attribute can be used to mark the order of the segments.
4.2.3.7.6 StreamSegmentRefEntry
A portion of a stream reference by a streamRef is included in the EntryList.
[image: image64.png]—

StreamSegmentEntryType E}

porionof
s

Blatributes

streamRef

‘Generated by XMLSpy www.altova.com

Figure 58: StreamSegmentEntry

Like the other segmented entries, the sizeInBits must be set and order attribute is optional and may be used to mark the order of the segments in several containers.

<xtce:StreamSegmentEntry streamRef="VID_FRAME_22of1024" order="21" sizeInBits="1024"/>
4.2.3.7.7 IndirectParameterRefEntry

An IndirectParameterRefEntry reads a parameter instance which contains the name of the parameter to include in the container.
From the annotation: ”… This entry may be used to implement dwell telemetry streams. The value of the parameter in parameter instance must use either the name of the parameter or its alias. If it is an alias name, the alias namespace is supplied as an attribute.”
<xtce:IndirectParameterRefEntry>

<xtce:ParameterInstance parameterRef="ParameterToLookupStatusParameter"/>
</xtce:IndirectParameterRefEntry>

The ParameterInstance should hold the name of a parameter that is a NameReference. Further, this is the only location in the schema that states that an alias can be used in a NameReference. It implied the attribute @aliasNameSpace must be set and match the Alias attribute @nameSpace to alias it refers to.

Use this feature with caution.

4.2.3.7.8 ArrayParameterRefEntry

An ArrayParameterRefEntry specifies both the array parameter to include in the container, and the size of it dimensions.
The Dimension list is of the form: Array[1stDim][2ndDim][lastDim]. The last dimension is assumed to be the least significant - that is this dimension will cycle through its combination before the next to last dimension changes. The order must ascend or the array will need to be broken out entry by entry.
Partial dimensions may be supported but a typical usage will be similar to the following which defines the dimension from zero to three (four items):

<xtce:ArrayParameterRefEntry parameterRef="OneDimArray">

<xtce:DimensionList>

<xtce:Dimension>

<xtce:StartingIndex>

<xtce:FixedValue>0</xtce:FixedValue>

</xtce:StartingIndex>

<xtce:EndingIndex>

<xtce:FixedValue>3</xtce:FixedValue>

</xtce:EndingIndex>

</xtce:Dimension>

</xtce:DimensionList>
</xtce:ArrayParameterRefEntry>
It is up to implementations in exchange to determine whether these definitions refer to row major order or column major order on the link.

The dimension start and end can also be supplied by a ParameterInstance, making them dynamic.

4.2.3.7.8.1 lastEntryForThisArrayInstance

Use this attribute when the array is sent in pieces in more than one container. For example suppose the array in question is a one dimensional array of size three that is sent in three separate containers. If the first index of the array is in the first container, the second index of the array is in the second container and the third index of the array is in the third container – then the array entry in the third one would have this flag set to true.

In this way, it is possible to know these disparate array entries are of dimension size three and they can be reassembled as such.
4.2.3.7.9 Modifying Entries

There are three child elements that can be used to modify most entries: LocationInContainerInBits, RepeatEntry and IncludeCondition.
4.2.3.7.9.1 LocationInContainerBits
LocationInContainerInBits allows one to modify the address of entry. There several modifiers associated with this element but basically they boil down to either some form or relative addressing or absolute addressing relative to the container they are defined in. See Section 5.2 for a fuller discussion of calculating EntryList addresses.
[image: image65.png]xtce:Space SystemType

I stce:TelemetyMetaDataType

xtce:ContainerSetType

I

xtce:SequenceContainerType

-
xtce:EntryListType

nerRefEntryType

Figure 59: The LocationInContainerInBits Element

4.2.3.7.9.1.1 referenceLocation Attribute

Two of these are forms of absolute addressing and two are forms of relative addressing:
· containerStart – offset from the start of container
· containerEnd – offset from the end of the container
· prevEntry – offset from prevEntry (default if not specified)
· nextEntry – offset from the nextEntry
Of these the countainerStart and prevEntry are intuitive and fairly easy to implement. Any containerStart address is calculated from zero, while prevEntry simply addresses from the entry ahead of it. The default which is unspecified is to treat all entries as addressing from a prevEntry of zero. That is they are all placed “back to back” without gap.
The other two are more challenging to implement depending on a variety of factors. The containerEnd modifier depends on actually knowing the container’s end, and this may not always be the case.

If there are entries that do not have a fixed size for example or depend on DynamicValue which looks up the size of the parameter, this can lead to difficulties in determining a fixed location to reference from.

In those cases the implementation should have a way to bound the size of the container or the value being looked up, for example by referring to the ValidRange of a parameter or it’s DataEncoding/SizeInBits. Failing that the maximum “block” size for the format may have to be employed if the container itself has no associated size in its BinaryEncoding/SizeInBits.
The nextEntry modifier has similar issues, it isn’t very hard to come up with constructions that seem to be unresolvable (for example if the first entry sets nextEntry and the second entry sets prevEntry, are the addresses calculable? Perhaps.)

Ultimately the use of both these (containerEnd and nextEntry) depends on some fixed size (or range) being known whether it be the end of the container or the location of a particular entry in that container.
4.2.3.7.9.1.2 Integer Address Offset
An IntegerValueType, see Section 3.3.3.4 for a discussion of this item.

4.2.3.7.9.2 RepeatEntry - Super-Sampling/Super-Commutated
The Repeat element is often confused with arrays. Repeats are super-sampled, or “super-comm’d” or “super-commutated”, they are samples of the same memory location over time, whereas arrays are samples of multiple memory locations.

In the EntryList area every entry has the child element Repeat and it may be used to describe super-sampled parameters, or groups of parameters.

[image: image66.png]xtce:Space SystemType

TelemetryMetaDataType

xtce:ContainerSetType

e I of o porr
o dobnont o

-
xtce:SequenceContainerType

xtce:EntryListType

xtce:RepeatType

(e o bt o ne
s b o e

Figure 60: The RepeatEntry Element

The Repeat element specifies the count (or the number of repeats) of an item, and an optional offset between repeats which is specified in offsetSizeInBits, it defaults to one.

4.2.3.7.9.2.1 Count

The count specifies the number of repeats – for example if count is zero, the entry does not repeat and only the specified entry is included – this is the same as having not specified RepeatEntry at all.

Along those lines if count if one the entry repeats one time – resulting then in two entries, and a count of two means the entry repeats two additional times resulting three entries – and so on.
Values less than zero have no meaning and should be considered errors.
4.2.3.7.9.2.2 Offset

The offset specifies a gap between the entries; negative values are accepted but should be considered suspicious.
4.2.3.7.9.2.3 Offset/@offsetSizeInBits

The scale of the offset, the default is that the offset is specified in bits.
4.2.3.7.9.3 IncludeCondition

IncludeCondition conditionally includes the entry – whether it is a parameter, container or stream based on comparisons.
[image: image67.png]xtce:Space SystemType

xtce:TelemetryletaDataType

e
Chnons o

xtce:ContainerSetType

xtce:SequenceContainerType

[stce:EntryListrype

nerRefEntryType

Figure 61: The IncludeCondition Element

IncludeCondition uses MatchCriteria see Section 3.3.3.2.5.

4.2.3.8 BaseContainer – Container Inheritance
A container may extend another container in an object oriented manner. Principally the child container gets the parent’s EntryList, and that EntryList is prefixed to the front of the child’s EntryList verbatim.

So one main purpose of container inheritance is to build up a single EntryList from a set of containers but many of the other elements come into play in this regard and they are covered below in Section 4.2.3.8.4.
Included with BaseContainer is a mechanism for specifying constraints – these are defined in the element RestrictionCriteria. A constraint in UML is a way to add some additional semantics to a model. In XTCE’s case they were conceived as being processable conditional expressions that for telemetry at least would identify specific locations in the raw packets or minor frames and their expected values, if the values are found then the rest of the description can be used to fully decommutate the packet.
In essence then the RestrictionCriteria has been used to name the identification areas and their expected values in a telemetry format (such as certain fields in a header) so that a specific XTCE container description can be matched and associated with it.

However there is nothing that says that the identification areas (they are ParameterInstanceRefs) must be in a container, so other options are available if is appropriate for a particular users needs (for example a session variable may be appropriate in some instances).

See 5.1 for a full discussion of XTCE container inheritance, basic rules are presented below.
[image: image68.png]xtce:Space SystemType

i |
R
{ xestendor

TelemetryMetaDataType

xtce:ContainerSetType

xtce:SequenceContainerType

| xtce:EntryL lTyp:“

I'stce:MatchCrteriaType (extersin)

Figure 62: The BaseContainer Element

A TelemetryMetaData/ContainerSet/SequenceContainer may extend another TelemetryMetaData/ContainerSet/ SequenceContainer.

[image: image69.emf]<<SequenceContainer>>

SequenceContainerType

<<SequenceContainer>>

User Construction

1-*

0-*

Figure 63: Extending SequenceContainers

The above figure shows how a ContainerSet/SequenceContainer may be extended. A SequenceContainer essentially extends another SequenceContainer. However there is in reality more flexibility than this diagram shows.
User defined SequenceContainers, may be extended any number of times to create new constructions as needed. It is not illegal to extend a SequenceContainer with a CommandContainerSet/CommandContainer although this is discouraged.
It is illegal to extend a MetaCommand/CommandContainer which is not visible except to other MetaCommand/CommandContainer through its BaseContainer.
It is often confusing to extend outside of SequenceContainer but this may be necessary for shared constructs such as headers. In addition some will notice the resulting constructions create “is a” relationships that are not true. For example if “MyContainer” is a SequenceContainer, and its BaseContainer is set to a CommandContainerSet/CommandContainer called PrimaryContainer, then the following relationship is formed but it is strictly speaking false:

MyContainer is a PrimaryContainer is a CommandContainerSet/CommandContainer

This says that MyContainer is a CommandContainerSet/CommandContainer as well which is strictly speaking false even though a CommandContainerSet/CommandContainer is itself extended from SequenceContainer.
But pragmatically the need to extend shared items such as a header overrides these concerns, and when done with care is fine.
Implementations will need to look in the various container sets in order to implement this properly.

4.2.3.8.1 containerRef Attribute

The NameReference of a container that is to be extended by this container

4.2.3.8.2 RestrictionCriteria

The RestrictionCriteria element is a MatchCriteriaType with the addition of NextContainer, see Section 3.3.3.2.5 for discussion of MatchCriteria. Use RestrictionCriteria to supply the identifying packet information for CCSDS packet. The identifying information will be part of the comparison and likely in the container or the parent container (or that parent’s container up the inheritance chain).
The parameters referenced in the RestrictionCriteria are ParameterInstanceRefs (see Section 3.3.3.3) – and although they are likely define in a container, they do not have to be.
For example the following construction is legal, and ID is visible to the RestrictionCriteria comparisons.
<xtce:SequenceContainer name="SuperContainer" abstract="true">

<xtce:EntryList/>

</xtce:SequenceContainer>

<xtce:SequenceContainer name="DerivedContainer">

<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="ID"/>

<xtce:ParameterRefEntry parameterRef="BodyParameterP1"/>

</xtce:EntryList>

<xtce:BaseContainer containerRef="SuperContainer">

<xtce:RestrictionCriteria>

<xtce:Comparison parameterRef="ID" value="1"/>

</xtce:RestrictionCriteria>

</xtce:BaseContainer>
</xtce:SequenceContainer>
Here DerivedContainer is a SuperContainer. SuperContainer is really just an abstraction in this example and all the items of interest are actually supplied in the DerivedContainer, and the constraints refer to these items as well.
Although the RestrictionCriteria gives one many options for specifying restrictions, from an exchange standpoint it is usually easier to stick with a specific set that are known ahead of time, and that will appear in a certain in the expression in a specific way.

The reason for this is that it is not that easy to process the restrictions and derive a discrete list of parameter name/value pairs which is probably what the reader of the XTCE document is after so these can be exchanged with another party.

For example suppose a packet has an ID and can travel over a number of channels. If one attempts to specify the channels per packet in RestrictionCriteria, the resulting expression may be quite long and could in theory be expressed in a variety ways. For example suppose one packet had an ID of one, and channel from 21 to 23 – that would appear as expression like: “(ID==1) and (Channel > 20) and (Channel < 24)”.
Processing that into discrete values which would then be exchanged is going to be fairly slow depending on various factors. If the desire is a set consisting of {ID,1}, {Channel,21},{Channel,22},{Channel,23}, processing the expression in a generic manner will produce results slowly.
It is therefore recommend to stick with the only putting the primary identifying keys into the constraints keeping the expression simple and regular, and move any other items out of the constraints into AncillaryData if need be.

In this example if the ID would be considered uniquely capable of identifying each packet description in the ContainerSet, then the channels could easily be moved out of the expressions and the resulting constructing will be much easier to implement from an exchange standpoint.
4.2.3.8.3 NextContainer

The container that holds this element (i.e. the SequenceContainer) is not processed unless the container specified in this element’s containerRef attribute is matched within the input stream; it is used in conjunction with the other comparisons.
<xtce:SequenceContainer name="ValuesMayNotBeGoodUntilLatch">

<xtce:EntryList/>

<xtce:BaseContainer containerRef="CCSDSPacket">

<xtce:RestrictionCriteria>

 <xtce:ComparisonList>

<xtce:Comparison parameterRef="APID" value="16"/>

<xtce:NextContainer containerRef="Latch"/>

 </xtce:ComparisonList>

</xtce:RestrictionCriteria>

</xtce:BaseContainer>

</xtce:SequenceContainer>

<xtce:SequenceContainer name="Latch">

<xtce:EntryList/>

<xtce:BaseContainer containerRef="CCSDSPacket">

<xtce:RestrictionCriteria>

<xtce:Comparison parameterRef="APID" value="32"/>

</xtce:RestrictionCriteria>

</xtce:BaseContainer>
</xtce:SequenceContainer>
4.2.3.8.4 Container Inheritance as an Operation
Treating container inheritance as an operation means that the child acquires certain elements and attributes (and content) from a parent, and in some cases items may be overridden by the child if the information is set in the parent. The result is a new entity that has features of both.
The principal item of concern in container inheritance is the EntryList, the child inherits the parent’s EntryList and those entries are placed on the beginning of the child’s EntryList forming a new one.
In addition some of the other elements and attributes in SequenceContainer are part of this process as well; specific rules governing them are as follows.
4.2.3.8.4.1 Inheritance Rules
· A container may extend another using the BaseContainer element
· The parent’s EntryList is copied to the beginning of the child’s EntryList
· If multiple levels of inheritance exist – all RestrictionCriteria must evaluate to true
· BaseContainers that form loops are illegal

· Abstract containers do not create concrete instances or new entities themselves

Besides those basic rules, the various other elements and attributes may form part of the inheritance process as follows:
Table 19: Container Inheritance Rules
	SequenceContainer Element or Attribute
	Inheritance Rule

	@name
	Not inherited by child

	@abstract
	Not inherited by child

	@idlePattern
	Not inherited by child

	@shortDescription
	Not inherited by child

	LongDescription
	Not inherited by child

	AliasSet
	Not inherited by child

	AncillaryDataSet
	Child’s content prefixed to parent’s content if present

	DefaultRateInStream
	Child’s content will override parent’s content if present, otherwise child gets parent’s content if it is specified

	RateInStreamSet
	Child’s content prefixed to parent’s content if present, if RateInStream/@streamRef matches – the child’s RateInStream will override

	BinaryEncoding/SizeInContainer
	Child’s content will override parent’s content if present, otherwise child gets parent’s content if specified

	EntryList
	Parent’s content prefixed to child’s if present

	BaseContainer/RestrictionCriteria
	Restrictions are scoped to their constructions. This means that a child’s restrictions apply to both its EntryList and any entries inherited itself (and so on)

4.2.3.8.4.2 Inheritance Example
This simple example shows the basic concept of the inheritance mechanism using a “MyPacket1” that requires it ID==10 be in the incoming byte stream at a specific known location – that is this packet has an ID of 10 and this metadata is associated with it if true. In XTCE this would look like:

<xtce:SequenceContainer name="AllMyPackets" abstract="true">

 <xtce:EntryList>
 <xtce:ParameterRefEntry parameterRef="ID"/>
 <xtce:ParameterRefEntry parameterRef="Length"/>
 </xtce:EntryList>
</xtce:SequenceContainer>
<xtce:SequenceContainer name="MyPacket1" abstract="true">

 <xtce:EntryList>
 <xtce:ParameterRefEntry parameterRef="Volt"/>
 </xtce:EntryList>
 <xtce:BaseContainer containerRef="AllMyPackets">
 <xtce:RestrictionCriteria>
 <xtce:Comparison parameterRef="ID" value="10"/>
 </xtce:RestrictionCriteria>

 </xtce:BaseContainer>
</xtce:SequenceContainer>
This may also be represented in UML as follows:

[image: image70.emf]<<AbstractSequenceContainer>>

AllMyPackets

ID

Length

<<SequenceContainer>>

MyPacket1

Volt

{ID==10}

Figure 64: UML Representation of Example Containers
The parameters in RestrictionCriteria are parameter instances and they are not required by the specification to refer to parameters in the container being inherited, although in this case they do. In addition their default instance is zero (the most recent instance), and default operator is “==” (‘equals’).

The construction above builds one EntryList – informally called the final EntryList – this is in the sense that the all the various containers, extended containers and container references resolve to a “single EntryList” – or its final EntryList. For example the above construction represents a packet with the three entries: ID, Length and Volt, when ID is equal to 10.

This entity may then be either processed directly by a native system or exchange with another format.

It may well be that further processing is warranted to fully resolves all references and bring together all the information associated with the container into one entity or object, but the need to do is implementation dependent.

A more detailed example is given in Section 5.3.1.2.
4.2.4 MessageSet

[image: image71.png]xtce:Space SystemType

xtce:TelemetryletaDataType

xtce:NameDescriptionType (exiension)

r

Figure 65: Message
MessageSet/Messages are an association-based way for defining packets or minor frames. It is currently recommended to treat this element as deprecated and thus not support its implementation. However the description of its contents is covered here.
The @name attribute associated with MessageSet is a typo and should be ignored.
The purpose of Message was to supply a mechanism to describe packets or minor frames without using inheritance. As such a Message refers to a container and that container is used to build up the final EntryList for a packet or minor frame.

The MatchCriteria supplies the identification areas for that particular packet or minor frame. It does not matter if the container is abstract or has a BaseContainer, those items should be ignored for Message. In other words any construction by association is supported, ignore inheritance and abstract in this context has no meaning.
To point to a container, use the ContainRef and @containRef attributes, unfortunately both are misspelled and should read “ContainerRef and @containerRef”.

Then use MatchCriteria to identify the items of interest in a similar manner to BaseContainer.
4.2.5 StreamSet

[image: image72.png]xtce:Space SystemType

tributes

SpaceSystem

RooT Eaman

xtce:TelemetryMetaData B~

' stce:TelemetryMetaDataType

xtce:ParameterType Set

2 ROOT Eamant

constraints

‘Generated by XmiSpy

www.altova.com

Figure 66: Streams
StreamSet allows one to define certain aspects of frames or bit-streams – such as telemetry links. It may also be appropriate to define some aspects of a “sub-stream” within packets using this element, for example a video or voice stream.
Once the frame information is defined, the items that could be in the frame may be referenced using the child elements ContainerRef or ServiceRef.

If the ContaineRef is the root container of container hierarchy (that is if it has any derived child containers) then all its concrete child containers are included.

If ServiceRef is used, the stream refers to a define service which itself may contains the set of containers or message that flow through it (see ServiceSet 4.4).

In addition another connecting stream may be referred to by specifying a StreamRef, for example suppose the first stream was to a ground substation, where it then was relayed through communication link on the ground – both could be defined in StreamSet and linked together to show the association.

Generally speaking for CCSDS missions, there may not be enough here to describe certain aspects associated with the CCSDS space link formatting (such as reed-solomon encoding), additional information may need to be added in which case using AncillaryData to hold it is recommended.

<xtce:StreamSet>

<xtce:FixedFrameStream name="CCSDS" frameLengthInBits="8196" pcmType="NRZM">

<xtce:ServiceRef serviceRef="CCSDSServices"/>

<xtce:SyncStrategy>

<xtce:SyncPattern pattern="1ACFFC1D" patternLengthInBits="8"/>

</xtce:SyncStrategy>

</xtce:FixedFrameStream>
</xtce:StreamSet>
For many users of XTCE, focusing on telemetry parameters, telemetry packets, command parameter and arguments, command packet and commands is more likely, and configuring front-end processors will take place by other means.
4.2.6 AlgorithmSet

[image: image73.png]xtce:Space SystemType

-
xtce:TelemetryletaDataType

xtce:AlgorithmSetType

=
xtce:InputOutputTriggerAlgorithmType

o

Figure 67: Algorithm
AlgorithmSet may contain aspects of algorithm descriptions used within the telemetry process system.

4.2.6.1 CustomAlgorithm

See Section 3.3.3.2.4.
4.2.6.2 MathAlgorithm

Describe formulas using a postfix notation (“reverse polish notation” – i.e. 2 2 +) which can be easily processed by software and alleviates the need for parentheses. Prefix (i.e. 2 + 2) notation can be converted to postfix by using the well known Shunting Yard Algorithm. The various available operands and operations are documented in the annotation of the element.
For an example see Section 5.3.3.
4.3 CommandMetaData - Commanding

CommandMetaData captures command and command packet descriptions.

[image: image74.png]xtce:Space SystemType

tributes

SpaceSystem

RooT Eaman

2 ROOT Eamant

‘Generated by XmiSpy www.altova.com

Figure 68: The CommandMetaData Element

CommandMetaData shares many elements with TelemetryMetaData as can be seen in Figure 68. Because of this much of the information in those sections is directly applicable here. As such this section will focus on the differences in CommandMetaData and will not repeat explanations from the TelemetryMetaData section above, although it will provide cross references where appropriate.

Some of the new elements to CommandMetaData are ArgumentTypeSet and MetaCommandSet – CommandContainerSet looks new but is in fact derived from SequenceContainers and is identical in construction to TelemetryMetaData/ContainerSet.

Other elements will be familiar as well: Parameters and ParameterTypes are constructed in exactly the same manner as their TelemetryMetaData counterparts although they describe items supplied by the host system (or source) sent into the bit-stream to destination. But while the directions are different, the remaining StreamSet and AlgorithmSet elements also are identical to their TelemetryMetaData counterparts.

Another new introduction is MetaCommandSet which contains MetaCommand – this area is used to describe commands. ArgumentTypeSet is added which is associated with command arguments.
Arguments in XTCE are something a user provides to a command (MetaCommand), whereas parameters are supplied by the system (or through RestrictionCriteria). MetaCommands then use its local CommandContainer (MetaCommand/CommandContainer) to describe the actual data block (packet/minor frame) associated with a command. Thus MetaCommand may supply Arguments to the commands and Arguments refer to ArgumentTypes.
The relationship between Arguments and ArgumentTypes is similar to that of Parameter and ParameterTypes, and in fact they share many underlying schema types – but they are not identical in concept. Arguments are changeable command inputs from an operator or software agent whereas command Parameters are generated by the system and often invisible to the user.

Container inheritance is present here as well but CommandMetaData adds another: MetaCommand inheritance.
That brings XTCE inheritance features to three: container inheritance, type inheritance, and command inheritance.

In terms of container inheritance for commanding the interpretation of RestrictionCriteria is slightly different than in TelemetryMetaData.
Whereas in TelemetryMetaData the restrictions (or conditions) are to be used to match against the incoming bit-stream (either literally or conceptually) – their use on the command side are assertions which when processed result in values that should be inserted into the container.
4.3.1 Command ParameterTypeSet

The CommandMetaData ParameterTypeSet hold command ParameterTypes and makes use of the same schema types as TelemetryMetaData/ParameterTypeSet, although their meaning is subtly different.

