[image: image1.emf]
Draft Recommendation for
Space Data System Standards

	Mission Operations Common Object Model

Draft Recommended Standard
CCSDS 521.1-R-3
Red Book
April 2012
AUTHORITY

	
	
	
	

	
	Issue:
	Red Book, Issue 3
	

	
	Date:
	April 2012
	

	
	Location:
	Not Applicable
	

	
	
	
	

(WHEN THIS RECOMMENDED STANDARD IS FINALIZED, IT WILL CONTAIN THE FOLLOWING STATEMENT OF AUTHORITY:)

This document has been approved for publication by the Management Council of the Consultative Committee for Space Data Systems (CCSDS) and represents the consensus technical agreement of the participating CCSDS Member Agencies. The procedure for review and authorization of CCSDS documents is detailed in the Procedures Manual for the Consultative Committee for Space Data Systems, and the record of Agency participation in the authorization of this document can be obtained from the CCSDS Secretariat at the address below.

This document is published and maintained by:

CCSDS Secretariat

Space Communications and Navigation Office, 7L70

Space Operations Mission Directorate

NASA Headquarters

Washington, DC 20546-0001, USA

STATEMENT OF INTENT

(WHEN THIS RECOMMENDED STANDARD IS FINALIZED, IT WILL CONTAIN THE FOLLOWING STATEMENT OF INTENT:)

The Consultative Committee for Space Data Systems (CCSDS) is an organization officially established by the management of its members. The Committee meets periodically to address data systems problems that are common to all participants, and to formulate sound technical solutions to these problems. Inasmuch as participation in the CCSDS is completely voluntary, the results of Committee actions are termed Recommended Standards and are not considered binding on any Agency.

This Recommended Standard is issued by, and represents the consensus of, the CCSDS members. Endorsement of this Recommendation is entirely voluntary. Endorsement, however, indicates the following understandings:

o
Whenever a member establishes a CCSDS-related standard, this standard will be in accord with the relevant Recommended Standard. Establishing such a standard does not preclude other provisions which a member may develop.

o
Whenever a member establishes a CCSDS-related standard, that member will provide other CCSDS members with the following information:

--
The standard itself.

--
The anticipated date of initial operational capability.

--
The anticipated duration of operational service.

o
Specific service arrangements shall be made via memoranda of agreement. Neither this Recommended Standard nor any ensuing standard is a substitute for a memorandum of agreement.

No later than five years from its date of issuance, this Recommended Standard will be reviewed by the CCSDS to determine whether it should: (1) remain in effect without change; (2) be changed to reflect the impact of new technologies, new requirements, or new directions; or (3) be retired or canceled.

In those instances when a new version of a Recommended Standard is issued, existing CCSDS-related member standards and implementations are not negated or deemed to be non-CCSDS compatible. It is the responsibility of each member to determine when such standards or implementations are to be modified. Each member is, however, strongly encouraged to direct planning for its new standards and implementations towards the later version of the Recommended Standard.

FOREWORD

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CCSDS shall not be held responsible for identifying any or all such patent rights.

Through the process of normal evolution, it is expected that expansion, deletion, or modification of this document may occur. This Recommended Standard is therefore subject to CCSDS document management and change control procedures, which are defined in the Procedures Manual for the Consultative Committee for Space Data Systems. Current versions of CCSDS documents are maintained at the CCSDS Web site:

http://www.ccsds.org/

Questions relating to the contents or status of this document should be addressed to the CCSDS Secretariat at the address indicated on page i.

At time of publication, the active Member and Observer Agencies of the CCSDS were:

Member Agencies
· Agenzia Spaziale Italiana (ASI)/Italy.

· Canadian Space Agency (CSA)/Canada.

· Centre National d’Etudes Spatiales (CNES)/France.

· China National Space Administration (CNSA)/People’s Republic of China.

· Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)/Germany.

· European Space Agency (ESA)/Europe.

· Federal Space Agency (FSA)/Russian Federation.
· Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.

· Japan Aerospace Exploration Agency (JAXA)/Japan.

· National Aeronautics and Space Administration (NASA)/USA.