 Host-type (ValidRange Check #1 (Calibration (encoding data type (ValidRange Check #2
 source (optional) (optional) destination (optional)

[image: image75.emf]ValidRange

Check #1

Calibration

Check

ValidRange

Check #2

Encoded Link

Data Type

DataEncoding

-Integer

-Float

-String

-Binary

Host Data

Type

ParamterType

-String

-Enumerated

-Binary

-Integer

-Float

-Boolean

-Absolute/

RelativeTime

-Array

-Aggregate

Figure 69: Relationship of Command ParameterType Elements (and ArgumentType)

The ValidRange checks on commanding differ from telemetry – in this case the ValidRange may be applied before calibration (units to raw) to the encoding data type, or it may be applied after reverse calibration.
This is specified with the rangeAppliesToCalibrated attribute – a value of true is defined as ValidRange check #2, and a value of false is defined as ValidRange Check #1.
Note: Command ParameterTypes have alarm elements, however they are not likely to be used in commanding and if they are detected issuing a warning may be appropriate.

Command ParameterType calibrators are opposite to telemetry calibrators – they take values that are already in their proper units and convert them to an encoding for uplink.

4.3.1.1 Command ParameterType and Encoding Table

The Table 4 and Table 14 (section 4.2.1.4) are applicable to Command ParameterTypes. However the “source” and “destination” are swapped. That is the ParameterType represents the source data type, and the DataEncoding the destination data type.
4.3.1.2 Alarms

Because these elements are reused from TelemetryMetaData, alarms appear in the construction. It is not typical for alarms to be used on the command side in this way, so these elements may be ignored if appropriate, or warnings may be specified if they exist in a document.
4.3.2 Command ParameterSet - Parameters
Command ParameterSet holds command parameters. The same rules apply for command parameters as telemetry. See Section 4.2.1.4.3 for more information.

Parameters included in a CommandContainerSet/CommandContainer EntryList or a MetaCommand/CommandContainer EntryList ultimately represent the format for values supplied by the system for construction of a command packet.

Those values should be placed in them in one of two ways.
In the first way a RestrictionCriteria is associated with the parameter through container inheritance. Those constraints are assertions and the assertions can be analyzed to determine what values would make the assertions true; those results are the parameter values.

In the second way, the system “just knows” what values should be there. For example, a checksum parameter in a container EntryList is not a fixed value, nor is it going to be in a RestrictionCritiera, and it’s not an argument – therefore the system must just know somehow what value to place in it.

In general those kinds of command parameters can be supplied from outside the XTCE document or possibly by using AlgorithmSet.
4.3.3 ArgumentTypeSet - ArgumentTypes
ArgumentTypeSet holds ArgumentTypes, legal ArgumentTypes follow the same rules as command ParameterTypes and telemetry ParameterTypes. See Section 4.3.1 and 4.2.1.2.3.4 for more information.

It should be noted that within ArgumentType some child elements or attributes use the term “parameterRef” when in fact it should read “argumentRef”.
Unfortunately there are several use cases to consider. In some instance the parameterRef should be an argumentRef, in which case the user should treat it as such. In other cases the parameterRef should be a parameterRef and be treated as one of those. And in a few cases it may make sense that it could be interpreted to mean argumentRef or parameterRef, that either may be appropriate.

Unfortunately XTCE1.1 lack clarity in this area and this means the user must supply that clarity through documentation in some manner.
Also ArgumentType inheritance follows the same rules as ParameterType inheritance but of course is restricted extending other ArgumentTypes, and since they lack alarms any rules mentioned for alarms do not apply.

4.3.3.1 ArgumentType Inheritance

ArgumentType inheritance behaves in a similar way to ParameterType inheritance (See Section 4.2.1.1.2). However there are two minor differences to consider:

· ArgumentTypes do not have alarms so the rules for these may be ignored

· FloatArgumentType and IntegerArgument have a ValidRangeSet element, child items are to be prefixed to any parent content, or the child gets the parent’s content if it is not specified.
4.3.3.2 ArgumentType Tables

The tables in Section 4.2.1.4 are applicable to command ArgumentTypes. Once again the source and destination are swapped, ArgumentType are the source data type, and the DataEncoding is the destination data type.
4.3.4 MetaCommandSet – Metacomands, Command Descriptions
MetaCommand is used to describe commands. It also has its own local CommandContainer – which is different than but similar in name to the CommandContainerSet. The name similarity has led to confusion, but they are different elements. The MetaCommand/CommandContainer should be used to describe the bulk of commands related packet or minor frame.
MetaCommand is a large element so its discussion will be split into parts.

[image: image76.png]xtce:Space SystemType

xtce:CommandMetaDataType

[

I

xtce:MetaCommandType

Rorowscripion

Opsoral. Normaly
e e

Figure 70: The 1st Part of MetaCommand

4.3.4.1 NameDescription

See Section 3.3.3.1
4.3.4.2 abstract Attribute

A MetaCommand may be set to abstract, this is interpreted to mean that MetaCommand is not itself a concrete command but used to build other ones. If the MetaCommand abstract flag is true, its CommandContainer is assumed to be abstract also. And abstract MetaCommand does not represent a command that can be sent.
4.3.4.3 BaseMetaCommand

One MetaCommand may extend another in an object-oriented manner -- certain rules apply (see 4.3.4.3.3).
[image: image77.png]xtce:Space SystemType

xtce:CommandMetaDataType

[

xtce:MetaCommandType

Figure 71: BaseMetaCommand
4.3.4.3.1 metaCommandRef Attribute

This MetaCommand extends the MetaCommand given as a NameReference.
4.3.4.3.2 ArgumentAssignmentList Element

Named arguments whose values are set during the inheritance process, the arguments specified should be in the inheritance chain to be valid. In other words, if an argument is specified and it is not in the local MetaCommand/CommandContainer or MetaCommand specified in the BaseMetaCommand, or beyond – then the construction is in error.
 <xtce:MetaCommandSet>

<xtce:MetaCommand name="Power">

 <xtce:ArgumentList>

 <xtce:Argument argumentTypeRef="PowerStateType" name="PowerState"/>

 </xtce:ArgumentList>

</xtce:MetaCommand>

<xtce:MetaCommand name="PowerON">

 <xtce:BaseMetaCommand metaCommandRef="Power">

 <xtce:ArgumentAssignmentList>

 <xtce:ArgumentAssignment argumentName="PowerState" argumentValue="ON"/>

 </xtce:ArgumentAssignmentList>

 </xtce:BaseMetaCommand>

</xtce:MetaCommand>
 </xtce:MetaCommandSet>
4.3.4.3.3 MetaCommand Inheritance

Command inheritance is somewhat similar in concept to container inheritance and because they share some elements, some of the rules are the same.

· A MetaCommand may extend another using the BaseMetaCommand element

· BaseMetaCommands that form loops are illegal

· Its CommandContainer is only inherited if the BaseContainer is explicitly set between the child and parent. The same rules apply to MetaCommand/CommandContainer inheritance as described in Section 4.2.3.8
Besides those basic rules, the various other elements and attributes may form part of the inheritance process as follows:
Table 20: MetaCommand Inheritance Rules
	MetaCommand Element or Attribute
	Inheritance Rule

	@name
	Not inherited by child

	@abstract
	Not inherited by child

	@shortDescription
	Not inherited by child

	LongDescription
	Not inherited by child

	AliasSet
	Not inherited by child

	AncillaryDataSet
	Child’s content prefixed to parent’s content if present

	BaseMetaCommand
	Not applicable

	BaseMetaCommand/ArgumentAssignment
	Child’s content will override parent’s content if present, otherwise child gets parent’s content if it is specified. If argument is the same name, it overrides the parent’s ArgumentAssignment.

	SystemName
	Child’s content will override parent’s content if present, otherwise child gets parent’s content if specified

	ArgumentList
	Child’s content prefixed to parent’s content if present

	CommandContainer
	Special Case: inherited like other containers if CommandContainer/BaseContainer set. Otherwise it is not inherited.

	TransmissionConstraintList
	Child’s content prefixed to parent’s content if present

	DefaultSignificance
	Child’s content will override parent’s content if present, otherwise child gets parent’s content if specified

	ContextSignificanceList
	Child’s content prefixed to parent’s content if present

	Interlock
	Child’s content will override parent’s content if present, otherwise child gets parent’s content if specified

	VerifierSet
	Child’s content prefixed to parent’s content if present but:
· Same verifiers are overridden by the child

· CommandCompletes are accrued (child elements prefixed to parent’s).

· If the child’s CommandComplete has the same @name as parent’s, the child overrides it

	ParameterToSetList
	Child’s content prefixed to parent’s content if present. If the @parameterRef is the same, the child overrides the parent’s

	ParameterToSuspendAlarmsOnSet
	Child’s content prefixed to parent’s content if present. If the @parameterRef is the same, the child overrides the parent’s

4.3.4.4 MetaCommand/CommandContainer – Command Packet
MetaCommand/CommandContainer is an inner container area similar to the other container elements; however it has ArgumentRefEntry, ArrayArgumentRefEntry and FixedValueEntry unique to it.

It is also “invisible” to the CommandContainerSet and ContainerSet – that is a ContainerRefEntry in the EntryList from either of those locations to a MetaCommand/CommandContainer is not legal, nor is it legal for them to extend a MetaCommand/CommandContainer.
However from within a MetaCommand/CommandContainer a ContainerRefEntry to either a CommandContainerSet or ContainerSet is legal. A MetaCommand/CommandContainer can extend another MetaCommand/CommandContainer or even a CommandContainerSet or ContainerSet container.
So in terms of MetaCommand/CommandContainer/BaseContainer – it is legal to specify a container in either ContainerSet or CommandContainerSet. This feature should be used sparingly; it is useful for example to refer to a header or some other shared root container.

When a MetaCommand extends another MetaCommand it is required by the XTCE syntax to specify MetaCommand/CommandContainer/BaseContainer to the other MetaCommand/CommandContainer. This concept is reinforced below the items in question are highlighted.
<xtce:MetaCommandSet>

<xtce:MetaCommand name="BaseCmd">

<xtce:CommandContainer name="BasePacket">

<xtce:EntryList/>

</xtce:CommandContainer>

</xtce:MetaCommand>

<xtce:MetaCommand name="DerivedCmd">

<xtce:BaseMetaCommand metaCommandRef="BaseCmd"/>

<xtce:CommandContainer name="DerivedPacket">

<xtce:EntryList/>

<xtce:BaseContainer containerRef="BasePacket"/>

</xtce:CommandContainer>

</xtce:MetaCommand>
</xtce:MetaCommandSet>
Without the explicit reference an implement should not just assume the extended MetaCommand/CommandContainer is being inherited, a warning may be appropriate.

Notice also that BaseContainer/RestrictionCriteria is optional in CommandContainer.

The EntryList for CommandContainer is a slightly different than the other containers please refer to Section 4.2.3.

[image: image78.png]xtce:Space SystemType

xtce:CommandMetaDataType

xtce:MetaCommandType

xtce:CommandContainerType

I'stce:CommandContainerEntryListType

[

Figure 72: The MetaCommand/CommandContainer EntryList

4.3.4.4.1 ParameterRefEntry

The NameReference to a command parameter description or telemetry parameter description as is appropriate. If the reference is to a telemetry parameter, its description is used as if it were defined on the command side.
4.3.4.4.2 ContainerRefEntry

The NameReference to a CommandContainerSet container or ContainerSet SequenceContainer as is appropriate. If the reference is to a telemetry container its description is used as if it were defined on the command side. It is probably bad form to refer to another MetaCommand/CommandContainer here.
4.3.4.4.3 ArgumentRefEntry

The NameReference to an Argument -- note that in a final command construction (meaning all the BaseMetaCommands, BaseContainers and ContainerRefEntries have been resolved and a single construction has been created) all the ArgumentRefEntries in the final EntryList construction must be matched to ArgumentList items.
4.3.4.4.4 FixedValueEntry

A fixed value, the value may be given in a variety of formats, the sizeInBits should be specified. If it is missing the system should interpret the overall length as being on the nearest byte boundary that holds the value fully.
For bit-order and byte-order there is no explicit way to specify the bit and byte order here, it is left to users at this time to determine a way to do this. (two options seem likely: use AncillaryData in the container area, or add some bits here to designate the order which would be stripped off for transmission, neither is ideal)
<xtce:EntryList>

<xtce:FixedValueEntry binaryValue="5A" sizeInBits="7"/>

</xtce:EntryList>

4.3.4.5 BaseContainer

BaseContainer is used to extend another MetaCommand/CommandContainer, although in some cases another SequenceContainer or CommandContainerSet/CommandContainer may be appropriate.
The containerRef to another MetaCommand/CommandContainer must be present if the MetaCommand is extending another MetaCommand, and it wishes to include the parent’s MetaCommand/CommandContainer/EntryList. It should not be included otherwise. (See Section 4.2.3.8 Container Inheritance)
[image: image79.png]xtce:Space SystemType

xtce:CommandMetaDataType

xtce:MetaCommandType

xtce:CommandContainerType

I'stce:CommandContainerEntryListType

type, ResticionC
one o e b i o s
io e the' susCantane

Figure 73: The Base Element from CommandContainer

Specifying a NameReference to either CommandMetaData/CommandContainerSet containers or TelemetryMetaData/ContainerSet is legal, although this should be used with prudence.

[image: image80.emf]<<MetaCommand/CommandContainer>>

CommandContainerType

<<MetaCommand/CommandContainer>>

User Construction

1-*

0-*

Figure 74: Extending MetaCommand/CommandContainers

MetaCommand/CommandContainers are very similar to SequenceContainers but not identical. It is legal to specify either a CommandContainerSet/CommandContainer or a TelemetryMetaData/ContainerSet/SequenceContainer in the BaseContainer. This is more typically going to be useful for headers or other shared items in the format and should be done with discretion.

Such constructions do create “is a” relationships that are not true when considering the schema-types. For example if “MyContainer” is a MetaCommand/CommandContainer, and its BaseContainer is set to a CommandContainerSet/CommandContainer called PrimaryContainer, then the following relationship is formed but it is false:

MyContainer is a PrimaryContainer is a CommandContainerSet/CommandContainer

This says that MyContainer is a CommandContainerSet/CommandContainer which is false.

However pragmatically speaking, it is better to have a more relaxed approach to container inheritance due to the lack of a shared container area in XTCE, this is true for things like headers in particular.

4.3.4.5.1 containerRef Attribute

The NameReference to another MetaCommand/CommandContainer, if one MetaCommand is extending another one then the NameReference to the parent’s MetaCommand/CommandContainer must be included here to get the parent’s EntryList.
4.3.4.5.2 RestrictionCriteria

RestrictionCriteria is interpreted differently to its use in TelemetryMetaData. In CommandMetaData they are assertions, the system may process the expressions to determine which values will make the expressions true. Those values are the values that go with the named parameters in the RestrictionCriteria.
This unfortunately may not be trivial for the general case.
Constraining the form of expressions that can be placed here and the operator to “==” can alleviate this issue.
This element is optional in MetaCommand/CommandContainer. One principal reason for this is that many commands may make use of FixedValue to supply the values of interest instead of parameters and assertions.

The RestrictionCriteria is a MatchCriteriaType. See Section 3.3.3.2.5 for MatchCriteria information.
4.3.4.5.3 Rules for MetaCommand/CommandContainer Inheritance
CommandContainer inheritance follows the same rules as other container inheritance, see Section 4.2.3.8 for details.
4.3.4.6 ArgumentList

Arguments to a specific command are listed in its ArgumentList; the argument references the ArgumentType that is appropriate, and matches ArgumentRefs in its CommandContainer/EntryList.
[image: image81.png]xtce:Space SystemType

xtce:CommandMetaDataType

xtce:MetaCommandType

Rorowscripion

[

Figure 75: The Argument Element

Arguments may also be in an extended MetaCommand, up the inheritance chain if there is one.
<xtce:CommandMetaData>

<xtce:ArgumentTypeSet>

<xtce:IntegerArgumentType name="UINT32">

<xtce:UnitSet/>

<xtce:IntegerDataEncoding/>

</xtce:IntegerArgumentType>

</xtce:ArgumentTypeSet>

<xtce:MetaCommandSet>

<xtce:MetaCommand name="Cmd">

<xtce:ArgumentList>

<xtce:Argument argumentTypeRef="UINT32" name="MyArg"/>

</xtce:ArgumentList>

<xtce:CommandContainer name="CmdPacket">

<xtce:EntryList>

<xtce:ArgumentRefEntry argumentRef="MyArg"/>

</xtce:EntryList>

</xtce:CommandContainer>

</xtce:MetaCommand>

</xtce:MetaCommandSet>
</xtce:CommandMetaData>
4.3.4.7 MetaCommand – Additional Elements
MetaCommand contains a number of other elements unique to commanding, most of these elements describe additional behavior that should be employed by the system on the command, often before sending but in some cases after the command has been sent.
[image: image82.png]xtce:Space SystemType

xtce:CommandMetaDataType

[

I

xtce:MetaCommandType

Rorowscripion

Opsoral. Normaly
e e

Figure 76: The 2nd Part of MetaCommand
These areas are:

· TransmissionConstraint – check that the command may be sent in the current operating mode

· DefaultSignificance – a significance level that must be confirmed before the command is sent

· ContextSignifanceLevel – significance levels by context

· Interlock – block the next command until this one has reached a certain stage

· VerifierSet – check telemetry against the specified command phase

· ParameterToSetList – parameters to set after the command has been set, such as a command counter

· ParametersToSuspendAlarms – suspend these alarms checks on the telemetry specified for a certain period of time until the command has taken affect
These items are associated with behavior of a command, many other formats capture these aspects in scripting, or a combination of scripting and format features, not all will necessarily be applicable to every mission.

4.3.4.8 TransmissionConstraintList

Check that a command may be sent in the current operating mode.
[image: image83.png]xtce:Space SystemType

r

xtce:CommandMetaDataType

xtce:MetaCommandType

= Long Descrption s e

Opsoral. Normaly
e e

xtce:ParameterRefType (extension)

e v s

i
| xtceiParameterRefType (exensin

Figure 77: TransmissionConstraint
The “mode” is defined as a MatchCriteria condition (See Section 3.3.3.2.5). For example a mission phase could be defined as an enumerated session variable and used in this location.
The attribute timeOut specifies the relative time the constraint is valid, if it is marked as “suspendable” then the constraint may be suspended -- its default value is false.

<xtce:MetaCommand name="MyCmd">

 <xtce:TransmissionConstraintList>

<xtce:TransmissionConstraint>

 <xtce:Comparison parameterRef="MissionPhase" value="OperatingOrbit"/>

</xtce:TransmissionConstraint>

 </xtce:TransmissionConstraintList>
</xtce:MetaCommand>
Above, the command cannot be sent until operating orbit is achieved – the MissionPhase must be defined of course and is here depicted as an enumeration, although it definition is not shown.
4.3.4.9 DefaultSignificance
Define a default significance level that must be confirmed before the command is sent.
[image: image84.png]xtce:Space SystemType

= Long Descrption s e
oo
pons of the o

2 ROOT Eamant

r

xtce:CommandMetaDataType

[

xtce:MetaCommandType

Conseans b vt o

xtce:ParameterRefType (extension)

xtce:ParameterRefType (exiension)
i \

|
|
|

e v s

Figure 78: DefaultSignificance

Note: it is possible to define this as an empty element as the attributes are all optional and have no default values, although this would have no meaning.
4.3.4.9.1 spaceSystemAtRisk Attribute

Give the NameReference of the SpaceSystem within the document that will be affected by this command, if it is not given the SpaceSystem this command resides in is assumed.
4.3.4.9.2 reasonForWarning Attribute

 A user defined string that is appropriate for the issue.
4.3.4.9.3 consequenceLevel Attribute

An enumerated list of level: none, watch, warning, distress, critical, and severe.

For example:

<xtce:MetaCommand name="TestOverPressureCmd">
 <xtce:DefaultSignificance consequenceLevel="watch" spaceSystemAtRisk="CrewModule"
 reasonForWarning="Temporary valve overpressure may occur"/>
</xtce:MetaCommand>

The command may result in a pressure valve warning in the crew module.
4.3.4.10 ContextSignificanceList

Similar to DefaultSignificance but specify significances with contexts.
[image: image85.png]xtce:Space SystemType

xtce:CommandMetaDataType

[

xtce:MetaCommandType

o ik £ 2 ype of
Conseans b vt o

xtce:ParameterRefType (extension)

e v s

i
| xtceiParameterRefType (exensin

Figure 79: ContextSignificance
The context is a MatchCriteria – See Section 3.3.3.2.5. Contexts are user defined.
4.3.4.11 Interlock

Prevent the next command from being sent until this one reaches some verification state.
[image: image86.png]xtce:Space SystemType

= Long Descrption s e
oo
pons of the o

r

xtce:CommandMetaDataType

xtce:MetaCommandType

rificationProgressPercentac

o ik £ 2 ype of

Gorswai, bt ot on s e —
b e

[

xtce:ParameterRefType (extension)

xtce:ParameterRefType (exiension)
i \

|
|
|

e v s

2 ROOT Eamant

Figure 80: Interlock
4.3.4.11.1 scopeToSpaceSystem Attribute

If specified prevent the next command associated with the named SpaceSystem, given as a NameReference. If none is specified, assume this SpaceSystem.
4.3.4.11.2 verificationToWaitFor Attribute

Wait for this level of verification (See VerificationSet Section 4.3.4.12) to complete, the default value is “complete.”

4.3.4.11.3 verificationProgressPercentage Attribute

Prevent the next command from being sent until this percentage of verification has completed, this is an implementation dependent area.
4.3.4.11.4 suspendable Attribute

Set whether the interlock is suspendable or not by an operator, the default is false.

<xtce:MetaCommand name="FireDecouple">
 <xtce:Interlock scopeToSpaceSystem="EngineAssembly" verificationToWaitFor="complete" verificationProgressPercentage="100.0"/>

<xtce:VerifierSet>

<xtce:CompleteVerifier>

<xtce:ComparisonList>

<xtce:Comparison parameterRef="DecoupleTlmStatus" value="0xffff"/>

</xtce:ComparisonList>

<xtce:CheckWindow timeToStopChecking="PT100S"/>

</xtce:CompleteVerifier>

</xtce:VerifierSet>
</xtce:MetaCommand>
Above, block all commands until the stage decouple has finished -- this element is itself tied to a verifier.
4.3.4.12 VerifierSet

Various command verification stages may be specified here; more than one CompleteVerifier may be specified as well.
[image: image87.png]xtce:Space SystemType

r

xtce:CommandMetaDataType

xtce:MetaCommandType

o apanatory
rone f o abpcs snd
1

Opsoral. Normaly
e e

[

xtce:ParameterRefType (extension)

xtce:ParameterRefType (exiension)
i \

|
|
|

e v s

Figure 81: Verifiers
Each verifier follows a similar pattern although two have slight additions: ExecutionVerifier adds PercentageComplete, and CompleteVerifier adds a return for a ParameterRef which should be interpreted as the last recorded value for that Parameter, a Parameter instance of zero.
Each verifier then has the following elements:

[image: image88.png]xice:ArgumentList
Vary comranés hoveave o
o sors Thase e cand
o
oot ey be
F ry f e st 6o
e, MeGammand
Simens e sl e
=

CommandContainer

el how o package ths command

Some Command and Cano Symems
may reqire specaluser scess o
Confemaions oot varem g
Commands v canan v, The vel
e fom e eaee
TieCamerant

xt xtSignificanceL ist

Used when he sgncance possble
corsaquence)of a command vars by the
oparating comext.

xicednterlock B)

i i = 2 5 of
Constain, b rot on
Camand nsances of e
MeaCommand; Inocks
2pplysad o he re
Ermand, i ek vl
Sl msceemve commands
il commend hee
rescha s i e
(Bvough vercatons).
Inocks e scoped 3
‘Spacasymam base.

xice:AncillaryDataSet
[————
receved 1 the network hat connacts e ot xice:ComparisonList

‘
EEEEReTay

st coms from somathing ihe than the spacacaf.

xtce:CustomAlgorithm

xice:Compar

xtce:ParameterValueChange

xtce:CheckWindow

xtce:CheckWindowAlgorithms

'8 verber that smply mears the
‘SpaceSysam has recived e
omand

recazing
FareraroRanse.
T,
Recsived, Acceead,
Quesed, Brsason
‘Complee,and Faied
Thes may be it
o v
Complee verbers re
Pty
TieCammand Comple’
Vet e Al et
v < verber et
e et

P
command s beng o, An
optona Elament ndcates how far
e e
e ey e
Scled) Paramerrirtance vake.

4 xtce:CompleteVerifier

A possite st of verfrs that al
i b i o e comrnd 2

xtce:ParameterToSetList

[——
e e command 1o b en,
‘Appended o th Base Command st

xtce:ParametersToSuspendAlarmsOnSet

‘Sometimes 5 necesary o ispend lams - parsulry
range’Slrm o o ok i change e (2R o 2
-

‘Generated by XMLSpy

Figure 82: CommandVerifiers
4.3.4.12.1 NameDescription
 See Section 3.3.3.1
4.3.4.12.2 ComparisonList Element
The verifier is a ComparisonList; see MatchCriteria (see Section 3.3.3.2.5).
4.3.4.12.3 ContainerRef Element
Indicate the stage of verification has been reached when the referenced container appears in the input stream. For example this should be a leaf container in a packet container description hierarchy.
So for CCSDS missions it would be the last container in a definition making up an entire CCSDS packet container hierarchy, assuming of course other containers in the inheritance tree do not make sense.
For example it is conceivable that the reception of any telemetry container is desired, in which case given a container hierarchy for CCSDS packets where the top or root container holds the header, referring to that container here would make sense.

4.3.4.12.4 ParameterValueChange Element
Used to compare the difference in the last recorded value of the specified parameter to the new one, the difference must be greater than or equal to the value stored in Change.
4.3.4.12.5 CustomAlgorithm Element
Specify a custom algorithm as the verifier.
4.3.4.12.6 BooleanExpression Element
The verifier is a more complex boolean expression, see MatchCriteria Section 3.3.3.2.5.
4.3.4.12.7 Comparison Element
The verifier is a single comparison, see MatchCriteria Section 3.3.3.2.5.
4.3.4.12.8 CheckWindow Element
The verifier is tied to a time window, there are three attributes:
· timeToStartChecking – optional, xsd:duration (xtce:RelativeTimeType)
· timeToStopChecking – required, xsd:duration

· timeWindowIsRelativeTo – optional, default: timeLastVerifierPassed, or commandReleased

<xtce:CheckWindow timeToStartChecking="PT1S" timeToStopChecking="PT10S" timeWindowIsRelativeTo="commandRelease"/>
Start to check 1 second after the command is released and continue checking for 10 seconds.

4.3.4.12.9 CheckWindowAlgorithm Element
The verifier is tied to a more complex algorithm based time window.
<xtce:CompleteVerifier>

<xtce:ParameterValueChange>

<xtce:ParameterRef parameterRef="StrainGauge"/>

<xtce:Change value="15"/>

</xtce:ParameterValueChange>

<xtce:CheckWindow timeToStopChecking="PT10S"/>
</xtce:CompleteVerifier>
Given the various child elements, there are a lot possible ways to define a verifier given the number of options, here is one simple example: wait for the StrainGauge to change by “15”, wait 10 seconds for the value change to occur.
4.3.4.13 ParameterToSetList

This element captures parameters that will have their values adjusted once the setOnVerification command verification level has been reached for a MetaCommand, the default value for setOnVerification is “complete”. If one or more CompleteVerifiers is specified then they should have evaluated to true, otherwise the command is just assumed to have completed successfully. The same would be true for any other specified setOnVerification value.
[image: image89.png]xtce:Space SystemType

xtce:CommandMetaDataType

xtce:MetaCommandType

= Long Descrption s e

Conseans b vt o

[

xtce:ParameterRefType (extension)

Figure 83: ParameterToSet
Once setOnVerification has been reached, either a fixed value from NewValue is set for the parameter in parameterRef or derived value using the MathOperations element in Derivation.
Care should be taken to specify the format of NewValue in a way compatible with the named parameter’s ParameterType.

<xtce:ParameterToSetList>

<xtce:ParameterToSet parameterRef="CommandCounter">

<xtce:Derivation>

 <xtce:ParameterInstanceRefOperand parameterRef="CommandCounter"/>

 <xtce:ValueOperand>1</xtce:ValueOperand>

 <xtce:Operator>+</xtce:Operator>

</xtce:Derivation>

</xtce:ParameterToSet>
</xtce:ParameterToSetList>

In the example above, increment the command counter once the command is completed which is the default in the attribute setOnVerification.
4.3.4.14 ParametersToSuspendAlarmsOnSet

This element describes telemetry parameters whose alarms will be suspended for the given suspenseTime once the MetaCommand has reached a certain command verification level as specified in verifierToTriggerOn.
[image: image90.png]xtce:Space SystemType

r

xtce:CommandMetaDataType

[

xtce:MetaCommandType

Conseans b vt o

F
| xtceiParameterRefType (exensin

Figure 84: ParametersToSuspendAlarmsOn
The default is to start the suspension when the verification release level returns true. If no verifiers are set, it would be assumed the command released.
<xtce:ParametersToSuspendAlarmsOnSet>
 <xtce:ParameterToSuspendAlarmsOn parameterRef="P1LevelsThatAreNoisy" suspenseTime="PT30S"
 verifierToTriggerOn="release"/>
</xtce:ParametersToSuspendAlarmsOnSet>

Once the command is released, suspend alarm checking on telemetry parameter “P1LevelsThatAreNoisy” – as the value tends to fluctuate once the command is processed onboard for a certain time period.

4.3.4.15 Other Parts of MetaCommandSet

There are two more sibling elements of MetaCommand to consider more fully, MetaCommandRef and BlockMetaCommand.
[image: image91.png]xtce:Space SystemType

xtce:CommandMetaDataType

Figure 85: MetaCommandSet
4.3.4.16 MetaCommandRef

MetaCommandRef allows for the importation of a MetaCommand defined in another SpaceSystem, the SpaceSystem containing the MetaCommandRef acts as if the MetaCommand being referenced is in the MetaCommandSet.
In practice all this means is that any references to it may be relative to this SpaceSystem not the SpaceSytem it is defined; it’s an indirect reference.

This can be a little tricky because the MetaCommand being specified in a MetaCommandRef itself has NameReferences and InstanceRefs. Do these refer to items in the SpaceSystem of the MetaCommandRef or relative to the SpaceSystem the MetaCommand is defined in?

The answer is the latter.
4.3.4.17 BlockMetaCommand

BlockMetaCommand is used to capture the notion of command groupings, although the exact semantics of this are left to the end user.
[image: image92.png]xtce:Space SystemType

xtce:CommandMetaDataType

-

Figure 86: BlockMetaCommand
When specifying that a particular MetaCommand is part of a block, the argument list and the necessary argument values may be specified as well.

Often block commands are sent as one unit but this is implementation dependent.
<xtce:BlockMetaCommand name="TimedValveCmdFixed">

<xtce:MetaCommandStepList>

<xtce:MetaCommandStep metaCommandRef="ValveCmd">

<xtce:ArgumentList>

<xtce:Argument value="ON" name="ValveState"/>

</xtce:ArgumentList>

</xtce:MetaCommandStep>

<xtce:MetaCommandStep metaCommandRef="NOOP"/>

<xtce:MetaCommandStep metaCommandRef="NOOP"/>

<xtce:MetaCommandStep metaCommandRef="NOOP"/>

<xtce:MetaCommandStep metaCommandRef="NOOP"/>

<xtce:MetaCommandStep metaCommandRef="NOOP"/>

<xtce:MetaCommandStep metaCommandRef="ValveCmd">

<xtce:ArgumentList>

<xtce:Argument value="OFF" name="ValveState"/>

</xtce:ArgumentList>

</xtce:MetaCommandStep>

</xtce:MetaCommandStepList>
</xtce:BlockMetaCommand>

In the above example, “NOOP” commands are known to take approximately 1ms to process, thus producing a consistent onboard delay. This block command then is constructed to open and close a valve after a 5ms delay time period, which is necessary for proper operation.
4.3.5 CommandContainerSet – CommandContainer

CommandContainerSet holds CommandContainers. It is identical to the ContainerSet area within the TelemetryMetaData, see Section 4.2.3.

4.3.5.1 CommandContainerSet Inheritance Rules
CommandContainerSet/CommandContainers may extend another CommandContainerSet/CommandContainer, this follows the same rules already established for container inheritance, see Section 4.2.3.8.

It is legal to NameReference extend either a TelemetryMetaData/ContainerSet container or a MetaCommand/CommandContainer Container, care should taken when doing so.

[image: image93.emf]<<SequenceContainer>>

SequenceContainerType

<<CommandContainer>>

User Construction

1-*

0-*

Figure 87: Extending CommandContainers

CommandContainers extend the SequenceContainerType in the schema type construction but adds nothing to it.
.

4.3.6 StreamSet

See Section 4.2.5
4.3.7 AlgorithmSet

See Section 4.2.6
4.4 ServiceSet - Services
Services are logical groupings of containers or messages under a common name. The meaning of such groupings is implementation dependent.

When using containerRefs, the container being referred to may be an abstract container, in which case all its child containers are included in the service.
If this is not the case, then only that specific container is included and any other containers it has up the inheritance chain.
This is not an issue when using MessageRefSet because messages ignore BaseContainer.
[image: image94.png]xtce:Space SystemType

tributes

SpaceSystem

T —

xtee:ServiceType

Blatributes

xtce:MessageRefSet B
xtce:ContainerRefSet &

L-{ xtce:SpaceSystem

2 ROOT Eamant

‘Generated by XmiSpy www.altova.com

Figure 88: Services
Referencing abstract containers makes sense if the container hierarchy supports it. However if all telemetry packet description say have simply one level of inheritance and are separated by a comparison to the application identifier, and the root container holds the CCSDS primary header – then specifying that abstract root container would bring every child container into the service.

And this isn’t very useful if the service does not in fact include them all.

In such situations, the opposite approach of specifying just the ends of the containers hierarchy which represent the packet would be more appropriate.

Specifically how containers or messages have been organized though is again left to the end user.
<xtce:ServiceSet>

<xtce:Service name="Imagers">

<xtce:ContainerRefSet>

<xtce:ContainerRef containerRef="ImagerID"/>

<xtce:ContainerRef containerRef="ResX"/>

<xtce:ContainerRef containerRef="ResY"/>

<xtce:ContainerRef containerRef="FOV"/>

<xtce:ContainerRef containerRef="Segments"/>

<xtce:ContainerRef containerRef="Status"/>

</xtce:ContainerRefSet>

</xtce:Service>
</xtce:ServiceSet>

4.4.1 Element ContainerRefSet
This element contains a list of containers that are part of this service. Referring to an abstract container that has concrete child containers, includes all of them in the service. Individual representations of things like packets should refer to the leaf container (which is non-abstract and has a baseContainer).
4.4.2 Element MessageRefSet
Refer to message rather than container that will then be included in the service.
5 Advanced Topics
This section describes various concepts in XTCE more fully and uses examples to reinforce them, for example all the inheritance and various advanced features is discussed in more detail.
5.1 Concrete Containers, Abstract Containers and Plain Containers

Containers are defined in either the TelemetryMetaData/ContainerSet area, the CommandMetaData/CommandContainerSet area, or the MetaCommand/CommandContainer area.

A container can take three forms: plain containers, abstract containers (sometimes called generic containers) or concrete containers (sometimes called instance containers or container instances).

The sections below define these terms in more detail.
5.1.1 The Plain Container

A plain container is not marked abstract and has no BaseContainer. Chances are such a definition will be used in a ContainerRefEntry in one or more other containers. A plain container then is likely to part of another construction and a complete entity such as a packet or minor frame. Plain containers are defined in either ContainerSet or CommandContainerSet.
A MetaCommand/CommandContainer is not a plain container however as it is used to specify how to build a command packet, even if it has no RestrictionCriteria (which is optional in MetaCommand/CommandContainer). It may be an entity such as a packet or minor frame even if it has no BaseContainer.
<xtce:SequenceContainer name="Plain">

<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="P1"/>

<xtce:ParameterRefEntry parameterRef="P2"/>

<xtce:ParameterRefEntry parameterRef="P3"/>

</xtce:EntryList>
</xtce:SequenceContainer>

5.1.2 The Abstract Container

A container marked as abstract is often used to represent a more generic concept in the format being described, this form of container can also not represent a complete entity like packet or minor frame by itself.

An analogy in programming languages would an abstract class in Java which cannot be instantiated into objects themselves but can be extended by other classes to form complete implementations. An abstract container then is similar to this in a conceptual sense – it is not a complete description of anything but it can be extended by other containers to form a complete definition.

It is legal for an abstract container to extend another container, it likely that the parent container is marked as abstract but this is not required – regardless a container marked as abstract that extends another non-abstract container still represents an incomplete definition that provides some descriptive information but not all of it.

Usually then abstract containers are used by other containers to build a more complete definition that represent things like packet or minor frames. Often they are at the root of the container hierarchy, and may be at each level of a multi-level hierarchy until the last container.
For example an abstract container would make sense as a header in a packet description.

<xtce:SequenceContainer name="AbstractHeader" abstract="true">

<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="Version"/>

<xtce:ParameterRefEntry parameterRef="ID"/>

<xtce:ParameterRefEntry parameterRef="Length"/>

</xtce:EntryList>
</xtce:SequenceContainer>

While it may not always be the case, the likelihood that all containers will be marked as abstract except the final leaf container will be explored in more detail in the sections below.
5.1.3 The Concrete Container

A concrete container or instance container is non-abstract and has a BaseContainer element, they extend other containers (which are probably abstract) and they probably represent a complete entity, such as a packet or minor frame in your format.

It should be noted that a concrete container may in fact extend another concrete container in which case both items represent real entities. As there is no “final” attribute in the container definition, there is no official method to prevent further derivations of any container if it not desired.

<xtce:SequenceContainer name="MyConcretePacket">

<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="P1"/>

<xtce:ParameterRefEntry parameterRef="P2"/>

<xtce:ParameterRefEntry parameterRef="P3"/>

</xtce:EntryList>

<xtce:BaseContainer containerRef="AbstractHeader">

 <xtce:RestrictionCriteria>

<xtce:ComparisonList>

<xtce:Comparison parameterRef="Version" value="1"/>

<xtce:Comparison parameterRef="ID" value="100"/>

</xtce:ComparisonList>

 </xtce:RestrictionCriteria>

</xtce:BaseContainer>
</xtce:SequenceContainer>
5.2 Modifying an Entry

Each Entry has several child elements which can modify it in a variety of ways, LocationInContainerInBits can change the entry’s address, RepeatEntry can cause the entry to repeat more than one time, and IncludeCondition can cause the entry to be left out or included in the EntryList based on the evaluation of a set of expressions.

Each of these is discussed in more detail in the following sections.
5.2.1 Addressing Using LocationInContainerInBits

See Section 4.2.3.7.9 for a discussion of the element LocationInContainerBits, its attributes and child elements; the following diagram shows the details of container addressing graphically.

[image: image95.emf]SequenceContainer

P

r

e

v

E

n

t

r

y

T

h

i

s

E

n

t

r

y

N

e

x

t

E

n

t

r

y

l

o

c

a

t

i

o

n

r

e

f

l

o

c

a

t

i

o

n

r

e

f

l

o

c

a

t

i

o

n

r

e

f

ContainerStart

ContainerEnd

previousEntry nextEntry

Packaging Entries

Location of entry is an integer value from:

-the end of the previous entry (previousEntry –default)

-the beginning of next entry (nextEntry)

-the beginning of the container (containerStart)

-the end of the container (containerEnd)

Figure 89: EntryList Addressing
If DynamicValue or DiscreteLookupList are used, the offset of parameter, and hence the exact size of the container cannot be determined statically.

However a range may be able to be determined by looking at the ValidRange or at the sizeInBits of the parameter DataEncoding or the maximum allowed size of container for the format, or at the container’s own sizeInBits if it is set.
5.2.1.1 With a ParameterRefEntry

The ParameterEntry’s address is adjusted by the offset given in bits, based on the ReferenceLocation.

Example #1 – PrevEntry
PrevEntry with a value of zero is the default; however this shows a gap created using it explicitly.

<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="P1"/>

<xtce:ParameterRefEntry parameterRef="P2">

<xtce:LocationInContainerInBits referenceLocation="previousEntry">

<xtce:FixedValue>44</xtce:FixedValue>

</xtce:LocationInContainerInBits>

</xtce:ParameterRefEntry>

</xtce:EntryList>

Parameter P2 should be placed 44-bits past the end of P1. Suppose P1 is16-bits wide, then P2’s address would be at 50, while P1’s address is zero.

Table 21: PrevEntry Example
	Name
	Bit-Width
	Offset
	Address

	P1
	16
	0
	0

	P2
	16
	44 from prevEntry
	50 = 44 + 16

Example #2 – ContainerStart

ContainerStart is an absolute addressing from zero, the start of the Container.
<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="P1"/>

<xtce:ParameterRefEntry parameterRef="P2">

<xtce:LocationInContainerInBits referenceLocation="containerStart">

<xtce:FixedValue>44</xtce:FixedValue>

</xtce:LocationInContainerInBits>

</xtce:ParameterRefEntry>
</xtce:EntryList>

In this example, P1 address is again at zero and P2 is at address 44.
Table 22: ContainerStart Example
	Name
	Bit-Width
	Offset
	Address

	P1
	16
	0
	0

	P2
	16
	44 from ContainerStart
	44

Example #3 – ContainerEnd

ContainerEnd can be a little tricky, it is easiest if the actual end of the container is known ahead of time.
ContainerEnd addresses are given as positive numbers relative to the actual container end – ContainerEnd with an offset of zero means the end of the parameter is at location ContainerEnd.
<xtce:SequenceContainer name="ContainerEnd">

<xtce:BinaryEncoding>

<xtce:SizeInBits>

<xtce:FixedValue>100</xtce:FixedValue>

</xtce:SizeInBits>

</xtce:BinaryEncoding>

<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="P1"/>

<xtce:ParameterRefEntry parameterRef="P2">

<xtce:LocationInContainerInBits referenceLocation="containerEnd">

<xtce:FixedValue>44</xtce:FixedValue>

</xtce:LocationInContainerInBits>

</xtce:ParameterRefEntry>

</xtce:EntryList>
</xtce:SequenceContainer>
In this example P1 is still at zero but P2 is 44 from containerEnd, in fact the end of P2 is 44 bits from containerEnd. So if P2 is 16-bits in width, then P2’s address is at 100-(44 + 16) = 40.
Table 23: ContainerEnd Example
	Name
	Bit-Width
	Offset
	Address

	P1
	16
	0
	0

	P2
	16
	44 from containerEnd
	40 = 100-(44+16)

Example #4 – NextEntry

NextEntry needs to be used in conjunction ultimately with a fixed address. This could be an item in the container’s EntryList or the known size of the container (or range), otherwise it may be difficult or impossible to determine the address in question.
<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="P1">

<xtce:LocationInContainerInBits referenceLocation="nextEntry">

<xtce:FixedValue>32</xtce:FixedValue>

</xtce:LocationInContainerInBits>

</xtce:ParameterRefEntry>

<xtce:ParameterRefEntry parameterRef="P2">

<xtce:LocationInContainerInBits referenceLocation="containerStart">

<xtce:FixedValue>100</xtce:FixedValue>

</xtce:LocationInContainerInBits>

</xtce:ParameterRefEntry>
</xtce:EntryList>
Here P2 is at offset 100, and the end of P1 is 32 bit before this location. If P1 is 16-bits wide its starting address would be 100-(32+16) = 52.

Table 24: NextEntry Example

	Name
	Bit-Width
	Offset
	Address

	P1
	16
	32 from nextEntry
	52 = 100-(32+16)

	P2
	16
	100 from ContainerStart
	100

5.2.1.2 With a ContainerRefEntry

A ContainerRefEntry behaves in a similar way as a ParameterRefEntry (imagine that the container is a large ParameterRefEntry). First the entire referenced container’s EntryList should be treated as one cohesive unit and its EntryList addresses should be computed. The result as a block should then be inserted into the referencing container. This block may itself then be modified by its own LocationInContainerInBits and Repeat. Overall these are similar concepts as with ParameterRefEntry in Section 5.2.1.1.
<xtce:SequenceContainer name="Container">

<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="P1"/>

<xtce:ContainerRefEntry containerRef="ContainerAbsolute"/>

</xtce:EntryList>

</xtce:SequenceContainer>

<xtce:SequenceContainer name="ContainerAbsolute">

<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="P2">

<xtce:LocationInContainerInBits referenceLocation="containerStart">

<xtce:FixedValue>64</xtce:FixedValue>

</xtce:LocationInContainerInBits>

</xtce:ParameterRefEntry>

<xtce:ParameterRefEntry parameterRef="P3">

<xtce:LocationInContainerInBits referenceLocation="containerStart">

<xtce:FixedValue>128</xtce:FixedValue>

</xtce:LocationInContainerInBits>

</xtce:ParameterRefEntry>

</xtce:EntryList>
</xtce:SequenceContainer>

In the example, ContainerAbsolute should be resolved first – here its entries will be offset 64 and 128 from the beginning of ContainerAbsolute. Then these items will be inserted into container’s EntryList. This will take place relative to the end of P1 as the LocationInContainerInBits of the ContainerRefEntry is set to “prevEntry” and address of “0” – these are the defaults and not shown. Thus the addresses of P2 and P3 when they are inserted into container are offset by the end of P1 – so the addresses ultimately become P1=0, P2=(16 + 64)=80 and P3=(16+128)=144.

Table 25: ContainerAbsolute (SizeInBits = 144)

	Name
	Bit-Width
	Offset
	Address

	P2
	16
	64 from containerStart
	64

	P3
	16
	128 from containerStart
	128

The container’s sizeInBits is calculated as 144 because the last Parameter (P3) is 128 bits from the containerStart and 16-bits long, making a total of 144 bits.

Table 26: Container (SizeInBits = 160)

	Name
	Bit-Width
	Offset
	Address

	P1
	16
	0
	0

	ContainerAbsolute
	144
	16
	16

The container referred to ContainerAbsolute can be viewed as a single unit for the purposes of determining the overall start-bit location for its entries and the overall size. The containerRef’s entries would be further resolved to these locations:

Table 27: Container: Resolved (SizeInBits = 160)

	Name
	Bit-Width
	Offset
	Address

	P1
	16
	0
	0

	ContainerAbsolute:P2
	16
	64+16 (prevEntry)
	80

	ContainerAbsolute:P3
	16
	128+16
	144

5.2.2 RepeatEntry

RepeatEntry allows one to specify a repeating item. It may be a super-sampled or super-comm’d parameter or container (See Section 4.2.3.7.9.2) – repeating an entry also means that other entries surrounding it may need to be adjusted in terms of their addresses. A RepeatEntry of zero is the same as an entry without RepeatEntry, a RepeatEntry of one means the entry is duplicated, and so on – negative values in the repeat should be considered an error.