· UK Space Agency/United Kingdom.

Observer Agencies
· Austrian Space Agency (ASA)/Austria.

· Belgian Federal Science Policy Office (BFSPO)/Belgium.

· Central Research Institute of Machine Building (TsNIIMash)/Russian Federation.

· China Satellite Launch and Tracking Control General, Beijing Institute of Tracking and Telecommunications Technology (CLTC/BITTT)/China.

· Chinese Academy of Sciences (CAS)/China.

· Chinese Academy of Space Technology (CAST)/China.

· Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia.

· CSIR Satellite Applications Centre (CSIR)/Republic of South Africa.

· Danish National Space Center (DNSC)/Denmark.
· Departamento de Ciência e Tecnologia Aeroespacial (DCTA)/Brazil.

· European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)/Europe.

· European Telecommunications Satellite Organization (EUTELSAT)/Europe.

· Geo-Informatics and Space Technology Development Agency (GISTDA)/Thailand.

· Hellenic National Space Committee (HNSC)/Greece.

· Indian Space Research Organization (ISRO)/India.

· Institute of Space Research (IKI)/Russian Federation.

· KFKI Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.

· Korea Aerospace Research Institute (KARI)/Korea.

· Ministry of Communications (MOC)/Israel.

· National Institute of Information and Communications Technology (NICT)/Japan.
· National Oceanic and Atmospheric Administration (NOAA)/USA.

· National Space Agency of the Republic of Kazakhstan (NSARK)/Kazakhstan.

· National Space Organization (NSPO)/Chinese Taipei.

· Naval Center for Space Technology (NCST)/USA.

· Scientific and Technological Research Council of Turkey (TUBITAK)/Turkey.

· Space and Upper Atmosphere Research Commission (SUPARCO)/Pakistan.

· Swedish Space Corporation (SSC)/Sweden.

· United States Geological Survey (USGS)/USA.

PREFACE

This document is a draft CCSDS Recommended Standard. Its ‘Red Book’ status indicates that the CCSDS believes the document to be technically mature and has released it for formal review by appropriate technical organizations. As such, its technical contents are not stable, and several iterations of it may occur in response to comments received during the review process.

Implementers are cautioned not to fabricate any final equipment in accordance with this document’s technical content.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.
DOCUMENT CONTROL

	Document
	Title
	Date
	Status

	CCSDS 521.1-R-1
	Spacecraft Monitor and Control—Common Services, Draft Recommended Standard, Issue 1
	September 2007
	Original issue

	CCSDS 521.1-R-2
	Mission Operations Common Object Model, Draft Recommended Standard, Issue 2
	September 2011
	The original issue has been split between two documents for issue 2, with both documents receiving new document numbers. This document is the first to be released for Red-2 review. Because changes introduced by splitting the original issue are numerous, change bars/markup have been omitted to improve readability.

	CCSDS 521.1-R-3
	Mission Operations Common Object Model, Draft Recommended Standard, Issue 3
	April 2012
	Current draft.

	
	
	
	

	
	
	
	

CONTENTS

Section
Page

1-11
Introduction

1-11.1
General

1-11.2
Purpose and Scope

1-11.3
Document structure

1-21.4
Definition of Terms

1-41.5
Conventions

1-51.6
References

2-12
Overview

2-12.1
General

2-22.2
COM Service Template

2-62.3
Activity service

2-112.4
COM Service Specifications

3-13
Specification: COM

3-13.1
General

3-13.2
Service: COM

3-703.3
Service: Activity

4-774
Data types

4-774.1
Service data types: COM

4-874.2
Service data types: Activity

5-915
Error codes

6-16
SERVICE SPECIFICATION XML

6-16.1
Overview

 TOC \o "8-8" \h * MERGEFORMAT
A-1ANNEX A Security, SANA, and Patent Considerations (Informative)

B-1ANNEX B Definition of Acronyms (Informative)

C-1ANNEX C Informative References (Informative)

CONTENTS (continued)
Figure
Page

2-12-1
Mission Operations Services Concept Document Set

2-22-2
COM Structure

2-62-3
Activity Relay Example

2-82-4
Activity Single-Hop Example

2-92-5
Activity Multi-Hop Example

Table
2-72-1
MAL Interaction Activity Mapping

3-31-1COM Service Operations

3-711-1Activity Service Operations

3-711-1Activity Service Common Model Component Usage

3-721-1Activity Service Common Model Identifier Usage

5-911-1COM Error Codes

1 Introduction

1.1 General

This Recommended Standard defines the Mission Operations (MO) Common Object Model (COM) in conformance with the service framework specified in annex B of Mission Operations Services Concept (reference [C1]).