<xtce:ParameterRefEntry parameterRef="P1">

<xtce:RepeatEntry>

<xtce:Count>

<xtce:FixedValue>4</xtce:FixedValue>

</xtce:Count>

<xtce:Offset>

<xtce:FixedValue>0</xtce:FixedValue>

</xtce:Offset>

</xtce:RepeatEntry>
</xtce:ParameterRefEntry>
In this example the entry repeats four times, meaning there are five entries. The offset between them is zero – that is they are “packed” back to back.
A RepeatEntry is defined as: the original entry + (the original entry x repeat count).
5.2.3 IncludeCondition

IncludeCondition allows one to specify the optional inclusion of a parameter or container in an EntryList (See Section 4.2.3.7.9.3) – the including container will change size to accommodate the container or parameter being referenced, if the conditions are true.

<xtce:ParameterRefEntry parameterRef="CheckSum">

<xtce:IncludeCondition>

<xtce:Comparison value="1" parameterRef="CSFlag"/>

</xtce:IncludeCondition>
</xtce:ParameterRefEntry>

Here the Parameter CheckSum is included if the Parameter instance of CSFlag (instance 0) is set to 1, CSFlag would likely be a flag in the header.
Again in order to calculate the size the such a construction, a range may need to be associated with the size depending on whether the item is include or not.
5.2.4 In Combination
It is possible that a particular Entry will have some combination of LocationInContainerInBits, RepeatEntry and IncludeCondition set – in general IncludeCondition should be processed first, following by RepeatEntry and finally by LocationInContainerInBits. Basically any RepeatEntry should be treated as a single unit.

<xtce:ParameterRefEntry parameterRef="P1">

<xtce:LocationInContainerInBits referenceLocation="containerStart">

<xtce:FixedValue>0</xtce:FixedValue>

</xtce:LocationInContainerInBits>

<xtce:RepeatEntry>

<xtce:Count>

<xtce:FixedValue>4</xtce:FixedValue>

</xtce:Count>

<xtce:Offset>

<xtce:FixedValue>0</xtce:FixedValue>

</xtce:Offset>

</xtce:RepeatEntry>

<xtce:IncludeCondition>

<xtce:Comparison value="1" parameterRef="ID"/>

</xtce:IncludeCondition>
</xtce:ParameterRefEntry>

In this example the Parameter P1 is only valid if ID (instance 0) is 1; it also repeats for a total of five times and has an absolute address from containerStart.

In another example below shows a ContainerRefEntry and IncludeCondition.
<xtce:SequenceContainer name="Included">

<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="CP1">

<xtce:LocationInContainerInBits referenceLocation="containerStart">

<xtce:FixedValue>100</xtce:FixedValue>

</xtce:LocationInContainerInBits>

</xtce:ParameterRefEntry>

<xtce:ParameterRefEntry parameterRef="CP2">

<xtce:LocationInContainerInBits referenceLocation="containerStart">

<xtce:FixedValue>200</xtce:FixedValue>

</xtce:LocationInContainerInBits>

</xtce:ParameterRefEntry>

<xtce:ParameterRefEntry parameterRef="CP3">

<xtce:LocationInContainerInBits referenceLocation="containerStart">

<xtce:FixedValue>300</xtce:FixedValue>

</xtce:LocationInContainerInBits>

</xtce:ParameterRefEntry>

</xtce:EntryList>

</xtce:SequenceContainer>

<xtce:SequenceContainer name="Plain">

<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="P1"/>

<xtce:ParameterRefEntry parameterRef="P2"/>

<xtce:ContainerRefEntry containerRef="Included"/>

<xtce:ParameterRefEntry parameterRef="P3"/>

</xtce:EntryList>
</xtce:SequenceContainer>

In the above example the container “Included” has entries within it that are offset from ContainerStart. Those addresses are relative to the container they are defined in (i.e. Included), not the container that references Included (i.e. Plain).

Thus container Included would be resolved first, then its entries modified by the LocationInContainerInBits of the containerRef in question. In this example the default applies, so the LocationInContainerInBits has a value of “prevEntry” and offset of “0” – that means each entry when inserted into container Plain is offset from the entry P2, not containerStart.
 Table 28: Plain Container

	RefEntry
	Start Address
	Width

	P1
	0
	16

	P2
	16
	16

	Included
	RefEntry
	Start Addr+32
	Width
	32
	316

	
	CP1
	100 (+32)
	16
	
	

	
	CP2
	200 (+32)
	16
	
	

	
	CP3
	300 (+32)
	16
	
	

	P3
	348
	16

For more information on container addressing, see Section 5.2.
The other EntyList forms are simply variations of either ParameterRefEntry or ContainerRefEntry, all of them but array are segments which simply clip the size of the item being referred to from its inherent size. The ArrayParameterRefEntry is somewhat special because it is here that the dimension sizes are stored on a per use basis.
5.3 Using Plain, Abstract and Concrete Containers to Build Packaging Definitions

In XTCE the three container forms can be used to build up packaging definitions for a format (such as a packet or minor frame). One simple approach uses a common root abstract container and a set of concrete containers extending it further supplying the appropriate identification information in the RestrictionCriteria (as well as the entries for the packet bodies).

Although one level of inheritance may be enough to capture all packet constructions, additional levels may be warranted depending on various requirements and the preferences of the designers of the descriptions.

5.3.1 Container Inheritance Concepts

Using an object oriented like mechanism to describe telemetry (and command) packaging (such as packet) is often a confusing or at least a foreign concept for many when introduced to the topic. It may help to consider how such a set of descriptions could work in a conceptual system.

5.3.1.1 Processing a Conceptual Container Inheritance Tree

One way to think of container inheritance is in relation to a system that takes as input a set of telemetry packets and processes those against an inheritance tree of XTCE containers. Such a system must read the packets and match their contents to the tree of containers, starting at the root container and working down to leaf containers.
Imagine that the definitions consist of a root abstract container representing the header of the format, and a set of concrete containers that extend it, and supply some uniquely identifying information for each one.

In that context the first packet’s byte (or bytes) would start at the root container, although it has no explicit RestrictionCriteria, it is said to match by default any incoming packet.
However because the container is abstract, no instance of it is created and processing continues down the container inheritance chain until the leaf containers are processed.

In this simplistic example there is only one level of inheritance, so the container leaves are processed. First their RestrictionCriteria to find a container match, there should be one (or possibly none).

For each match that occurs a concrete instance of that packet is created based on the container definitions. Every entry in the EntryList is processed as well as those in the parent container and all parameters are used to fully decommutate the packet into the telemetry table.

This conceptual model may be helpful in understanding XTCE’s container inheritance concept but it is in general not terribly helpful in terms of exchange.

From an exchange standpoint, it is likely that your format does not have a container inheritance feature, the real problem at hand is how does one read the containers, gather information together and map it to the local format?
Here is one way to approach the problem.

5.3.1.2 Treating BaseContainer as an Operation

Treating BaseContainer as an operation processes the container inheritance constructs away, possibly all the way to a single entry list per packet (or minor frame, etc..).
Along with these are the set of restrictions that must be met to uniquely identify those parameters in at least a conceptual set of input packets, as well as the other information held in the other elements if that is of interest (such as the descriptive information).
This simplified description can then be transferred to another format with some ease, as it seems likely that all descriptive formats for telemetry and commanding would support this minimal case.

So when the BaseContainer is interpreted as an operation, the ContainerSet is looped through and all non-abstract containers with a BaseContainer are processed further.
When this occurs the container’s BaseContainer is recursively processed and a single EntryList is formed by adding the various entries into a single list.

The RestrictionCriteria are collected relative to where they are defined in each inheritance level so that the scope of the parameters used in them is maintained.

More details of this process are given below, in the following sections walk through a basic example that interprets the BaseContainer as an operation.
5.3.1.2.1 Container Inheritance: Building up the EntryList

The containers below consists of a single abstract root container which represents a header in format, a second container which represents a secondary header (timestamp here) and a single concrete container which extends them and adds some entries which makes up the packet body – taken together these represent a single packet description.
<xtce:SequenceContainer name="MyFormatHeader" abstract="true">

<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="Version"/>

<xtce:ParameterRefEntry parameterRef="Type"/>

<xtce:ParameterRefEntry parameterRef="ID"/>

<xtce:ParameterRefEntry parameterRef="Length"/>

</xtce:EntryList>

</xtce:SequenceContainer>
<xtce:SequenceContainer name="MyTimeStampHeader" abstract="true">

<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="TimeStamp"/>

</xtce:EntryList>

<xtce:BaseContainer containerRef="MyFormatHeader">

<xtce:RestrictionCriteria>

<xtce:ComparisonList>

<xtce:Comparison parameterRef="Version" value="1"/>

<xtce:Comparison parameterRef="Type" value="1"/>

</xtce:ComparisonList>

</xtce:RestrictionCriteria>

</xtce:BaseContainer>
</xtce:SequenceContainer>

<xtce:SequenceContainer name="MyConcretePacket">

<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="P1"/>

<xtce:ParameterRefEntry parameterRef="P2"/>

<xtce:ParameterRefEntry parameterRef="P3"/>

</xtce:EntryList>

<xtce:BaseContainer containerRef=" MyTimeStampHeader ">

<xtce:RestrictionCriteria>

<xtce:Comparison parameterRef="ID" value="100"/>

</xtce:RestrictionCriteria>

</xtce:BaseContainer>
</xtce:SequenceContainer>
By treating the BaseContainer as operation, the result will be singular object or entity – it is shown below as an XML although it should noted that it is not in XTCE syntax.
Step #1: If a BaseContainer is present in a non-abstract container it is recursively processed until the root container is reached.

As the recursion unwinds each container’s entries are added to a final EntryList construct. If its entries refer to other containers, they must be resolved as well to ParameterEntryRefs.

The various other items associated with container inheritance and the original container’s description should be processed as well into one object – for example the AncillayData should be accumulated, and so on according the inheritance rules.

It is important to capture the RestrictionCriteria in a way so each one’s scope is maintained relative to where they were defined in each container.
In terms of implementation, one way to do this is to allow the restrictions to be added into the final EntryList itself after each container’s entries have been added. This can be done in a variety of ways in different programming languages. For this example, we assume it is possible to do so and the XML illustrates that this has occurred.
The example below then shows the result of the operation. The RestrictionCriteria conditions have been placed at the end of each container’s entries, maintaining their place relative to their original container definition.

Once again, resulting processed construction show below is not itself in XTCE syntax.

<ProcessedContainer name="MyConcretePacket">

<ObjectEntryList>

<ParameterRefEntry parameterRef="Version"/>

<ParameterRefEntry parameterRef="Type"/>

<ParameterRefEntry parameterRef="ID"/>

<ParameterRefEntry parameterRef="Length"/>

<ParameterRefEntry parameterRef="TimeStamp"/>

<RestrictionCriteria>

<ComparisonList>

<Comparison parameterRef="Version" value="1"/>

<Comparison parameterRef="Type" value="1"/>

</ComparisonList>

</RestrictionCriteria>

<ParameterRefEntry parameterRef="P1"/>

<ParameterRefEntry parameterRef="P2"/>

<ParameterRefEntry parameterRef="P3"/>

<RestrictionCriteria>

<Comparison parameterRef="ID" value="100"/>

</RestrictionCriteria>

</ObjectEntryList>
</ProcessedContainer>

Step #2: Now that all entries have been resolved into one object, another step might be to derive the addresses of the entries.

Doing so also means any Repeat, LocationInContainerInBits and IncludeCondition must be considered as any of the other entry forms such as ArrayParameterRefEntry and so on.
Each parameter associated with each ParameterRefEntry is found in a ParameterSet and their ParameterTypes are then found in a ParameterTypeSet. Their DataEncodings provide the size of each as well other information such as alarms, calibrators and so forth.
Again fixed sized parameters are easiest to deal with but ranges can be calculated for the other cases.
In this example and for the sake of simplicity to illustrate how it works, it is kept to the simple case: each parameter is fixed and 16-bits in length.

<AddressContainer name="MyConcretePacketAddressesResolved" calculatedSizeInBits="0x80"/>

<ObjectEntryList>

<Parameter name="Version" address="0x00" sizeInBits="16" etc />

<Parameter name="Type" address="0x10" sizeInBits="16" etc />

<Parameter name="ID" address="0x20" sizeInBits="16" etc />

<Parameter name="Length" address="0x30" sizeInBits="16" etc />
<Parameter name="TimeStamp" address="0x40" sizeInBits="16" etc />
<RestrictionCriteria>

<ComparisonList>

<Comparison parameterName="Version" value="1"/>

<Comparison parameterName="Type" value="1"/>

</ComparisonList>

</RestrictionCriteria>

<Parameter name="P1" address="0x50" sizeInBits="16" etc />

<Parameter name="P2" address="0x60" sizeInBits="16" etc />

<Parameter name="P3" address="0x70" sizeInBits="16" etc />
<RestrictionCriteria>

<Comparison parameterName="ID" value="100"/>

</RestrictionCriteria>

</ObjectEntryList>

</AddressContainer>

The above XML is a representation of the final resolved construction (it is not XTCE syntax once again) -- an address-map of all the revolved BaseContainer and EntryLists items including the set of conditions that must be true for an incoming packet match to occur.

If such a match occurs (that is the restriction are all true) – then the remaining information associated with each parameter (such as calibrators and alarms) would be processed to derive instance values for each item. This additional information is not shown here for sake of clarity however.

However it is easy to imagine how that could be included in this construction as well and then used to completely deconstruct the stream to the various host data types by software.
From an exchange standpoint this type of processed container object removes the inheritance constructs and should make transfer to another description format easier, since it is very likely that every description format at least supports listing the parameters in the telemetry and command format’s data block.

The RestrictionCriteria may still be an issue, complex expressions may not transfer easily to a format that expects one identification key per packet definition for example.
Or even if that is not the case, if the format in question expects a discrete list of named items and their expected values, determining this from the expressions given may not be particularly easy to do. This is especially true if a range of values is specified using other operators besides “==”.
The recommended approach at this time is to constrain the form of the expressions so that processing a certain pattern is expected. Further the expressions only use the operator “==” if possible.
This is not ideal, especially if a range spans a fairly large set of numbers – but it may otherwise be workable for most cases.
5.3.2 Other items in Container Inheritance

Many of the other items in SequenceContainer take part in the inheritance process; see Section 4.2.3.8.4 for the rules associated with container inheritance. Container size deserves special mention.
Container size is affected by inheritance, BinaryEncoding/SizeInBits can be inherited or overridden, although it is often easier to simply calculate the size from the description and leave off the BinaryEncoding/SizeInBits entirely.
There are various reasons, firstly the parent container could be something like a header – putting its size in the construction is just not that useful – it’s not likely to match any deriving container size.

Further like most of the other inheritance rules, the child cannot override the parent’s explicitly set size by simple not specifying any content. In theory then a forgetful designer of a child container would not have any explicit size set for it and then would inadvertently inherit the parent’s size which is surely not what is desired.

The final issue with container size is that the BinaryContainer/SizeInBits does not allow for the specification of an expected range in the size – this would be useful if dynamically sized entries are present in the EntryList.

Given these reasons is often better to calculate the size of the container from the entries present and not specify it in the container itself.

5.3.3 CommandContainerSet Inheritance

Container inheritance semantics are described in Section 4.2.3.8. CommandContainerSet is exactly the same as ContainerSet in TelemetryMetaData.

The only difference is conceptual; restrictions define values that must be inserted into the stream.
5.4 Dynamic Container Matching

Dynamic container matching is briefly described in Section 4.2.3.7.4.1. It occurs when a ContainerRefEntry in a container’s EntryList refers to an abstract container and that abstract container has its own derived concrete child containers.
If that’s the case then zero or more of them are inserted into the original EntryList depending on the success or failure of their RestrictionCriteria conditions at least from a run time processing standpoint. (similar to BaseContainer, this item can be statically processed into a single entity that represents it accurately).

Certain rules need to be defined in order to fully describe the concepts.

The following rules define dynamic container matching:

· The ContainerRefEntry refers to an container marked as abstract (i.e. an abstract container)

· The abstract container has one or more derived concrete child containers

· If this is the case, zero or more of the child containers (including the inherited EntryList from the abstract parent) may be placed in the original container’s EntryList (i.e. at the ContainerRefEntry location) if the expressions in their RestrictionCriteria evaluate to true:

· If more than one is true, the child containers form a union of the containers and the entire construct is placed in the EntryList

· Regardless the abstract container itself is inserted if no child matches occur

· Its EntryList is likely empty for most cases but it does not have to be
· The ContainerRefEntry itself may have an IncludeCondition, this is evaluated first before the dynamic matching conditions (i.e. the RestrictionCriterias) , if the IncludeCondition is true the dynamic match proceeds (although this is not necessary and may be redundant to an extent)
· A union of two or more containers is defined as a block large enough to hold the largest EntryList among them – the EntryLists are not merged but literally one container overlays the other

· The order of evaluation of the conditions in each derived child container is not explicitly defined and implementation dependent

· If the abstract container has a non-empty EntryList then its content is included even if none of its derived child containers conditions are true

· As has been stated, The derived child containers inherits the abstract container’s entries as well and it is included
The construction can be thought of as choice of zero or more ContainerRefEntries – a simple example illustrates the basic concepts outlined above.

First given the MainContainer with a ContainerRefEntry to an abstract container called “AbstractContainer”:

<xtce:SequenceContainer name="MainContainer">

<xtce:EntryList>

<xtce:ContainerRefEntry containerRef="AbstractContainer"/>

</xtce:EntryList>
</xtce:SequenceContainer>

The AbstractContainer then begins the dynamic match definition. In this example its EntryList is empty, this is probably typical and easiest to implement as the derived child containers have the content of interest.

<xtce:SequenceContainer name="AbstractContainer" abstract="true">

<xtce:EntryList/>

</xtce:SequenceContainer>
Each derived child container has some content that will be included depending on the value of an expression called “Condition” in the two RestrictionCriteria.

<xtce:SequenceContainer name="ContainerA">

<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="A"/>

</xtce:EntryList>

<xtce:BaseContainer containerRef="AbstractContainer">

<xtce:RestrictionCriteria>

<xtce:Comparison parameterRef="Condition" value="1"/>

</xtce:RestrictionCriteria>

</xtce:BaseContainer>

</xtce:SequenceContainer>

<xtce:SequenceContainer name="ContainerB">

<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="B"/>

</xtce:EntryList>

<xtce:BaseContainer containerRef="AbstractContainer">

<xtce:RestrictionCriteria>

<xtce:Comparison parameterRef="Condition" value="2"/>

</xtce:RestrictionCriteria>

</xtce:BaseContainer>

</xtce:SequenceContainer>
The construct then is defined so that only one container – either A or B actually supplies any content into MainContainer. If Condition is 1, then ContainerA is inserted into MainContainer. If Condition is 2, then container B is inserted into MainContainer. But if Condition is 3 say, then only AbstractContainer is inserted and it has no content at all – so no entries goes into MainContainer.

As was stated in the rules, the abstract container is always included so care should be taken to define the various constructs properly to match the definition desired.
The following made up construct ChoiceOfZeroOrMoreDerivedContainers illustrates the desired functionality, note again that this is not XTCE syntax but made up for the purposes of illustration:

<SequenceContainer name="MainContainerIllustrated">
 <EntryList>
 <ChoiceOfZeroOrMoreDerivedContainers>
 <ContainerRefEntry containerRef="AbstractContainer" default="alwaysInclude"/>
 <ContainerRefEntry containerRef="ContainerA" condition="Condition" value="1"/>
 <ContainerRefEntry containerRef="ContainerB" condition="Condition" value="2"/>
 </ChoiceOfZeroOrMoreDerivedContainers>
 </EntryList>
</SequenceContainer>

As was stated above the order of the child Entries is not explicitly defined by the rules and this variation is also legal:

<SequenceContainer name="MainContainerIllustrated">

 <EntryList>

 <ChoiceOfZeroOrMoreDerivedContainers>
 <ContainerRefEntry containerRef="AbstractContainer" default="alwaysInclude"/>

 <ContainerRefEntry containerRef="ContainerB" condition="Condition" value="1"/>

 <ContainerRefEntry containerRef="ContainerA" condition="Condition" value="2"/>

 </ChoiceOfZeroOrMoreDerivedContainers>

 </EntryList>
</SequenceContainer>
The dynamic match mechanism can be used where holes in a container definition exist, and some set of possible container may be placed there depending on various conditions.

For example suppose under normal conditions a telemetry packet has no timestamp but in some cases a 32-bit timestamp is present; however in other cases a higher-resolution 48-bit timestamp is present.

One possible solution to this construction in XTCE would be to define a packet container with two consecutive ContainerRefEntries that have IncludeConditions to the two TimeStamp containers for each resolution time stamp.
The conditions need to be defined in such way to ensure that the three cases desired are created: no timestamp, a 32-bit timestamp, or the 48-bit timestamp. Using this technique such a construction is a sequence of optional entries in the packet container.

[image: image96.emf]Packet

TimeStamp32Ref

TimeStamp48Ref

BodyEntriesRef

TimeStamp32

TimeStamp48

{Cond1}

{Cond2}

Figure 90: Using IncludeConditions

They are optional in the sense that as shown above as “Cond1” or “Cond2” are IncludeConditions controlling their inclusion into the original container. Once again care would need to taken ensure the conditions are mutually exclusive so only one of them is ever included. (note: Cond1 and Cond2 above simple represent conditional expressions, in this case they would likely have the same parameters in the expressions.)
In the dynamic match variation, the packet container would have a ContainerRefEntry to an abstract TimeStamp container with no entries. Then two derived containers form the TimeStamps – one for the 32-bit time stamp and the other for the 48-bit variation. The conditions should evaluate so that there is either no time stamp (in the example below assume TimeStamp has an empty EntryList, and Cond1 and Cond2 are false), or the 32-bit TimeStamp32 is included (Cond2 is true), or the 48-bit TimeStamp48 is included (Cond1 is true) – note that these are reversed in the diagram as compared to the previous example but the concept is the same.

[image: image97.emf]Packet

TimeStampRef

BodyEntriesRef

TimeStamp32 TimeStamp48

{Cond2}

TimeStamp

{Cond1}

Figure 91: Using Dynamic Container Matching

Although the IncludeCondition version is simpler to understand and perhaps to implement, the dynamic match version allows for easy extension by simply adding another derived TimeStamp container without needing to modify the original packet container definition at all, and this could prove useful in certain situations. (for example suppose an XTCE file is considered fixed, and only the derived containers associated with the dynamic matches can be added to confer certain behavior after the fact.)
It should be noted as well that the two approaches are not exactly the same although similar in terms of overall semantics. If Cond1 and Cond2 are both true in the examples, then in Figure 90 both containers will be included in the order of their definition; however in Figure 91 the two containers will be included as a union of both them and their order of evaluation is not explicitly defined.

What this literally means in Figure 91 is that the order of evaluation between TimeStamp48’s conditions and TimeStamp32’s conditions are implementation dependent.

Example
The example uses the one outlined above – a system defines telemetry with three possible secondary headers depending on a certain condition: none, a regular timestamp, or a hi-res timestamp. dynamic container matching is used to describe this scenario.
<xtce:SequenceContainer name="Header" abstract="true">

<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="Version"/>

<xtce:ParameterRefEntry parameterRef="SecondaryHeaderFlag"/>

<xtce:ParameterRefEntry parameterRef="ID"/>

<xtce:ParameterRefEntry parameterRef="Length"/>

</xtce:EntryList>

</xtce:SequenceContainer>

<xtce:SequenceContainer name="MyPacket1">

<xtce:EntryList>

<xtce:ContainerRefEntry containerRef="MySecondaryHeader"/>

<xtce:ParameterRefEntry parameterRef="P1"/>

<xtce:ParameterRefEntry parameterRef="P2"/>

<xtce:ParameterRefEntry parameterRef="P3"/>

</xtce:EntryList>

</xtce:SequenceContainer>

<xtce:SequenceContainer name="MySecondaryHeader" abstract="true">

<xtce:EntryList/>

</xtce:SequenceContainer>

<xtce:SequenceContainer name="TimeStamp1">

<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="Seconds"/>

<xtce:ParameterRefEntry parameterRef="Milliseconds"/>

</xtce:EntryList>

<xtce:BaseContainer containerRef="MySecondaryHeader">

 <xtce:RestrictionCriteria>

 <xtce:ComparisonList>

 <xtce:Comparison parameterRef="SecondaryHeaderFlag" value="1"/>

 <xtce:Comparison parameterRef="ID" comparisonOperator="<" value="100"/>

 </xtce:ComparisonList>

 </xtce:RestrictionCriteria>

</xtce:BaseContainer>

</xtce:SequenceContainer>

<xtce:SequenceContainer name="TimeStamp2">

<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="Seconds"/>

<xtce:ParameterRefEntry parameterRef="Milliseconds"/>

<xtce:ParameterRefEntry parameterRef="Microseconds"/>

</xtce:EntryList>

<xtce:BaseContainer containerRef="MySecondaryHeader">

 <xtce:RestrictionCriteria>

 <xtce:ComparisonList>

 <xtce:Comparison parameterRef="SecondaryHeaderFlag" value="1"/>

 <xtce:Comparison parameterRef="ID" comparisonOperator=">=" value="100"/>

 </xtce:ComparisonList>

 </xtce:RestrictionCriteria>

</xtce:BaseContainer>
</xtce:SequenceContainer>

In the above example there is a slight twist – the MySecondaryHeader container is only included if SecondaryHeaderFlag is 1. An argument can made that this is not necessary since if MySecondaryHeader has an empty EntryList because it supplies no content itself. However by including it, the construction more precisely matches the semantics of the header itself which defines such a flag.

So then, if the IncludeCondition is true (SecondaryHeaderFlag == 1) then dynamic container matching can be processed.

In the first case, if the ID of the packet is below 100, then TimeStamp1 will be included. But if ID is 100 or larger then TimeStamp2 will be included instead.

And if neither matches, no descriptive content is added at all.

[image: image98.emf]MyPacket1

MySecondaryHdrRef

PxEntryRefs

TimeStamp2

TimeStamp1

{ID >= 100}

MySecondaryHeader

{ID < 100}

{SecHdrFlg == 1}

Figure 92: Dynamic Container Match Example

One could argue that such a set of conditions is in error. If the header says there is a secondary header, but the dynamic match fails for each child – then something somewhere must be not be correct.

While the concept may represent powerful construction techniques, actually implementing it is relatively difficult and simpler construction patterns may suffice.
5.5 MetaCommand Inheritance

MetaCommand inheritance semantics are described in Section 4.3.4.3. This section focuses on the construction of concrete MetaCommands and their CommandContainers.

MetaCommand inheritance takes place using the BaseMetaCommand element – through this inheritance mechanism the child MetaCommand may inherit certain aspects of the parent MetaCommand and optionally supply argument values to parent arguments.

5.5.1 MetaCommand/CommandContainer Inheritance

It should be noted that the MetaCommand/CommandContainer/BaseContainer must be supplied in order to inherit the EntryList of parent by the child command. This is a quirk of MetaCommand inheritance rules.

The MetaCommand/CommandContainer/BaseContainer element behaves in a similar way to the other container forms of inheritance (See Section 4.2.3.8).

Examples
In this example a command is defined with MetaCommand, it takes one argument. Two commands are then defined from it; both set the argument to “lock in” the user input.
<xtce:MetaCommandSet>

<xtce:MetaCommand name="Power">

<xtce:ArgumentList>

 <xtce:Argument argumentTypeRef="ONorOFFEnum" name="PowerState"/>

</xtce:ArgumentList>

<xtce:CommandContainer name="PowerPacket">

<xtce:EntryList>

<xtce:FixedValueEntry binaryValue="AA"/>

<xtce:ArgumentRefEntry argumentRef="PowerState"/>

</xtce:EntryList>

</xtce:CommandContainer>

</xtce:MetaCommand>

<xtce:MetaCommand name="PowerON">

<xtce:BaseMetaCommand metaCommandRef="Power">

 <xtce:ArgumentAssignmentList>

 <xtce:ArgumentAssignment argumentName="PowerState" argumentValue="1"/>

 </xtce:ArgumentAssignmentList>

</xtce:BaseMetaCommand>

<xtce:CommandContainer name="PowerONPacket">

<xtce:EntryList/>

<xtce:BaseContainer containerRef="PowerPacket"/>

</xtce:CommandContainer>

</xtce:MetaCommand>

<xtce:MetaCommand name="PowerOFF">

<xtce:BaseMetaCommand metaCommandRef="Power">

 <xtce:ArgumentAssignmentList>

 <xtce:ArgumentAssignment argumentName="PowerState" argumentValue="0"/>

 </xtce:ArgumentAssignmentList>

</xtce:BaseMetaCommand>

<xtce:CommandContainer name="PowerOFFPacket">

<xtce:EntryList/>

<xtce:BaseContainer containerRef="PowerPacket"/>

</xtce:CommandContainer>

</xtce:MetaCommand>
</xtce:MetaCommandSet>

In the above example a simple “Power” command is defined – it has an “opcode” of “0xAA” and takes one argument – whether the power should be turned “OFF” or “ON”.
Two additional commands are defined from Power, each sets the argument to either PowerON or PowerOFF.
In both cases the MetaCommand/CommandContainer of each derives from the Power/PowerPacket MetaCommand/CommandContainer – this reference must be set explicitly in XTCE. The EntryList is empty in each as they provide no additional items to the main command.

In essence this defines three commands as none are set to abstract.

5.5.2 Treating BaseMetaCommand as an Operation

This section is similar to Section 5.3.1.2 which describes treating BaseContainer as operation. In terms of MetaCommand (and its related CommandContainer) there is a similar issue to container inheritance in terms of exchange: if your format does not have XTCE’s inheritance concepts, how can it be transferred to your format?
Once again this presents an approach base around the idea of treating the inheritance as processable operation. The result is an object or entity that has accumulated the various items defined into one entity.

And again this object is not necessarily in XTCE’s syntax.

In the case of MetaCommands, there is a “dual” inheritance mechanism to consider and they can largely be treated separately from the standpoint of processing them – first the MetaCommand/BaseMetaCommand inheritance chain can be processed and once complete its CommandContainer/BaseContainer can be processed. The result can be held together in one location.
It should be noted again that the CommandContainer/BaseContainer may refer to other MetaCommand/CommandContainers or either ContainerSet containers or CommandContainerSet containers (and these are more likely to be at referred to in a root MetaCommand), so an implementation should take care to take this into account.

To determine which MetaCommands to process, use the abstract attribute as the guide, any non-abstract MetaCommand represents real command instance – so these can be processed and resolved to aggregated objects.

In the example below a command is presented that sets a certain group of relays, two commands derive from it and re-use the entire packet but supply certain fixed argument values.

The processing of these constructs shown only takes the resolution of items to a certain point, it is largely up to an implementation how fully to process the various constructs down to simpler items; this also depends on at what point the items become transferrable to their format.

Another issue is that processing the inheritance constructs away does result in a loss of certain information. For example below the demarcation of the header fields is lost in the final result. If this is important to an implementation, it may be that some information will have to be added back when information is transferred to their format or kept during processing in some way. If that is needed or how it is done is implementation dependent.

5.5.2.1 Extended Command Example

The first items shown are the CCSDS header container, this container is defined in ContainerSet and in this particular implementations shared by both ‘sides’, telemetry and commanding.

<xtce:SequenceContainer abstract="true" name="CCSDSPacket">

<xtce:LongDescription>

Super-container for all CCSDS telemetry and command packets

</xtce:LongDescription>

<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="CCSDSVersion"/>

<xtce:ParameterRefEntry parameterRef="CCSDSType"/>

<xtce:ParameterRefEntry parameterRef="CCSDSSecH"/>

<xtce:ParameterRefEntry parameterRef="CCSDSAPID"/>

<xtce:ParameterRefEntry parameterRef="CCSDSGroupFlags"/>

<xtce:ParameterRefEntry parameterRef="CCSDSSourceSequenceCount"/>

<xtce:ParameterRefEntry parameterRef="CCSDSPacketLength"/>

</xtce:EntryList>
</xtce:SequenceContainer>

The various definitions related to the Parameters and ParameterTypes is not shown above and in general throughout this example is left out for purposes of illustration.
On the commanding side, first an ArgumentType is shown – it used by all the commands being presented and is an enumeration that has three values: On, Off, or NoChange.

<xtce:ArgumentTypeSet>

<xtce:EnumeratedArgumentType name="RelayStateType">

<xtce:UnitSet/>

<xtce:IntegerDataEncoding sizeInBits="3"/>

<xtce:EnumerationList>

<xtce:Enumeration value="0" label="On"/>

<xtce:Enumeration value="1" label="Off"/>

<xtce:Enumeration value="2" label="NoChange"/>

</xtce:EnumerationList>

</xtce:EnumeratedArgumentType>

</xtce:ArgumentTypeSet>

In MetaCommandSet, a super or root command is described. This is largely an abstraction and it conveys little real info (the EntryList is empty), except for certain values associated with some packet header fields that are true for all commands (in this conceptual system). It extends CCSDSPacket.

<xtce:MetaCommand abstract="true" name="CCSDSCommand">

<xtce:LongDescription>

Super-Command for all CCSDS commands.

</xtce:LongDescription>

<xtce:CommandContainer name="CCSDSCommandPacket">

<xtce:LongDescription>

Super-container for all CCSDS command packets.

</xtce:LongDescription>

<xtce:EntryList/>

<xtce:BaseContainer containerRef="CCSDSPacket">

<xtce:RestrictionCriteria>

<xtce:ComparisonList>

<xtce:Comparison value="0" parameterRef="CCSDSVersion"/>

<xtce:Comparison value="1" parameterRef="CCSDSType"/>

<xtce:Comparison value="0" parameterRef="CCSDSSecH"/>

<xtce:Comparison value="3" parameterRef="CCSDSGroupFlags"/>

</xtce:ComparisonList>

</xtce:RestrictionCriteria>

</xtce:BaseContainer>

</xtce:CommandContainer>

</xtce:MetaCommand>
After this a SetRelay command is defined, because it is not marked abstract it is itself a command instance. This is the general form of the command.
<xtce:MetaCommand abstract="false" name="SetRelays">

<xtce:BaseMetaCommand metaCommandRef="CCSDSCommand"/>

<xtce:SystemName>HRD</xtce:SystemName>

<xtce:ArgumentList>

<xtce:Argument argumentTypeRef="RelayStateType" name="RelayState1"/>

<xtce:Argument argumentTypeRef="RelayStateType" name="RelayState2"/>

<xtce:Argument argumentTypeRef="RelayStateType" name="RelayState3"/>

<xtce:Argument argumentTypeRef="RelayStateType" name="RelayState4"/>

</xtce:ArgumentList>

<xtce:CommandContainer name="SetRelaysPacket">

<xtce:AncillaryDataSet>

<xtce:AncillaryData name="VCID">0</xtce:AncillaryData>

</xtce:AncillaryDataSet>

<xtce:EntryList>

<xtce:ArgumentRefEntry argumentRef="RelayState1"/>

<xtce:ArgumentRefEntry argumentRef="RelayState2"/>

<xtce:ArgumentRefEntry argumentRef="RelayState3"/>

<xtce:ArgumentRefEntry argumentRef="RelayState4"/>

</xtce:EntryList>

<xtce:BaseContainer containerRef="CCSDSCommandPacket">

<xtce:RestrictionCriteria>

<xtce:Comparison value="179" parameterRef="CCSDSAPID"/>

</xtce:RestrictionCriteria>

</xtce:BaseContainer>

</xtce:CommandContainer>
</xtce:MetaCommand>
The command takes four arguments which along with the header it inherits through CCSDSCommandPacket are what will be used to make up the items in the actual packet itself.
After this two derived commands are based on it – the first sets all the relays on. It does this by extending the SetRelay command and providing argument assignments to the various arguments as follows:
<xtce:MetaCommand name="SetAllRelaysOn">

<xtce:BaseMetaCommand metaCommandRef="SetRelays">

<xtce:ArgumentAssignmentList>

<xtce:ArgumentAssignment argumentValue="On" argumentName="RelayState1"/>

<xtce:ArgumentAssignment argumentValue="On" argumentName="RelayState2"/>

<xtce:ArgumentAssignment argumentValue="On" argumentName="RelayState3"/>

<xtce:ArgumentAssignment argumentValue="On" argumentName="RelayState4"/>

</xtce:ArgumentAssignmentList>

</xtce:BaseMetaCommand>

<xtce:SystemName>HRD</xtce:SystemName>

<xtce:CommandContainer name="SetAllRelaysOnPacket">

<xtce:EntryList/>

<xtce:BaseContainer containerRef="SetRelaysPacket"/>

</xtce:CommandContainer>
</xtce:MetaCommand>
The purpose of the construction is to completely reuse the general relay command packet which does not change while making a new command which specifically sets certain arguments to certain values (in this system adding new items through the EntryList would mean the APID would have to change as well – all these commands have the same command packet which is unique and has one APID associated with it).

In a real system, it seems likely the SetRelay command may be itself set to abstract and only the various derived command base on it would be accessible to the users. But in this example they are all non-abstract.

The second derived command simply turns all the relays off by supply the appropriate Off flag to ArgumentAssignment.

<xtce:MetaCommand name="SetAllRelaysOff">

<xtce:BaseMetaCommand metaCommandRef="SetRelays">

<xtce:ArgumentAssignmentList>

<xtce:ArgumentAssignment argumentValue="Off" argumentName="RelayState1"/>

<xtce:ArgumentAssignment argumentValue="Off" argumentName="RelayState2"/>

<xtce:ArgumentAssignment argumentValue="Off" argumentName="RelayState3"/>

<xtce:ArgumentAssignment argumentValue="Off" argumentName="RelayState4"/>

</xtce:ArgumentAssignmentList>

</xtce:BaseMetaCommand>

<xtce:SystemName>HRD</xtce:SystemName>

<xtce:CommandContainer name="SetAllRelaysOffPacket">

<xtce:EntryList/>

<xtce:BaseContainer containerRef="SetRelaysPacket"/>

</xtce:CommandContainer>
</xtce:MetaCommand>

The results are three commands by using the inheritance mechanism.

5.5.2.2 Processing the Example
Given the example above and the three commands, if the inheritance mechanisms are treated as operations, the result of that is as follows.

First the SetRelays command becomes the following (note that some default attribute values are not shown):
<ProcessedMetaCommand name="SetRelays">

<SystemName>HRD</SystemName>

<ArgumentList>

<Argument argumentTypeRef="RelayStateType" name="RelayState1"/>

<Argument argumentTypeRef="RelayStateType" name="RelayState2"/>

<Argument argumentTypeRef="RelayStateType" name="RelayState3"/>

<Argument argumentTypeRef="RelayStateType" name="RelayState4"/>

</ArgumentList>

<ProcessedMetaCommandCommandContainer name="SetRelaysPacket">

<AncillaryDataSet>

<AncillaryData name="VCID">0</AncillaryData>

</AncillaryDataSet>

<EntryList>

<ParameterRefEntry parameterRef="CCSDSVersion"/>

<ParameterRefEntry parameterRef="CCSDSType"/>

<ParameterRefEntry parameterRef="CCSDSSecH"/>

<ParameterRefEntry parameterRef="CCSDSAPID"/>

<ParameterRefEntry parameterRef="CCSDSGroupFlags"/>

<ParameterRefEntry parameterRef="CCSDSSourceSequenceCount"/>

<ParameterRefEntry parameterRef="CCSDSPacketLength"/>

<Restriction>

 <ComparisonList>

 <Comparison value="0" parameterRef="CCSDSVersion"/>

 <Comparison value="1" parameterRef="CCSDSType"/>

 <Comparison value="0" parameterRef="CCSDSSecH"/>

 <Comparison value="3" parameterRef="CCSDSGroupFlags"/>

 </ComparisonList>

</Restriction>

<ArgumentRefEntry argumentRef="RelayState1"/>

<ArgumentRefEntry argumentRef="RelayState2"/>

<ArgumentRefEntry argumentRef="RelayState3"/>

<ArgumentRefEntry argumentRef="RelayState4"/>

<Restriction>

 <Comparison value="179" parameterRef="CCSDSAPID"/>

</Restriction>

</EntryList>

</ProcessedMetaCommandCommandContainer>
</ProcessedMetaCommand>

Note also that the Restrictions are placed relative to (the now processed away) containers they were defined in, this helps to maintain their proper scope.
Next the processed SetRelaysOn command has the following information in it.

<ProcessedMetaCommand name="SetAllRelaysOn">

<ArgumentAssignmentList>

<ArgumentAssignment argumentValue="On" argumentName="RelayState1"/>

<ArgumentAssignment argumentValue="On" argumentName="RelayState2"/>

<ArgumentAssignment argumentValue="On" argumentName="RelayState3"/>

<ArgumentAssignment argumentValue="On" argumentName="RelayState4"/>

</ArgumentAssignmentList>

<SystemName>HRD</SystemName>

<ArgumentList>

<Argument argumentTypeRef="RelayStateType" name="RelayState1"/>

<Argument argumentTypeRef="RelayStateType" name="RelayState2"/>

<Argument argumentTypeRef="RelayStateType" name="RelayState3"/>

<Argument argumentTypeRef="RelayStateType" name="RelayState4"/>

</ArgumentList>

<ProcessedMetaCommandCommandContainer name="SetAllRelaysOnPacket">

<AncillaryDataSet>

<AncillaryData name="VCID">0</AncillaryData>

</AncillaryDataSet>

<EntryList>

<ParameterRefEntry parameterRef="CCSDSVersion"/>

<ParameterRefEntry parameterRef="CCSDSType"/>

<ParameterRefEntry parameterRef="CCSDSSecH"/>

<ParameterRefEntry parameterRef="CCSDSAPID"/>

<ParameterRefEntry parameterRef="CCSDSGroupFlags"/>

<ParameterRefEntry parameterRef="CCSDSSourceSequenceCount"/>

<ParameterRefEntry parameterRef="CCSDSPacketLength"/>

<Restriction>

<ComparisonList>

<Comparison value="0" parameterRef="CCSDSVersion"/>

<Comparison value="1" parameterRef="CCSDSType"/>

<Comparison value="0" parameterRef="CCSDSSecH"/>

<Comparison value="3" parameterRef="CCSDSGroupFlags"/>

</ComparisonList>

</Restriction>

<ArgumentRefEntry argumentRef="RelayState1"/>

<ArgumentRefEntry argumentRef="RelayState2"/>

<ArgumentRefEntry argumentRef="RelayState3"/>

<ArgumentRefEntry argumentRef="RelayState4"/>

<Restriction>

<Comparison value="179" parameterRef="CCSDSAPID"/>

</Restriction>

</EntryList>

</ProcessedMetaCommandCommandContainer>
</ProcessedMetaCommand>
It should largely be same as the basic SetRelays command except for the ArgumentAssignments.
And the same should be true for the SetRelaysOff command which is as follows:

<ProcessedMetaCommand name="SetAllRelaysOff">

<ArgumentAssignmentList>

<ArgumentAssignment argumentValue="Off" argumentName="RelayState1"/>

<ArgumentAssignment argumentValue="Off" argumentName="RelayState2"/>

<ArgumentAssignment argumentValue="Off" argumentName="RelayState3"/>

<ArgumentAssignment argumentValue="Off" argumentName="RelayState4"/>

</ArgumentAssignmentList>

<SystemName>HRD</SystemName>

<ArgumentList>

<Argument argumentTypeRef="RelayStateType" name="RelayState1"/>

<Argument argumentTypeRef="RelayStateType" name="RelayState2"/>

<Argument argumentTypeRef="RelayStateType" name="RelayState3"/>

<Argument argumentTypeRef="RelayStateType" name="RelayState4"/>

</ArgumentList>

<ProcessedMetaCommandCommandContainer name="SetAllRelaysOffPacket">

<AncillaryDataSet>

<AncillaryData name="VCID">0</AncillaryData>

</AncillaryDataSet>

<EntryList>

<ParameterRefEntry parameterRef="CCSDSVersion"/>

<ParameterRefEntry parameterRef="CCSDSType"/>

<ParameterRefEntry parameterRef="CCSDSSecH"/>

<ParameterRefEntry parameterRef="CCSDSAPID"/>

<ParameterRefEntry parameterRef="CCSDSGroupFlags"/>

<ParameterRefEntry parameterRef="CCSDSSourceSequenceCount"/>

<ParameterRefEntry parameterRef="CCSDSPacketLength"/>

<Restriction>

<ComparisonList>

<Comparison value="0" parameterRef="CCSDSVersion"/>

<Comparison value="1" parameterRef="CCSDSType"/>

<Comparison value="0" parameterRef="CCSDSSecH"/>

<Comparison value="3" parameterRef="CCSDSGroupFlags"/>

</ComparisonList>

</Restriction>

<ArgumentRefEntry argumentRef="RelayState1"/>

<ArgumentRefEntry argumentRef="RelayState2"/>

<ArgumentRefEntry argumentRef="RelayState3"/>

<ArgumentRefEntry argumentRef="RelayState4"/>

<Restriction>

<Comparison value="179" parameterRef="CCSDSAPID"/>

</Restriction>

</EntryList>
</ProcessedMetaCommandCommandContainer>

</ProcessedMetaCommand>

Further processing could take place to fully resolve all the references and gather all the information into one aggregate object which may then exchange to some other format as is necessary.

5.6 Referencing that Crosses Sides
Suppose that a CommandContainer in CommandMetaData has in its EntryList a ContainerRefEntry to a SequenceContainer in TelemetryMetaData, or suppose a Parameter in TelemetryMetaData has a parameterTypeRef that refers to a ParameterType in CommandMetaData – well what happens, what do these constructions mean?

In general when an item is defined on one “side” of XTCE – that is in TelemetryMetaData or CommandMetaData – and it refers to an item defined on the other side – this simply means the construction is used on the referring side, not that any values represented by those constructions are copied over from one side to other.
The exception would be ParameterInstanceRefs which refer to both constructions and values.

So in the examples, the fact that the ContainerRefEntry in the CommandContainer refers to a SequenceContainer on the Telemetry side does not mean the telemetry values of items in that SequenceContainer are copied into the CommandContainer.
Instead it simply means the construction is used as if they were defined in CommandMetaData; they are “co-opted” into being CommandMetaData definitions. The same thing is true for the Parameter and ParameterType example; the ParameterType being referred is simply as if it were defined in TelemetryMetaData.

Generally such constructions should be avoided if possible due to the confusion they can cause and possible management issues but they may make sense for some situations, their use is left to the discretion of the user.

The feature can be useful, headers and other common items shared by sides are likely candidates for making use of this feature.

5.7 Reference Scope

The scope of items associated with NameReferences is important in a variety of locations in XTCE, the sections below explain the details.
5.7.1 In SpaceSystem Hierarchies

SpaceSystem hierarchies have already been discussed in Section 4.1– however one area needs further consideration, if an item is defined in a particular SpaceSystem and it refers to another item in another SpaceSystem, care should be taken that any NameReferences it has are resolved relative to the second SpaceSystem not the first.

This is particularly true for NameReferences that are either unqualified or have a relative path.

For example, suppose a ParameterType called SizeType is defined in SpaceSystem A, and the Size Parameter and SizeType and ParameterType are defined in SpaceSystem B and it is an unqualified NameReference.
Then cares should be taken to try to find B’s Size parameter’s SizeType in B, not A by mistake.

[image: image99.emf]SpaceSystem A

ParameterRef: /B/SIze

ParameterType: SIzeType

SpaceSystem B

Parameter: SIze

ParameterType: SIzeType

Figure 93: Refs should not “move” inadvertently through processing

In essence the rule of thumb here is that items are “sticky” to the SpaceSystem they are defined in and not the SpaceSystem they are used in.

[image: image100.emf]SpaceSystem A

ParameterRef: /B/SIze

ParameterType: SIzeType

SpaceSystem B

Parameter: SIze

ParameterType: SIzeType

Figure 94: Definitions are Sticky

The diagram above shows the correct approach.
5.7.2 In RestrictionCriteria

ParameterInstanceRefs that are unqualified in a container’s RestrictionCriteria and have an instance of zero first refer to the entries in that container, any of its associated ContainerRefEntry parameters, or any parameters further up the inheritance chain. If no matching parameter is found, then it would refer to a conceptual received telemetry table. It is also legal for the parameter to be a session variable.
But ParameterInstanceRefs in RestrictionCriteria cannot refer to items in child containers.

5.7.3 In IncludeCondition

The scope of instances defined in IncludeCondition is somewhat similar to RestrictionCriteria, the instance cannot refer “forward” in the container – past the point in EntryList the IncludeCondition has been defined in, for example:
<xtce:SequenceContainer name="IncludeScope">

xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="P0"/>

<xtce:ParameterRefEntry parameterRef="P1">

<xtce:IncludeCondition>

<xtce:ComparisonList>

<xtce:Comparison parameterRef="P0" value="1"/>

<xtce:Comparison parameterRef="P2" value="1"/>

</xtce:ComparisonList>

</xtce:IncludeCondition>

</xtce:ParameterRefEntry>

<xtce:ParameterRefEntry parameterRef="P2"/>

</xtce:EntryList>
</xtce:SequenceContainer>
5.8 Issues with Array Parameters

There are several issues related to ArrayParameterType (and ArrayArgumentType). As has been stated above, an ArrayParameterType defines the number of dimensions in and array but not the size of each dimension, instead that is done at the “point of use” in a container.

This can present various problems.

First off if an array parameter (that is a parameter that NameReferences an ArrayParameterType) is re-used in the same SpaceSystem, say on the telemetry side but in a different container, its dimension sizes may not necessarily be the same. If this occurs, it means the parameter instances would have different sizes as well.
If for some reason that array parameter is also used in an ParameterInstanceRef then in theory the given index could be in or out of bounds, depending on which container has been received that contains the array parameter, and of course the index itself.
For example suppose an array parameter called “Indecisive” is created, it has one dimension. In container “A”, it define an array dimension size of 10, while in container “B” it is gives an array dimension size of 5. Each of these is in the same SpaceSystem as well and for this example just as likely to be received as the other.

If for some reason container C uses a ParameterInstanceRef to Indecisive and it gives an index of six (as shown below). If C is also in the same SpaceSystem as A and B – then at least in theory the index could be out of bounds depending upon whether A or B was last received.
<xtce:BaseContainer containerRef="C ">

<xtce:RestrictionCriteria>

<xtce:ComparisonList>

<xtce:Comparison parameterRef="Indecisive[6]" value="1"/>

<xtce:Comparison parameterRef="Flag" value="100" instance="0"/>

</xtce:ComparisonList>

</xtce:RestrictionCriteria>
</xtce:BaseContainer>
Luckily such a use case does not seem very likely.

Others issues related to arrays have to do with what forms of arrays can be created in XTCE. For example can one create an array of array, or an array of aggregate, or an aggregate of array?
The answer is that unfortunately only the array of aggregate can be supported because the other two do not have a way in the EntryList to specify dimension sizes.

In the array of array case, an ArrayParameterRefEntry allows the specification of the dimension sizes of the named parameter only, there is not a way to specify dimension sizes of the second array.

The array of aggregate case is supported because a singular array definition is present and its dimension can be set in the ArrayParameterRefEntry just like any other array parameter. If for some reason this type parameter is used in a ParameterInstanceRef its syntax looks like the item in the example below:

<xtce:BaseContainer containerRef="C ">

<xtce:RestrictionCriteria>

<xtce:Comparison parameterRef="ArrayAggregate[0].field" value="1"/>

</xtce:RestrictionCriteria>
</xtce:BaseContainer>
In the aggregate array case there is similar issue to first case – there is no way to give the dimensions of the aggregate’s array field. Unfortunately in this case a parameter an AggregateParameterType is a ParameterRefEntry and this does not provide a way to set dimensions.

Misusing ArrayParameterRefEntry to support some of these other definition has issues, besides being a special case (that no other implementation is likely to recognize), there further issues if two or more of the aggregate’s fields are arrays, in that case how exactly are the various array’s dimension sizes specified.
In the end, XTCE arrays can represent arrays of mnemonics (parameters) but not arrays of arrays or aggregates of array.
5.9 Defining Session Variables

Session Variable or Parameters are simply parameters with a ParameterType that has no DataEncoding element. They can be used to represent items supplied by the processing system in some manner; the method of delivery is not specified in XTCE. However some session variables may be associated an algorithm (see below) – and at least in theory could be automatically derived by processing software using the algorithm information.

<xtce:TelemetryMetaData>

<xtce:ParameterTypeSet>

<xtce:IntegerParameterType name="VCIDType">

<xtce:UnitSet/>

</xtce:IntegerParameterType>

</xtce:ParameterTypeSet>

<xtce:ParameterSet>

<xtce:Parameter parameterTypeRef="VCIDType" name="VCID">

<xtce:ParameterProperties dataSource="local"/>

</xtce:Parameter>

</xtce:ParameterSet>
</xtce:TelemetryMetaData>

Here the VCID Parameter has an IntegerParameterType with no encoding; this is a Session Variable. The ParameterProperties dataSource is defined as “local” for completeness.
5.10 Defining Pseudo-Parameters

Pseudo-Parameters (also known as: derived parameters) may be defined using Parameters, ParameterTypes and Algorithms. Pseudo-Parameters are basically session parameters (variables) associated with an algorithm for producing them. MathOperation and CustomAlgorithm are available to describe the implementations, for example:
<xtce:TelemetryMetaData>

<xtce:ParameterTypeSet>

<xtce:FloatParameterType name="FahrenheitType">

<xtce:UnitSet>

<xtce:Unit>Fahrenheit</xtce:Unit>

</xtce:UnitSet>

<xtce:FloatDataEncoding encoding="IEEE754_1985" sizeInBits="32"/>

</xtce:FloatParameterType>

<xtce:FloatParameterType name="CelsiusType">

<xtce:UnitSet>

<xtce:Unit>Celsius</xtce:Unit>

</xtce:UnitSet>

</xtce:FloatParameterType>

</xtce:ParameterTypeSet>

<xtce:ParameterSet>

<xtce:Parameter parameterTypeRef="FahrenheitType" name="Fahrenheit"/>
<xtce:Parameter parameterTypeRef="CelsiusType" name="Celsius">

<xtce:ParameterProperties dataSource="derived"/>

</xtce:Parameter>

</xtce:ParameterSet>

<xtce:AlgorithmSet>

<xtce:MathAlgorithm name="FahrenheitToCelsius">

<xtce:MathOperation outputParameterRef="Celsius">

<xtce:ParameterInstanceRefOperand parameterRef="Fahrenheit"/>

<xtce:ValueOperand>32</xtce:ValueOperand>
<xtce:Operator>-</xtce:Operator>
<xtce:ValueOperand>5</xtce:ValueOperand>

<xtce:Operator>*</xtce:Operator>
<xtce:ValueOperand>9</xtce:ValueOperand>

<xtce:Operator>/</xtce:Operator>

<xtce:TriggerSet>

<xtce:OnParameterUpdateTrigger parameterRef="Fahrenheit"/>

</xtce:TriggerSet>

</xtce:MathOperation>

</xtce:MathAlgorithm>

</xtce:AlgorithmSet>
</xtce:TelemetryMetaData>
This describes how parameter Celsius is derived using the parameter Fahrenheit. The actual algorithm for doing so is given as a MathOperation, which supports creation of simple formulas using postfix notation (“reverse polish notation”).
Further explanation is given in the XTCE annotation associated with the element but the above example specifies the conversion formula for Fahrenheit to Celsius which is given in infix notation as:

Celsius = (Fahrenheit – 32) * 5/9

To convert infix to postfix notation use the Shunting Yard Algorithm which produces this result:

Celsius = Fahrenheit 32 – 5 * 9 /
The postfix notation eliminates the need for parenthesis and in so doing simplifies the XML description; the construction readily parsed with well known algorithms.
6 Telemetry Container Patterns
As can be seen from the proceeding sections, there is flexibility in using containers to describe packaging. In order to provide some basic guidance in this area, this section introduces patterns in this which can be followed, modified and expanded upon to meet many needs.
The creation of container patterns for particular mission’s package formatting allows for consistent creation of instance documents and simplifies the implementations associated with it. However this is in conflict with a more generic implementation and so should be considered in that context.
It should also be emphasized that these pattern are not recommendations per se, but are meant to illustrate the various features of XTCE in relation to common formatting needs.
Generally speaking simpler patterns are likely going to be preferred by many users (at least initially) as they are easier to implement.
6.1 Telemetry Packet Patterns
The patterns outlined here are given diagrammatically using a UML-like syntax. The labels are given as “<<stereotypes>>” which describes the XTCE element being diagrammed. Although XTCE containers are not classes in a programming language, the rudimentary aspects of UML class diagrams having proven to be useful in sketching out XTCE container patterns.
6.1.1 Basic Pattern

[image: image101.emf]<<AbstractSequenceContainer>>

Header as “Generic Packet”

<<SequenceContainer>>

Specific Packet Body

{RestrictionCriteria/Constraints}

1-*

Figure 95: Basic Container Inheritance Pattern
The basic pattern defines an abstract container for your format and then derives all telemetry packets from this one, supplying the constraints necessary for the each packet. For many one level of inheritance is all that is needed to describe every package element in the system.
However there may be reasons not to adopt this approach without further consideration.
6.1.2 An Optional Secondary Header

[image: image102.emf]<<AbstractSequenceContainer>>

Header as “Generic Packet”

<<SequenceContainer>>

Specific Packet Body

{RestrictionCriteria/Constraints}

1-*

<<SequenceContainer>>

SecondaryHeader

{IncludeCondition}

Figure 96: Including a Secondary Header
Here an optional SecondaryHeader using as ContainerEntryRef with an IncludeCondition in the Generic Packet’s EntryList. The condition would likely check a flag indicating if it present in the header.
Such an approach may not make sense if all the packets are defined either with a secondary header or without one, and this is known ahead of time remains fixed through the lifespan of the mission.

If that’s the case, it may be easier to simply hard code the secondary header in the “packet body” containers that have them.

6.1.3 A More Complex Pattern
Additional levels inheritance might be desired however, perhaps each telemetry packet has common root, or represents a common service.

[image: image103.emf]<<AbstractSequenceContainer>>

Header as “Generic Packet”

<<AbstractSequenceContainer>>

Shared by all Telemetry Packets

{RestrictionCriteria/Constraints}

<<SequenceContainer>>

SecondaryHeader

{IncludeCondition}

<<SequenceContainer>>

Specific Telemetry Packet

{RestrictionCriteria/Constraints}

1-*

Figure 97: Common Telemetry Root Container
In this pattern the telemetry packets have a common container. Commanding is not shown but conceptually it would mirror this definition, although using MetaCommand/CommandContainers.
6.1.4 With Dynamic SecondaryHeader Matching

[image: image104.emf]<<AbstractSequenceContainer>>

Header as “Generic Packet”

<<AbstractSequenceContainer>>

Shared by all Telemetry Packets

{RestrictionCriteria/Constraints}

<<AbsSequenceContainer>>

SecondaryHeader

{IncludeCondition}

<<SequenceContainer>>

Specific Telemetry Packet

{RestrictionCriteria/Constraints}

1-*

<<SeqContainer>>

TimeFormat1

<<SeqContainer>>

TimeFormatN

{RestrictionCriteria} {RestrictionCriteria}

Figure 98: Dynamic Container Matching of Secondary Headers
Dynamic container matching could be used for the secondary header. In this example the time stamp format changes depending on local condition. And although shown in the example the IncludeCondition may in fact no longer be needed depending on the exact RestrictionCriteria within each specific TimeStamp SequenceContainer.
This pattern is a more complex and elaborate construction. In the context of exchange it may be that simpler constructs can be defined which hold same information, these likely be easier to implement although at the cost of more XML.
7 Commands and Command Container Patterns
There are several ways to build commands in XTCE depending on end user needs and requirements; this section shows three basic patterns for doing so. Once again these should not be viewed as recommendations but illustrative of XTCE features.
7.1 Command Patterns

UML-like class diagrams are again employed to show the relationships for both the MetaCommands and their CommandContainers.

7.1.1 Simple Pattern

The simplest form of a command uses individual MetaCommands that define their entire packet in its CommandContainer only (MetaCommand/CommandContainer), possibly using FixedValueEntry to supply hardcoded information such as opcodes and so forth. Arguments could easily be added to this simple construction.

[image: image105.emf]<<MetaCommand>>

Command

<<CommandContainer>>

FixedValueEntries

Figure 99: Simple Command Pattern
7.1.2 Complex Pattern
The next level of complexity starts with an abstract MetaCommand that supplies some common portions of all mission commands in its CommandContainer. This “generic command” is then derived into concrete commands.

[image: image106.emf]<<AbstractMetaCommand>>

MissionCommand Template

<<CommandContainer>>

MissionEntries

<<MetaCommand>>

Specific Command

<<CommandContainer>>

Specific Cmd Entries

1-* 1-*

{RestrictionCriteria/Constraints}

Figure 100: Basic Command Inheritance Pattern
What is not shown is that MissionEntries may share a common header defined in TelemetryMetaData.
7.1.3 Generic Pattern
This version defines a root Mission MetaCommand and associated Mission CommandContainer for your mission but derives them from a common set of constructions, possibly true for all your missions.

[image: image107.emf]<<MetaCommand>>

Specific Command

<<CommandContainer>>

Specific Cmd Entries

1-*

1-*

{RestrictionCriteria/Constraints}

<<AbstractMetaCommand>>

MissionCommand Template

<<CommandContainer>>

MissionEntries

<<AbstractMetaCommand>>

Generic Command Template

<<CommandContainer>>

Header Entries

{RestrictionCriteria/Constraints}

{RestrictionCriteria/Constraints}

{RestrictionCriteria/Constraints}

1-*

1-*

Figure 101: Mission MetaCommand
In some systems derived commands may be further defined, these can easily be added by deriving from the Specific Command and its CommandContainer. It may be that the Specific Command should then be set as abstract if it will never be sent as a command itself.
8 Suggestions for Creating and Parsing XTCE documents

XTCE documents can be created in a variety of ways from a text editor, to a tool such as XMLSpy, to programmatically. Often small XTCE files will need to be created by hand to come up to speed with its concepts or for quick prototyping but often to generate XTCE files in a more automated fashion that are consistent time and time again.
The following tools and technologies have proven helpful in this regard:
XML Technologies
· XPath 1.0 and 2.0 – look up nodes in an XML file

· XSLT – script based transformations

· XQuery – query a file somewhat similar to SQL query concepts

Low Level Parsers (programming libraries)

· SAX – event driven parsing

· DOM – tree based parsing

Schema-Type Mappings to Programming Languages

· XMLSpy or other commercial products – C++, Java, C#, etc… (varies)

· Eclipse IDE EMF – Java

· XMLBeans – Java

· JAXB – Java (part of Java distribution)

· Castor & others
The latter style deserve additional discussion – these mapping programs (sometimes called XML data binding) read in any XML Schema and produce a program mapping of the schema types used to create it as classes in the programming language.
These classes can then be used to parse or create XML files in your XML Schema language. The mapping created is convenient because artifacts in the programming language match the schema types in which you may have familiarity; this helps in development.
Often these various technologies can be combined to quickly produce an XML application in a high-level language with a great deal of functionality for little cost.
8.1 JAXB Case Study

The following section briefly looks at a JAXB XTCE mapping. Many of the other XML data binding tools listed above will produce similar results, although their details vary.
All of these tools work in a similar fashion; they allow one to read in an XML Schema (such as XTCE) and produce a set of classes in a programming language (such as Java) which represent the simple types, the complex types, the elements and attributes in that XML Schema.
One can then read in an XML file into these objects created from the classes (“unmarshalling”). Or by creating objects from these and supplying the information of interest, produce XML files by serializing the objects to XML (“marshalling”).
For example JAXB maps the XML Schema xsd:string type to a java.lang.String or the SpaceSystem in XTCE to a class called SpaceSystemType.
The result is a high level API which varies from something like DOM that offers a lower level of access to XML files using a generic API.

JAXB is currently included as part of the official Java distribution
8.1.1 XJC
The xjc tool is the JAXB supplied to read in your XML Schema and map it into Java classes, the tool has several options – one important one is supply a configuration file which can be used to turn the mapping in several ways. JAXB follows some basic rules and maps the XML simple data types to certain included Java classes (i.e. the simple data type string to String) and then implements classes for items that have been defined in your XML Schema. This process is highly configurable to improve the mapping in various ways.
8.1.2 XJC Configuration File

A configuration file can be used manipulate xjc in numerous ways, one important way might be to change or improve the default behavior of the mapping of your Schema elements to Java classes which by default follow a set of internal rules which may not produce the optimized behavior that is desired.

For example one issue that will be apparent when reviewing new bindings that have been generated is centered choices. These occur when a choice is present in the Schema; JAXB’s default behavior is to map that to a class whose name is constructed from each choice such as “IntegerOrFloat” for a choice of elements of Integer or Float. That behavior can easily be changed by the configuration file to give the class a more appropriate name such as: “Numeric”.
Appendix C has an example configuration which has proven useful for some JAXB based projects.

8.1.3 Marshalling and Unmarshalling

The basic usage of JAXB from the programmer standpoint is reading in an existing XML file and binding that into the proper JAXB generated Java class objects representing the information in your file. For XTCE this would mean reading in an XTCE file and returning a set of object representing the XTCE elements and attributes in the file starting with and object for the SpaceSystem root.

This is called unmarshalling in JAXB and the converse is called marshalling which produces XML output from your objects that have been created from the classes generated representing your Schema (such as XTCE).

Simple examples of these two processes are given below.

8.1.4 Unmarshalling Example

import java.io.File;
import java.util.List;
import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBElement;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Unmarshaller;
import org.omg.space.xtce.SpaceSystemType;
import org.omg.space.xtce.ParameterSetType.Parameter;
public class ReadXTCEDoc {

public static void main(String[] args) {

try {

JAXBContext jc =
JAXBContext.newInstance("org.omg.space.xtce");

Unmarshaller unmarshaller = jc.createUnmarshaller();

Object temp = unmarshaller.unmarshal(new File(args[0]));

JAXBElement jaxbElement = ((JAXBElement) temp);

SpaceSystemType spaceSystem =
(SpaceSystemType)jaxbElement.getValue();

System.out.println("Read: " + spaceSystem.getName());

List<Object> params =
spaceSystem.
getTelemetryMetaData().
getParameterSet().
getParameters();

for (Object p : params) {

System.out.println("p: " + ((Parameter)p).getName());

}

} catch (JAXBException e) {

e.printStackTrace();

}

}
}
As can be seen, the program unmarshals a pre-existing XTCE XML file as given in the command line arguments. From there it simply gets the first SpaceSystem and prints out the name of any Parameters found.

The imports show that the JAXB generated classes are in org.omg.space.xtce, this was done by the xjc program but can be overridden by the user.

8.1.5 Marshalling Example
import java.math.BigInteger;
import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBElement;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Marshaller;
import org.omg.space.xtce.IntegerDataEncodingType;
import org.omg.space.xtce.NameDescriptionType;
import org.omg.space.xtce.ObjectFactory;
import org.omg.space.xtce.ParameterSetType;
import org.omg.space.xtce.SpaceSystemType;
import org.omg.space.xtce.ParameterTypeSetType.IntegerParameterType;
public class WriteXTCEDoc {

JAXBElement<SpaceSystemType> spaceRoot;

JAXBContext jc;

Marshaller marshaller;

ObjectFactory factory;

public WriteXTCEDoc() throws JAXBException {

jc = JAXBContext.newInstance("org.omg.space.xtce");

marshaller = jc.createMarshaller();
 marshaller.setProperty(
 "com.sun.xml.internal.bind.namespacePrefixMapper",
 new XTCEPrefixMapper());

marshaller.setProperty(
 Marshaller.JAXB_SCHEMA_LOCATION,"http://www.omg.org/space/xtce
 SpaceSystemV1.1.xsd");

marshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT,
 new Boolean(true));

factory = new ObjectFactory();

}

public void buildCxSpaceSystem(String name) {

SpaceSystemType space = factory.createSpaceSystemType();

space.setName(name);

spaceRoot = factory.createSpaceSystem(space);

}

public void buildCxTelemetry() {

SpaceSystemType space = spaceRoot.getValue();

space.setTelemetryMetaData(factory.createTelemetryMetaDataType());

space.getTelemetryMetaData().setParameterSet(
 factory.createParameterSetType());

space.getTelemetryMetaData().setParameterTypeSet(
 factory.createParameterTypeSetType());

}

public void addParameter(String name, NameDescriptionType type) {

SpaceSystemType space = spaceRoot.getValue();

ParameterSetType parameterSet = space.getTelemetryMetaData()
 .getParameterSet();

ParameterSetType.Parameter parameter = factory
 .createParameterSetTypeParameter();

parameter.setName(name);

parameter.setParameterTypeRef(type.getName());

parameterSet.getParameters().add(parameter);

space.getTelemetryMetaData().getParameterTypeSet()
 .getParameterTypes().add(type);

}

public void addParameter(String name, String typeName) {

SpaceSystemType space = spaceRoot.getValue();

ParameterSetType parameterSet = space.getTelemetryMetaData()
 .getParameterSet();

ParameterSetType.Parameter parameter = factory
 .createParameterSetTypeParameter();

parameter.setName(name);

parameter.setParameterTypeRef(typeName);

parameterSet.getParameters().add(parameter);

}

public NameDescriptionType int16(String name) {

IntegerParameterType i = factory
 .createParameterTypeSetTypeIntegerParameterType();

i.setName(name);

IntegerDataEncodingType idenc = factory
 .createIntegerDataEncodingType();

idenc.setSizeInBits(BigInteger.valueOf(16));

i.setIntegerDataEncoding(idenc);

return i;

}

public void out() throws JAXBException {

marshaller.marshal(spaceRoot, System.out);

}

public static void main(String[] args) {

try {

WriteXTCEDoc XTCEDoc = new WriteXTCEDoc();

// the basic boilerplace - placeholder now

XTCEDoc.buildCxSpaceSystem("Test");

XTCEDoc.buildCxTelemetry();

//build some parameters

XTCEDoc.addParameter("P1", XTCEDoc.int16("Int16Type"));

XTCEDoc.addParameter("P2", "Int16Type");

XTCEDoc.addParameter("P3", "Int16Type");

XTCEDoc.out();

} catch (Exception e) {

e.printStackTrace();

}

}
}

import com.sun.xml.internal.bind.marshaller.NamespacePrefixMapper;
public class XTCEPrefixMapper extends NamespacePrefixMapper {

@Override

public String getPreferredPrefix(String namespaceUri,
 String suggestion, boolean requiredPrefix) {

if ("http://www.w3.org/2001/XMLSchema-instance".equals(namespaceUri))

return "xsi";

if ("http://www.omg.org/space/xtce".equals(namespaceUri))

return "xtce";

return suggestion;

}

@Override

public String[] getPreDeclaredNamespaceUris2() {

return new String[] {"xsi", "http://www.w3.org/2001/XMLSchema-instance"};

}
}

8.1.6 Marshaller XML Output

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xtce:SpaceSystem xmlns:xtce="http://www.omg.org/space/xtce" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" name="Test" xsi:schemaLocation="http://www.omg.org/space/xtce SpaceSystemV1.1.xsd">
 <xtce:TelemetryMetaData>
 <xtce:ParameterTypeSet>
 <xtce:IntegerParameterType name="Int16Type">
 <xtce:IntegerDataEncoding sizeInBits="16"/>
 </xtce:IntegerParameterType>
 </xtce:ParameterTypeSet>
 <xtce:ParameterSet>
 <xtce:Parameter parameterTypeRef="Int16Type" name="P1"/>
 <xtce:Parameter parameterTypeRef="Int16Type" name="P2"/>
 <xtce:Parameter parameterTypeRef="Int16Type" name="P3"/>
 </xtce:ParameterSet>
 </xtce:TelemetryMetaData>
</xtce:SpaceSystem>

8.1.7 Other Data Binding Issues

Two issues seem to come up consistently with all of the various XML data-binding tools, the Condition element which has two elements in it with the same name (ParameterInstanceRef) and the MetaCommand/CommandContainer which has both an ArrayParameterRefEntry and ArrayArgumentRefEntry constructed using the same schema type (which in some mappings is not differentiated in the classes generated directly).
In general the way to solve these problems, both in terms of reading the information out or creating it is to interact with the XML in some manner more directly. So far the various data-binding tools used have all provided this mechanism in some manner, and these two more difficult cases can be handled.
8.2 A Basic Roundtrip Conversion Process

Many new users of XTCE will have a pre-existing source of telemetry and command description information that they wish to map to XTCE. Part of that process is to verify the result by converting the created XTCE file back to their original description format and comparing this result to the original files used to create the XTCE files in the first place – a so called roundtrip conversion.
These convertors or translators seem to follow a rather basic process that is outlined here which can be tuned as necessary for local needs.
Step 1) Acquire the parser or software needed to read the information in your original telemetry and command descriptions

In some cases it may not be possible to acquire such software, one option if this is the case is to convert the files to XML. Depending on the format this can be a fairly easy and painless process, often by first converting the keywords in and example file to XML tag pairs.

Once this process has been completed this new XML-ized version of the original file can be read into a program like XMLSpy which will derive an XML Schema from it. The user then has the option of cleaning up the XML Schema if desired.

It is also important that the example be fully representative of the format in question.
This process is not necessary if the ability to read and write the contents of the example can be provided just as easily in some other manner.
Step 2) Take the original format and list its keywords in a column

This can be done using a program like Excel or any tool the user finds appropriate.

Step 3) Create a second column and place next to each item the XTCE elements and attributes that most correspond in concept to them
There are several suggestions to take into account at this step:

· Try to map like concepts to like concepts.

· Try not to overuse AncillaryData
· Try not to “misuse” an element to hold something it was never intended to hold

· Describe items that simply do not fit anywhere

· Mark areas that may require a more creative interpretation of an element or attribute

To a degree these suggestions are fairly subjective, typically one finds that in many cases the mapping will be direct, a few will be a close but a little different, and some will be befuddling.

If the number of befuddling items is high, then it may be that an XTCE mapping is not going to work for your format.

But assuming that is not the case this table, iteratively refined represents the basic XTCE mapping for the format.

Step 4) Choose container and command inheritance patterns

Consider the way the format described telemetry packaging and commanding. Use diagrams to map out a basic pattern for telemetry and commands. Start simply.

Typically exporting from a format to XTCE is the easier problem, complex patterns may make importing all the harder to map back to another format.

Step 5) Produce the mapping

Using the mapping table and the container and command patterns, produce the software that will read in the original files and convert them to XTCE. Validate the XTCE files.
Numerous options exist here from XSLTs to DOM or SAX to the data binding programs (JAXB, etc…).

Use the ones that work for you.

Step 6) Reverse the mapping

Bring those XTCE file back to your format and compare the results to the original.
Step 7) Iteratively improve the mapping

This is a likely step if the files are actually being used by others.

Step 8) Document the mapping

Because it’s likely you will want to share your mapping with others, the mapping table , and container and command inheritance patterns should be captured in documentation for distribution.
9 Complete Example

The following is a full example of a single telemetry packet. To save space, pattern #1 is used from Section 6.1.1.
9.1 Telemetry Packet Example

Table 29: Telemetry Packet Example
	Name: HealthSafety1
	Byte Offset

	Bit Length
	Mnemonic
	Comments

	Channel
	N/A
	8
	Channel
	0x05 – packets are associated with channel. The channel is supplied by the system and not held in the packet itself. Not part of header.

	
	
	
	
	

	HEADER
	
	
	
	3 bytes

	ID
	0
	6
	ID
	0x18 (24)

	Type
	
	1
	Type
	0 – command, 1 - telemetry

	SecondaryHeader
	
	1
	SecH
	0- none, 1 – has one

	Length
	2
	16
	Length
	Bytes – does not include header

-no secondary = 8

-w/secondary = 14

	Secondary Header
	
	
	
	6 bytes, secs/millis

	timestamp(seconds)
	4
	32
	Seconds
	Combined with below to form MissionTime -

	timestamp(milliseconds)
	8
	16
	MilliSeconds
	Part of MissionTime

	battery module temp
	10
	16
	PBATMTMP
	Convert to Float -- 12 lsb’s raw A/D read value

deg C = 5th order polynomial, coefficients:

(-7459.23273708, 8.23643519148,

-3.02185061876e-3, 2.33422429056e-7,

5.67189556173e-11)

	wheel timer flag
	12
	16
	PSWHLTIMFLG
	0 – default

0 = Timer OFF

1= Timer ON

2= Timer Completed

	PseudoTelemetry
	
	
	
	Also known as derived, not part of header but part of parameter set

	MissionTime
	N/A
	48
	MissionTime
	Combined STIME and MSTIME

9.1.1 XTCE Representation

In this example an assumption is being that each packet is mapped to a singular ID.
The Parameters:

<xtce:Parameter name="SecH" parameterTypeRef="SecHType"/>

<xtce:Parameter name="Type" parameterTypeRef="TypeType"/>

<xtce:Parameter name="ID" parameterTypeRef="IDType"/>

<xtce:Parameter name="Length" parameterTypeRef="LengthType"/>

<xtce:Parameter name="Seconds" parameterTypeRef="SecondsType"/>

<xtce:Parameter name="MilliSeconds" parameterTypeRef="MilliSecondsType"/>

<xtce:Parameter name="PBATMTEMP" parameterTypeRef="PBATMTEMPType"/>

<xtce:Parameter name="PSWHLTIMFLG" parameterTypeRef="PSWHLTIMFLGType"/>

<xtce:Parameter name="MissionTime" parameterTypeRef="MissionTimeType">

<xtce:ParameterProperties dataSource="derived"/>
</xtce:Parameter>
The Parameter MissionTime is an AbsoluteTimeParameterType composed of the two telemetry time values Seconds and MilliSeconds; it is a derived Parameter.
The ParameterTypes:
<xtce:ParameterTypeSet>

<xtce:IntegerParameterType signed="false" name="ChannelType">

<xtce:UnitSet/>

</xtce:IntegerParameterType>

<xtce:IntegerParameterType signed="false" name="IDType">

<xtce:UnitSet/>

<xtce:IntegerDataEncoding sizeInBits="8"/>

</xtce:IntegerParameterType>

<xtce:IntegerParameterType signed="false" name="SecHType">

<xtce:UnitSet/>

<xtce:IntegerDataEncoding sizeInBits="1"/>

</xtce:IntegerParameterType>

<xtce:IntegerParameterType signed="false" name="TypeType">

<xtce:UnitSet/>

<xtce:IntegerDataEncoding sizeInBits="1"/>

</xtce:IntegerParameterType>

<xtce:IntegerParameterType signed="false" name="LengthType">

<xtce:UnitSet/>

<xtce:IntegerDataEncoding sizeInBits="16"/>

</xtce:IntegerParameterType>

<xtce:EnumeratedParameterType name="PSWHLTIMFLGType" initialValue="TIMER_OFF">

<xtce:UnitSet/>

<xtce:IntegerDataEncoding sizeInBits="16"/>

<xtce:EnumerationList>

<xtce:Enumeration label="TIMER_OFF" value="0"/>

<xtce:Enumeration label="TIMER_ON" value="1"/>

<xtce:Enumeration label="TIMER_COMPLETED" value="2"/>

</xtce:EnumerationList>

</xtce:EnumeratedParameterType>

<xtce:FloatParameterType sizeInBits="64" name="PBATMTEMPType">

<xtce:UnitSet>

<xtce:Unit description="Bq">units:Becquerel</xtce:Unit>

</xtce:UnitSet>

<xtce:IntegerDataEncoding sizeInBits="16" encoding="twosCompliment">

<xtce:DefaultCalibrator>

<xtce:PolynomialCalibrator>

<xtce:Term coefficient="-7459.23273708" exponent="0"/>

<xtce:Term coefficient="8.23643519148" exponent="1"/>

<xtce:Term coefficient="-3.02185061876e-3" exponent="2"/>

<xtce:Term coefficient="2.33422429056e-7" exponent="3"/>

<xtce:Term coefficient="5.67189556173e-11" exponent="4"/>

</xtce:PolynomialCalibrator>

</xtce:DefaultCalibrator>

</xtce:IntegerDataEncoding>

</xtce:FloatParameterType>

<xtce:AbsoluteTimeParameterType name="MissionTimeType">

<xtce:ReferenceTime>

<xtce:OffsetFrom parameterRef="Seconds"/>

</xtce:ReferenceTime>

</xtce:AbsoluteTimeParameterType>

<xtce:AbsoluteTimeParameterType name="SecondsType">

<xtce:Encoding units="seconds">

<xtce:IntegerDataEncoding sizeInBits="32"/>

</xtce:Encoding>

<xtce:ReferenceTime>

<xtce:OffsetFrom parameterRef="MilliSeconds"/>

</xtce:ReferenceTime>

</xtce:AbsoluteTimeParameterType>

<xtce:AbsoluteTimeParameterType name="MilliSecondsType">

<xtce:Encoding scale="0.001" units="seconds">

<xtce:IntegerDataEncoding sizeInBits="16"/>

</xtce:Encoding>

<xtce:ReferenceTime>

<xtce:Epoch>TAI</xtce:Epoch>

</xtce:ReferenceTime>

</xtce:AbsoluteTimeParameterType>
The header based ParameterTypes are IntegerParameterTypes with unsigned IntegerDataEncodings – these are either flags or small integer values like the ID or Length. The battery temperature related parameter is a “count” to float polynomial conversion – here the calibration produces a 64-bit or double precision type. The timer related value is coded as an enumeration. Finally the remaining telemetry items are time related. The two time types SecondsType and MilliSecondsType are in the SecondaryHeader and are combined to create a pseudo-telemetry type called MissionTime.

The Containers:
<xtce:SequenceContainer abstract="true" name="Header">

<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="ID"/>

<xtce:ParameterRefEntry parameterRef="SecH"/>

<xtce:ParameterRefEntry parameterRef="Type"/>

<xtce:ParameterRefEntry parameterRef="Length"/>

<xtce:ContainerRefEntry containerRef="SecondaryHeader">

<xtce:IncludeCondition>

<xtce:Comparison parameterRef="SecH" value="1"/>

</xtce:IncludeCondition>

</xtce:ContainerRefEntry>

</xtce:EntryList>

</xtce:SequenceContainer>

<xtce:SequenceContainer name="SecondaryHeader">

<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="Seconds"/>

<xtce:ParameterRefEntry parameterRef="MilliSeconds"/>

</xtce:EntryList>

</xtce:SequenceContainer>

<xtce:SequenceContainer name="HealthSafety1">

<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="PBATMTEMP"/>

<xtce:ParameterRefEntry parameterRef="PSWHLTIMFLG"/>

</xtce:EntryList>

<xtce:BaseContainer containerRef="Header">

<xtce:RestrictionCriteria>

<xtce:ComparisonList>

<xtce:Comparison value="1" parameterRef="Type"/>

<xtce:Comparison value="24" parameterRef="ID"/>

</xtce:ComparisonList>

</xtce:RestrictionCriteria>

</xtce:BaseContainer>
</xtce:SequenceContainer>
The above construction describes the HealthSafety1 packet. It derives from Header which itself optionally includes the SecondaryHeader which has the timestamp. The conditions supplied say that for HealthSafety1to be present in the incoming byte stream that it must be telemetry (Type=1), and its ID must be 24. The length of the packet is determined using a discrete lookup – which returns a different value depending on whether the SecondaryHeader is included – most telemetry systems would timestamp their packets – so this is just for illustrative purposes here.
Entire Example:
The entire example is in Appendix A.

9.2 Command Example

Table 30: Command and Command Packet Example
	Command Name:
	Wheel Timer

	 Mnemonic:
	PWHTMR

	ID:
	0x100
	CHANNEL:
	9

	Op Code:
	0x1e

	Data Field Length:
	4 bytes

	Packet Format:
	[Header] 1eCS aaaa
	Packet Name:
	PWHTMRPacket

	Argument Fields:

	Offset from Header
	Name
	Data Type
	Data Range

	2
	TimerStartStop
	Unsigned 16-bit integer, enumeration
	0 = stops the wheel SW timer (STOP)

1 = starts the wheel SW timer (START)

	Parameter Fields:

	Offset from Header
	Name
	Data Type
	Data Range

	0
	OpCode
	Unsigned 8-bit integer
	0x1e

	1
	Checksum
	Unsigned 8-bit integer
	0x00 – 0xff

	Operation:
	This command starts or stops the SW timer that turns on the reaction wheels at wheel_timer_alarm seconds

	Criticality:
	Yes

	Telemetry Verification:
	Command counter gets incremented.

The wheel_timer_flag in the slow HealthSafety1 will be set to data field (a).

	Error Conditions:
	None reported.

return value: 0 if command did not execute; 0x0055 otherwise

9.2.1 XTCE Representation

In the following example it is assumed the ID is unique for each command packet.
The Parameters:
<xtce:Parameter name="CommandCounter" parameterTypeRef="CommandCounterType">

<xtce:ParameterProperties dataSource="local"/>

</xtce:Parameter>

<xtce:Parameter name="CheckSum" parameterTypeRef="CheckSumType">

<xtce:ParameterProperties dataSource="derived"/>
</xtce:Parameter>

<xtce:Parameter name="CommandReturn" parameterTypeRef="CommandReturnType">

<xtce:ParameterProperties dataSource="local"/>
</xtce:Parameter>
The CheckSum is calculated by the system and inserted into the EntryList. The CommandCounter is maintained by the system. The parameters associated with the Header remain defined in the telemetry area.
The ParameterTypes:
<xtce:IntegerParameterType name="CommandReturnType" signed="false">

<xtce:UnitSet/>

</xtce:IntegerParameterType>
<xtce:IntegerParameterType name="CommandCounterType" signed="false">

<xtce:UnitSet/>

</xtce:IntegerParameterType>

<xtce:IntegerParameterType name="CheckSumType" signed="false">

<xtce:UnitSet/>

<xtce:IntegerDataEncoding/>

</xtce:IntegerParameterType>
The default IntegerDataEncoding is 8-bits.

The ArgumentTypes:
<xtce:EnumeratedArgumentType name="TimerStartStopType">

<xtce:UnitSet/>

<xtce:IntegerDataEncoding sizeInBits="16"/>

<xtce:EnumerationList>

<xtce:Enumeration label="TIMER_STOP" value="0"/>

<xtce:Enumeration label="TIMER_START" value="1"/>

</xtce:EnumerationList>

</xtce:EnumeratedArgumentType>
The argument is very similar to its telemetry cousin.
MetaCommand:

<xtce:MetaCommand name="PWHTMR">

<xtce:ArgumentList>

<xtce:Argument name="TimerStartStop" argumentTypeRef="TimerStartStopType"/>

</xtce:ArgumentList>

<xtce:CommandContainer name="PWHTMRPacket">

<xtce:BinaryEncoding>

<xtce:SizeInBits>

<xtce:FixedValue>32</xtce:FixedValue>

</xtce:SizeInBits>

</xtce:BinaryEncoding>

<xtce:EntryList>

<xtce:FixedValueEntry binaryValue="1e"/>

<xtce:ParameterRefEntry parameterRef="CheckSum"/>

<xtce:ArgumentRefEntry argumentRef="TimerStartStop"/>

</xtce:EntryList>

<xtce:BaseContainer containerRef="Header">

<xtce:RestrictionCriteria>

<xtce:ComparisonList>

<xtce:Comparison parameterRef="ID" value="256"/>

<xtce:Comparison parameterRef="Type" value="0"/>

<xtce:Comparison parameterRef="SecH" value="0"/>

</xtce:ComparisonList>

</xtce:RestrictionCriteria>

</xtce:BaseContainer>

</xtce:CommandContainer>
<!-- Verifier and others shown below -->

</xtce:MetaCommand>
The MetaCommand (command description) has one argument only, the opcode is supplied as a FixedEntryValue, and the rest are ParameterRefEntries. The conditions which would have to be met by the system in some way includes a comparison with SecH – in this example the command has no time stamp so double checking that it is not there is a test that could be included as a sanity check. Other constructions may alleviate the need to do this at all however.
Significance:

<xtce:DefaultSignificance consequenceLevel="critical"/>
The command is marked as “critical”, this matches the description which uses the term in the table: “Criticality - yes” -- in fact this area is really up to the user to define in terms of local meanings. One interpretation would be that the mission must be in a “critical” state in order for this command to be sent.
Verifier – Command Complete Test:
<xtce:CompleteVerifier>

<xtce:ContainerRef containerRef="HealthSafety1"/>

<xtce:CheckWindow timeToStopChecking="PT10M"/>

<xtce:ReturnParmRef parameterRef="CommandReturn"/>

</xtce:CompleteVerifier>
The command CompleteVerifier starts it check for 10 minutes assuming an orbiting satellite with a ten minute approximate pass time. The verifier is “kicked off” by the receipt of the telemetry packet HealthSafety1. The ReturnParmRef here is defined as a local parameter, supplied by the system perhaps based on the receipt of HealthSafety1 or not – its value is returned, it is really a ParameterInstanceRef although not defined explicitly as such in this version of XTCE.
Verifier – Failed Verifier Test:

<xtce:FailedVerifier>

<xtce:Comparison parameterRef="CommandReturn" value="0"/>

<xtce:CheckWindow timeToStopChecking="PT10M"/>

</xtce:FailedVerifier>
Next the failed verifier tests the value of CommandReturn – if it is zero, the command has failed.
ParameterToSet:
<xtce:ParameterToSet parameterRef="CommandReturn" setOnVerification="release">

<xtce:NewValue>0x00</xtce:NewValue>

</xtce:ParameterToSet>
Initialize the CommandReturn value before as the command is released.

<xtce:ParameterToSet parameterRef="CommandReturn">

<xtce:NewValue>0x55</xtce:NewValue>

</xtce:ParameterToSet>
Upon VerifierComplete – the CommandReturn is updated with success value 0x55. This simulates to some degree a return value from the command itself in a particular telemetry packet which would be more ideal.
Full Example:

The complete example is given in Appendix A.
Appendix A

<?xml version="1.0" encoding="UTF-8"?>
<xtce:SpaceSystem xmlns:xtce="http://www.omg.org/space/xtce" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" name="SpaceVehicle" xsi:schemaLocation="http://www.omg.org/space/xtce SpaceSystemV1.1.xsd">

<xtce:TelemetryMetaData>

<xtce:ParameterTypeSet>

<xtce:IntegerParameterType signed="false" name="IDType">

<xtce:UnitSet/>

<xtce:IntegerDataEncoding sizeInBits="8"/>

</xtce:IntegerParameterType>

<xtce:IntegerParameterType signed="false" name="SecHType">

<xtce:UnitSet/>

<xtce:IntegerDataEncoding sizeInBits="1"/>

</xtce:IntegerParameterType>

<xtce:IntegerParameterType signed="false" name="TypeType">

<xtce:UnitSet/>

<xtce:IntegerDataEncoding sizeInBits="1"/>

</xtce:IntegerParameterType>

<xtce:IntegerParameterType signed="false" name="LengthType">

<xtce:UnitSet/>

<xtce:IntegerDataEncoding sizeInBits="16"/>

</xtce:IntegerParameterType>

 <xtce:EnumeratedParameterType name="PSWHLTIMFLGType" initialValue="TIMER_OFF">

<xtce:UnitSet/>

<xtce:IntegerDataEncoding sizeInBits="16"/>

<xtce:EnumerationList>

<xtce:Enumeration label="TIMER_OFF" value="0"/>

<xtce:Enumeration label="TIMER_ON" value="1"/>

<xtce:Enumeration label="TIMER_COMPLETED" value="2"/>

</xtce:EnumerationList>

</xtce:EnumeratedParameterType>

<xtce:FloatParameterType sizeInBits="64" name="PBATMTEMPType">

<xtce:UnitSet>

<xtce:Unit description="Bq">units:Becquerel</xtce:Unit>

</xtce:UnitSet>

<xtce:IntegerDataEncoding sizeInBits="16" encoding="twosCompliment">

<xtce:DefaultCalibrator>

<xtce:PolynomialCalibrator>

 <xtce:Term coefficient="-7459.23273708" exponent="0"/>

 <xtce:Term coefficient="8.23643519148" exponent="1"/>

 <xtce:Term coefficient="-3.02185061876e-3" exponent="2"/>

 <xtce:Term coefficient="2.33422429056e-7" exponent="3"/>

 <xtce:Term coefficient="5.67189556173e-11" exponent="4"/>

</xtce:PolynomialCalibrator>

</xtce:DefaultCalibrator>

</xtce:IntegerDataEncoding>

</xtce:FloatParameterType>

<xtce:AbsoluteTimeParameterType name="MissionTimeType">

<xtce:ReferenceTime>

<xtce:OffsetFrom parameterRef="Seconds"/>

</xtce:ReferenceTime>

</xtce:AbsoluteTimeParameterType>

<xtce:AbsoluteTimeParameterType name="SecondsType">

<xtce:Encoding units="seconds">

<xtce:IntegerDataEncoding sizeInBits="32"/>

</xtce:Encoding>

<xtce:ReferenceTime>

<xtce:OffsetFrom parameterRef="MilliSeconds"/>

</xtce:ReferenceTime>

</xtce:AbsoluteTimeParameterType>

<xtce:AbsoluteTimeParameterType name="MilliSecondsType">

<xtce:Encoding scale="0.001" units="seconds">

<xtce:IntegerDataEncoding sizeInBits="16"/>

</xtce:Encoding>

<xtce:ReferenceTime>

<xtce:Epoch>TAI</xtce:Epoch>

</xtce:ReferenceTime>

</xtce:AbsoluteTimeParameterType>

</xtce:ParameterTypeSet>

<xtce:ParameterSet>

<xtce:Parameter name="SecH" parameterTypeRef="SecHType"/>

<xtce:Parameter name="Type" parameterTypeRef="TypeType"/>

<xtce:Parameter name="ID" parameterTypeRef="IDType"/>

<xtce:Parameter name="Length" parameterTypeRef="LengthType"/>

<xtce:Parameter name="Seconds" parameterTypeRef="SecondsType"/>

<xtce:Parameter name="MilliSeconds" parameterTypeRef="MilliSecondsType"/>

<xtce:Parameter name="PBATMTEMP" parameterTypeRef="PBATMTEMPType"/>

<xtce:Parameter name="PSWHLTIMFLG" parameterTypeRef="PSWHLTIMFLGType"/>

<xtce:Parameter name="MissionTime" parameterTypeRef="MissionTimeType">

<xtce:ParameterProperties dataSource="derived"/>

</xtce:Parameter>

</xtce:ParameterSet>

<xtce:ContainerSet>

<xtce:SequenceContainer abstract="true" name="Header">

<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="ID"/>

<xtce:ParameterRefEntry parameterRef="SecH"/>

<xtce:ParameterRefEntry parameterRef="Type"/>

<xtce:ParameterRefEntry parameterRef="Length"/>

<xtce:ContainerRefEntry containerRef="SecondaryHeader">

<xtce:IncludeCondition>

<xtce:Comparison parameterRef="SecH" value="1"/>

</xtce:IncludeCondition>

</xtce:ContainerRefEntry>

</xtce:EntryList>

</xtce:SequenceContainer>

<xtce:SequenceContainer name="SecondaryHeader">

<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="Seconds"/>

<xtce:ParameterRefEntry parameterRef="MilliSeconds"/>

</xtce:EntryList>

</xtce:SequenceContainer>

<xtce:SequenceContainer name="HealthSafety1">

<xtce:EntryList>

<xtce:ParameterRefEntry parameterRef="PBATMTEMP"/>

<xtce:ParameterRefEntry parameterRef="PSWHLTIMFLG"/>

</xtce:EntryList>

<xtce:BaseContainer containerRef="Header">

<xtce:RestrictionCriteria>

<xtce:ComparisonList>

<xtce:Comparison value="1" parameterRef="Type"/>

<xtce:Comparison value="24" parameterRef="ID"/>

</xtce:ComparisonList>

</xtce:RestrictionCriteria>

</xtce:BaseContainer>

</xtce:SequenceContainer>

</xtce:ContainerSet>

</xtce:TelemetryMetaData>

<xtce:CommandMetaData>

<xtce:ParameterTypeSet>

<xtce:IntegerParameterType name="CommandReturnType" signed="false">

<xtce:UnitSet/>

</xtce:IntegerParameterType>

<xtce:IntegerParameterType name="CommandCounterType" signed="false">

<xtce:UnitSet/>

</xtce:IntegerParameterType>

<xtce:IntegerParameterType name="CheckSumType" signed="false">

<xtce:UnitSet/>

<xtce:IntegerDataEncoding/>

</xtce:IntegerParameterType>

</xtce:ParameterTypeSet>

<xtce:ParameterSet>

<xtce:Parameter name="CommandCounter" parameterTypeRef="CommandCounterType">

<xtce:ParameterProperties dataSource="local"/>

</xtce:Parameter>

<xtce:Parameter name="CheckSum" parameterTypeRef="CheckSumType">

<xtce:ParameterProperties dataSource="derived"/>

</xtce:Parameter>

<xtce:Parameter name="CommandReturn" parameterTypeRef="CommandReturnType">

<xtce:ParameterProperties dataSource="local"/>

</xtce:Parameter>

</xtce:ParameterSet>

<xtce:ArgumentTypeSet>

<xtce:EnumeratedArgumentType name="TimerStartStopType">

<xtce:UnitSet/>

<xtce:IntegerDataEncoding sizeInBits="16"/>

<xtce:EnumerationList>

<xtce:Enumeration label="TIMER_STOP" value="0"/>

<xtce:Enumeration label="TIMER_START" value="1"/>

</xtce:EnumerationList>

</xtce:EnumeratedArgumentType>

</xtce:ArgumentTypeSet>

<xtce:MetaCommandSet>

<xtce:MetaCommand name="PWHTMR">

 <xtce:ArgumentList>

 <xtce:Argument name="TimerStartStop" argumentTypeRef="TimerStartStopType"/>

 </xtce:ArgumentList>

<xtce:CommandContainer name="PWHTMRPacket">

<xtce:BinaryEncoding>

<xtce:SizeInBits>

<xtce:FixedValue>32</xtce:FixedValue>

</xtce:SizeInBits>

</xtce:BinaryEncoding>

<xtce:EntryList>

<xtce:FixedValueEntry binaryValue="1e"/>

<xtce:ParameterRefEntry parameterRef="CheckSum"/>

<xtce:ArgumentRefEntry argumentRef="TimerStartStop"/>

</xtce:EntryList>

<xtce:BaseContainer containerRef="Header">

<xtce:RestrictionCriteria>

<xtce:ComparisonList>

 <xtce:Comparison parameterRef="ID" value="256"/>

 <xtce:Comparison parameterRef="Type" value="0"/>

 <xtce:Comparison parameterRef="SecH" value="0"/>

</xtce:ComparisonList>

</xtce:RestrictionCriteria>

</xtce:BaseContainer>

</xtce:CommandContainer>

<xtce:DefaultSignificance consequenceLevel="critical"/>

<xtce:VerifierSet>

<xtce:CompleteVerifier>

<xtce:ContainerRef containerRef="HealthSafety1"/>

<xtce:CheckWindow timeToStopChecking="PT10M"/>

</xtce:CompleteVerifier>

<xtce:FailedVerifier>

<xtce:Comparison parameterRef="CommandReturn" value="0"/>

<xtce:CheckWindow timeToStopChecking="PT10M"/>

</xtce:FailedVerifier>

</xtce:VerifierSet>

 <xtce:ParameterToSetList>

 <xtce:ParameterToSet parameterRef="CommandReturn" setOnVerification="release">

<xtce:NewValue>0x00</xtce:NewValue>

</xtce:ParameterToSet>

<xtce:ParameterToSet parameterRef="CommandReturn">

<xtce:NewValue>0x55</xtce:NewValue>

</xtce:ParameterToSet>

 </xtce:ParameterToSetList>

</xtce:MetaCommand>

</xtce:MetaCommandSet>

</xtce:CommandMetaData>
</xtce:SpaceSystem>
Appendix B
This grammar has been successfully implemented using ANTLR, a popular freeware parser and lexer generator similar to lex and yacc. The grammar allows for the descriptions of qualified and unqualified NameReferences and parameter instances for arrays and aggregate field names. It does not support multiple contiguous slashes in the path portion as an error but it does allow a short cut when referring to an item in the root SpaceSystem by dropping its name (i.e. /rootSpaceSystem/item is the same as /item).

For the Java programmer a simpler approach might be to use the split method available from the String class, however additional syntax checking will be necessary on the results if that approach is taken.

grammar NameReference;

options {

output=AST;

}

@header {

package NameReference.Parse;

}

@members {

private boolean error = false;

private ArrayList<String> errorStr = new ArrayList<String>();

public void emitErrorMessage(String msg) {

errorStr.add(msg);

error = true;

}

public void recoverFromMismatchedToken(IntStream input,

RecognitionException e, int ttype, BitSet follow)

throws RecognitionException {

reportError(e);

// no need to try to recover, better to blow up

}

public boolean hasError() { return error; }

public ArrayList<String> getErrors() { return errorStr; }

}

@lexer::header {

package NameReference.Parse;

}

@lexer::members {

private boolean error = false;

private ArrayList<String> errorStr = new ArrayList<String>();

public void emitErrorMessage(String msg) {

errorStr.add(msg);

error = true;

}

public boolean hasError() { return error; }

public ArrayList<String> getErrors() { return errorStr; }

}

nameReference

:
qualifiedNameReference endOfString

|
unqualifiedNameReference endOfString

;

catch [RecognitionException re] {

 reportError(re);

 recover(input,re);

 }

endOfString

: EOF

;

catch [RecognitionException re] {

 reportError(re);

 recover(input,re);

 }

qualifiedNameReference

:
absoluteName

|
relativeName

;

catch [RecognitionException re] {

 reportError(re);

 recover(input,re);

 }

unqualifiedNameReference

:
itemName

;

catch [RecognitionException re] {

 reportError(re);

 recover(input,re);

 }

absoluteName

:
slash spaceSystemNames* itemName

;

catch [RecognitionException re] {

 reportError(re);

 recover(input,re);

 }

relativeName

:
spaceSystemName slash spaceSystemNames* itemName

|
dot slash spaceSystemNames* itemName

|
dotdot slash spaceSystemNames* itemName

;

catch [RecognitionException re] {

 reportError(re);

 recover(input,re);

 }

spaceSystemNames

:
((spaceSystemName slash)|(dot slash)|(dotdot slash))

;

catch [RecognitionException re] {

 reportError(re);

 recover(input,re);

 }

spaceSystemName

:
ID

;

catch [RecognitionException re] {

 reportError(re);

 recover(input,re);

 }

itemName

:
simpleName

|
aggregrateName

|
arrayName

;

catch [RecognitionException re] {

 reportError(re);

 recover(input,re);

 }

aggregrateName

:
simpleName dot simpleName

;

catch [RecognitionException re] {

 reportError(re);

 recover(input,re);

 }

arrayName

:
simpleName index+

;

catch [RecognitionException re] {

 reportError(re);

 recover(input,re);

 }

slash

:
SLASH

;

catch [RecognitionException re] {

 reportError(re);

 recover(input,re);

 }

dot
:
DOT

;

catch [RecognitionException re] {

 reportError(re);

 recover(input,re);

 }

dotdot
:
DOTDOT

;

catch [RecognitionException re] {

 reportError(re);

 recover(input,re);

 }

leftSquareBracket

:
LSB;

catch [RecognitionException re] {

 reportError(re);

 recover(input,re);

 }

rightSquareBracket

:
RSB;

catch [RecognitionException re] {

 reportError(re);

 recover(input,re);

 }

simpleName

:
ID;

catch [RecognitionException re] {

 reportError(re);

 recover(input,re);

 }

index
:
BRACKETNUM

;

catch [RecognitionException re] {

 reportError(re);

 recover(input,re);

 }

SLASH
:
'/';

DOT
:
'.';

DOTDOT
:
'..';

fragment LSB
:
'[';

fragment RSB
:
']';

fragment NUM
: ('0'..'9')+ ;

ID
:
 ('a'..'z' | 'A'..'Z' | '0'..'9' | '_'| '\\' | '-')+ ;

BRACKETNUM
: LSB NUM RSB;

Appendix C

An example JAXB (2.0) xjc Java bindings file is included below. It has two major features – the first feature turns on the generateIsSetMethod="true". Doing so adds methods to each class generated to determine if its attributes have been set or their values are being provided as defaults. The second feature consists of a series of changes to the default binding mechanism to change its behavior. In JAXB, XML Schema choices are usually mapped to classes which are named as an amalgamation of the name of each choice, for example class “AorBorC” for a choice of A, B or C. This is less than ideal and the bindings have been adjusted below to improve it.

Users may also wish to consider setting the attribute mapSimpleTypeDef="true" as well. Setting this will map simple data types to classes. JAXB allows the mapped classed to be extended and re-registered with the JAXB API so that the new behavior appears through the JAXB ObjectFactory automatically.
For example by default JAXB will map NameReference attributes in XTCE elements to the Java class String. However if the mapSimpleTypeDef attribute is set to true in globalBindings it will instead map the attribute to a class called NameReferenceType with access methods to the NameReference value itself.

It is then be possible to extend the NameReferenceType class and add additional behaviors to it as is desired and re-register this extended class with the JAXB API so it is returned instead of the original NameReferenceType when unmarshalling an XTCE document automatically, this process does not affect marshalling which will work as before.
Note, adding the “xtce:” namespace may be necessary for futures versions of this file.
<?xml version="1.0" encoding="UTF-8"?>
<jaxb:bindings version="2.0" xmlns:jaxb="http://java.sun.com/xml/ns/jaxb" xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc" xmlns="http://www.w3.org/2001/XMLSchema" jaxb:extensionBindingPrefixes="xjc">

<jaxb:bindings schemaLocation="SpaceSystemV1.1.xsd" node="/:schema">

<jaxb:globalBindings generateIsSetMethod="true"/>

<jaxb:bindings node="//:complexType[@name='ParameterTypeSetType']/:choice">

<jaxb:property name="ParameterTypes"/>

</jaxb:bindings>

<jaxb:bindings node="//:complexType[@name='ArgumentTypeSetType']/:choice">

<jaxb:property name="ArgumentTypes"/>

</jaxb:bindings>

<jaxb:bindings node="//:complexType[@name='AlgorithmSetType']/:choice">

<jaxb:property name="Algorithms"/>

</jaxb:bindings>

<jaxb:bindings node="//:complexType[@name='EntryListType']/:choice">

<jaxb:property name="Entries"/>

</jaxb:bindings>

<jaxb:bindings node="//:complexType[@name='MathOperationType']/:choice">

<jaxb:property name="Operations"/>

</jaxb:bindings>

<jaxb:bindings node="//:complexType[@name='ORedConditionsType']/:choice">

<jaxb:property name="Conditions"/>

</jaxb:bindings>

<jaxb:bindings node="//:complexType[@name='ANDedConditionsType']/:choice">

<jaxb:property name="Conditions"/>

</jaxb:bindings>

<jaxb:bindings node="//:complexType[@name='TriggerSetType']/:choice">

<jaxb:property name="Triggers"/>

</jaxb:bindings>

<jaxb:bindings node="//:complexType[@name='NumberToStringType']/:complexContent/:extension/:choice">

<jaxb:property name="Enumerations"/>

</jaxb:bindings>

<jaxb:bindings node="//:complexType[@name='InputAlgorithmType']/:complexContent/:extension/:sequence/:element/:complexType/:choice">

<jaxb:property name="Algorithms"/>

</jaxb:bindings>

<jaxb:bindings node="//:complexType[@name='CommandMetaDataType']/:sequence/:element[@name='MetaCommandSet']/:complexType/:choice">

<jaxb:property name="MetaCommands"/>

</jaxb:bindings>

 <!--

<jaxb:bindings node="//:complexType[@name='ComparisonCheckType']/:sequence/:choice">

<jaxb:property name="comparisons"/>

</jaxb:bindings>

 -->

<jaxb:bindings node="//:complexType[@name='CommandContainerEntryListType']/:choice">

<jaxb:property name="Entries"/>

</jaxb:bindings>

<jaxb:bindings node="//:complexType[@name='ParameterSetType']/:choice">

<jaxb:property name="Parameters"/>

</jaxb:bindings>

<jaxb:bindings node="//:complexType[@name='StreamSetType']/:choice">

<jaxb:property name="Streams"/>

</jaxb:bindings>

</jaxb:bindings>
</jaxb:bindings>
Appendix D

The following keys properly enforce XTCE1.1’s @name uniqueness policy.

…

<!--******** SpaceSystem -->

<element name="SpaceSystem" type="xtce:SpaceSystemType" nillable="true">

<annotation>

<documentation xml:lang="en">The ROOT Element</documentation>

</annotation>

<key name="parameterNameKey">

<annotation>

 <documentation xml:lang="en">This key ensures a unique parameter name at the system level.</documentation>

</annotation>

<selector xpath="xtce:TelemetryMetaData/xtce:ParameterSet/* | xtce:CommandMetaData/xtce:ParameterSet/*"/>

<field xpath="@name"/>

</key>

<key name="parameterTypeNameKey">

<annotation>

 <documentation xml:lang="en">This key ensures a unique parameter type name at the system level.</documentation>

</annotation>

 <selector xpath="xtce:TelemetryMetaData/xtce:ParameterTypeSet/* | xtce:CommandMetaData/xtce:ParameterTypeSet/*"/>

<field xpath="@name"/>

</key>

<key name="argumentNameKey">

<annotation>

 <documentation xml:lang="en">This key ensures a unique argument name at the system level.</documentation>

</annotation>

<selector xpath="xtce:CommandMetaData/xtce:MetaCommandSet/xtce:MetaCommand/xtce:ArgumentList/*"/>

<field xpath="@name"/>

</key>

<key name="argumentTypeNameKey">

<annotation>

 <documentation xml:lang="en">This key ensures a unique argument type name at the system level.</documentation>

</annotation>

<selector xpath="xtce:CommandMetaData/xtce:ArgumentTypeSet/*"/>

<field xpath="@name"/>

</key>

<key name="metaCommandNameKey">

<annotation>

 <documentation xml:lang="en">This key ensures a unique metaCommand name at the system level.</documentation>

</annotation>

<selector xpath="xtce:CommandMetaData/xtce:MetaCommandSet/*"/>

<field xpath="@name"/>

</key>

<key name="metaCommandCommandContainerNameKey">

<annotation>

 <documentation xml:lang="en">This key ensures a unique metaCommand CommandContainer name at the system level.</documentation>

</annotation>

<selector xpath="xtce:CommandMetaData/xtce:MetaCommandSet/xtce:MetaCommand/xtce:CommandContainer"/>

<field xpath="@name"/>

</key>

<!-- optional name means this doesn't necessarily work

<key name="verifierTypeNameKey">

<annotation>

<documentation xml:lang="en">This key ensures a unique verifier type name at the system level.</documentation>

</annotation>

<selector xpath="xtce:CommandMetaData/xtce:MetaCommandSet/xtce:MetaCommand/xtce:VerifierSet/*"/>

<field xpath="@name"/>

</key>

<key name="calibratorNameKey">

 <annotation>

<documentation xml:lang="en">This key ensures a calibrator name at the system level.</documentation>

</annotation>

<selector xpath="*/*/*/*/*/*/xtce:Calibrator"/>

<field xpath="@name"></field>

</key>

-->

<key name="algorithmNameKey">

<annotation>

 <documentation xml:lang="en">This key ensures a unique algorithm name at the system level.</documentation>

</annotation>

<selector xpath="xtce:TelemetryMetaData/xtce:AlgorithmSet/* | xtce:CommandMetaData/xtce:AlgorithmSet/*"/>

<field xpath="@name"/>

</key>

<key name="streamNameKey">

<annotation>

 <documentation xml:lang="en">This key ensures a unique stream name at the system level.</documentation>

</annotation>

<selector xpath="xtce:TelemetryMetaData/xtce:StreamSet/* | xtce:CommandMetaData/xtce:StreamSet/*"/>

<field xpath="@name"/>

</key>

<key name="serviceNameKey">

<annotation>

 <documentation xml:lang="en">This key ensures a unique service name at the system level.</documentation>

</annotation>

<selector xpath="xtce:ServiceSet/*"/>

<field xpath="@name"/>

</key>

<key name="containerNameKey">

<annotation>

 <documentation xml:lang="en">This key ensures a container stream name at the system level.</documentation>

</annotation>

 <selector xpath="xtce:TelemetryMetaData/xtce:ContainerSet/* | xtce:CommandMetaData/xtce:CommandContainerSet/*"/>

<field xpath="@name"/>

</key>

<key name="messageNameKey">

<selector xpath="xtce:TelemetryMetaData/MessageSet/*"/>

<field xpath="@name"/>

</key>
</element>
…
Destination Data Type

Source Data Type

Warning

Normal

In scope

Not in scope

CCSDS 660.0-M-0.0
Page i
May 10

_1335349287.vsd
<<SequenceContainer>>
SequenceContainerType

<<CommandContainer>>
User Construction

1-*

0-*

_1335349292.vsd
{SecHdrFlg == 1}

MyPacket1

MySecondaryHdrRef

PxEntryRefs

TimeStamp2

TimeStamp1

{ID >= 100}

MySecondaryHeader

{ID < 100}

_1335349296.vsd
<<SequenceContainer>>
SecondaryHeader

<<AbstractSequenceContainer>>
Header as “Generic Packet”

<<SequenceContainer>>
Specific Packet Body

{RestrictionCriteria/Constraints}

1-*

{IncludeCondition}

_1335349298.vsd
<<SeqContainer>>
TimeFormat1

<<AbstractSequenceContainer>>
Header as “Generic Packet”

<<AbstractSequenceContainer>>
Shared by all Telemetry Packets

{RestrictionCriteria/Constraints}

<<AbsSequenceContainer>>
SecondaryHeader

{IncludeCondition}

<<SequenceContainer>>
Specific Telemetry Packet

{RestrictionCriteria/Constraints}

1-*

<<SeqContainer>>
TimeFormatN

{RestrictionCriteria}

{RestrictionCriteria}

_1335349300.vsd
<<AbstractMetaCommand>>
MissionCommand Template

<<CommandContainer>>
MissionEntries

1-*

<<MetaCommand>>
Specific Command

<<CommandContainer>>
Specific Cmd Entries

1-*

{RestrictionCriteria/Constraints}

_1335349333.xls
Chart1

		0

		2.25

		3

		5.75

Input Value

Output Value

0

50

200

255

Sheet1

				0		2.25		3		5.75

				0		50		200		255

_1335349301.vsd
<<AbstractMetaCommand>>
MissionCommand Template

<<CommandContainer>>
MissionEntries

<<MetaCommand>>
Specific Command

<<CommandContainer>>
Specific Cmd Entries

1-*

1-*

{RestrictionCriteria/Constraints}

{RestrictionCriteria/Constraints}

<<AbstractMetaCommand>>
Generic Command Template

<<CommandContainer>>
Header Entries

{RestrictionCriteria/Constraints}

{RestrictionCriteria/Constraints}

1-*

1-*

_1335349299.vsd
<<MetaCommand>>
Command

<<CommandContainer>>
FixedValueEntries

_1335349297.vsd
<<SequenceContainer>>
Specific Telemetry Packet

<<AbstractSequenceContainer>>
Header as “Generic Packet”

<<AbstractSequenceContainer>>
Shared by all Telemetry Packets

{RestrictionCriteria/Constraints}

<<SequenceContainer>>
SecondaryHeader

{IncludeCondition}

{RestrictionCriteria/Constraints}

1-*

_1335349294.vsd
SpaceSystem A

SpaceSystem B

ParameterRef: /B/SIze

Parameter: SIze

ParameterType: SIzeType

ParameterType: SIzeType

_1335349295.vsd
<<AbstractSequenceContainer>>
Header as “Generic Packet”

<<SequenceContainer>>
Specific Packet Body

{RestrictionCriteria/Constraints}

1-*

_1335349293.vsd
SpaceSystem A

ParameterRef: /B/SIze

ParameterType: SIzeType

SpaceSystem B

Parameter: SIze

ParameterType: SIzeType

_1335349290.vsd
Packet

TimeStamp32Ref

TimeStamp48Ref

BodyEntriesRef

TimeStamp32

TimeStamp48

{Cond1}

{Cond2}

_1335349291.vsd
Packet

TimeStampRef

TimeStamp

BodyEntriesRef

TimeStamp32

TimeStamp48

{Cond2}

{Cond1}

_1335349288.vsd
SequenceContainer

PrevEntry

ThisEntry

location

NextEntry

ref

location

ref

location

ref

ContainerStart

ContainerEnd

previousEntry

nextEntry

Packaging Entries
Location of entry is an integer value from:
-the end of the previous entry (previousEntry – default)
-the beginning of next entry (nextEntry)
-the beginning of the container (containerStart)
-the end of the container (containerEnd)

_1335349283.vsd
<<SequenceContainer>>
SequenceContainerType

<<SequenceContainer>>
User Construction

1-*

0-*

_1335349285.vsd
Encoded Link Data Type

ValidRange Check #1

Calibration Check

Host Data Type

ValidRange Check #2

DataEncoding
-Integer
-Float
-String
-Binary

ParamterType
-String
-Enumerated
-Binary
-Integer
-Float
-Boolean
-Absolute/RelativeTime
-Array
-Aggregate

_1335349286.vsd
<<MetaCommand/CommandContainer>>
CommandContainerType

<<MetaCommand/CommandContainer>>
User Construction

1-*

0-*

_1335349284.vsd
<<AbstractSequenceContainer>>
AllMyPackets

ID
Length

<<SequenceContainer>>
MyPacket1

Volt

{ID==10}

_1335349280.vsd
Encoded Link Data Type

ValidRange Check

Calibration Check

Host Data Type

Alarm Check

DataEncoding
-Integer
-Float
-String
-Binary

ParamterType
-String
-Enumerated
-Binary
-Integer
-Float
-Boolean
-Absolute/RelativeTime
-Array
-Aggregate

_1335349281.vsd
Normal
Watch
Warning
Distress
Critical
Severe

_1335349279.vsd
SpaceSystem Root

-name
-description
-authors/versioning
-history

TLM

CMD

SpaceSystem ChildA

-name
-description
-authors/versioning
-history

TLM

CMD

SpaceSystem ChildB

-name
-description
-authors/versioning
-history

TLM

CMD

SpaceSystem ChildC

-name
-description
-authors/versioning
-history

TLM

CMD

SpaceSystem ChildCa

-name
-description
-authors/versioning
-history

TLM

CMD

SpaceSystem ChildAa

-name
-description
-authors/versioning
-history

TLM

CMD

SpaceSystem ChildAb

-name
-description
-authors/versioning
-history

TLM

CMD