The MO COM is a generic service template that provides a Common Object Model to the Mission Operation services defined in reference [C1]. These Mission Operations services are defined in terms of the COM and the Message Abstraction Layer (MAL) (reference [2]).

1.2 Purpose and Scope

This Recommended Standard defines, in an abstract manner, the COM in terms of:

a) the operations necessary to provide the service;

b) the parameter data associated with each operation;

c) the required behaviour of each operation;

d) the use of the model.

It does not specify:

a) individual implementations or products;

b) the implementation of entities or interfaces within real systems;

c) the methods or technologies required for communications.

1.3 Document structure

This Recommended Standard is organised as follows:

a) section 1 provides purpose and scope, and lists definitions, conventions, and references used throughout the Recommended Standard;

b) section 2 presents an overview of the concepts;

c) section 3 presents the COM specification;

d) section 4 is a formal specification of the COM data structures;

e) section 5 is a formal specification of the COM errors;

f) section 6 is the formal service specification Extensible Markup Language (XML) schema.

1.4 Definition of Terms

Software Component (component): a software unit containing the business function. Components offer their function as Services, which can either be used internally or which can be made available for use outside the component through Provided Service Interfaces. Components may also depend on services provided by other components through Consumed Service Interfaces.
Hardware Component: a complex physical entity (such as a spacecraft, a tracking system, or a control system) or an individual physical entity of a system (such as an instrument, a computer, or a piece of communications equipment). A Hardware Component may be composed from other Hardware Components. Each Hardware Component may host one or more Software Components. Each Hardware Component has one or more ports where connections to other Hardware Component are made. Any given Port on the Hardware Component may expose one or more Service Interfaces.

Service: a set of capabilities that a component provides to another component via an interface. A Service is defined in terms of the set of operations that can be invoked and performed through the Service Interface. Service specifications define the capabilities, behaviour and external interfaces, but do not define the implementation.

Service Interface: a set of interactions provided by a component for participation with another component for some purpose, along with constraints on how they can occur. A Service Interface is an external interface of a Service where the behaviour of the Service Provider Component is exposed. Each Service will have one defined ‘Provided Service Interface’, and may have one or more ‘Consumed Service Interface’ and one ‘Management Service Interface’.

Provided Service Interface: a Service Interface that exposes the Service function contained in a component for use by Service Consumers. It receives the MAL messages from a Consumed Service Interface and maps them into API calls on the Provider component.

Consumed Service Interface: the API presented to the consumer component that maps from the Service operations to one or more Service Data Units(s) contained in MAL messages that are transported to the Provided Service Interface.

Management Service Interface: a Service Interface that exposes management functions of a Service function contained in a component for use by Service Consumers.

Service System: the set of Hardware and Software Components used to implement a Service in a real system. Service Systems may be implemented using one or more Hardware and Software Components.
Service Provider (provider): a component that offers a Service to another by means of one of its Provided Service Interfaces.

Service Consumer (consumer): a component that consumes or uses a Service provided by another component. A component may be a provider of some Services and a consumer of others.

Service Data Unit (SDU): a unit of data that is sent by a Service Interface, and is transmitted semantically unchanged, to a peer Service Interface.
Binding: the access mechanism for a Service. Bindings are used to locate and access Service Interfaces. Services use bindings to describe the access mechanisms that consumers have to use to call the Service. The binding specifies unambiguously the protocol stack required to access a Service Interface. Bindings may be defined statically at compile time or they may use a variety of dynamic run-time mechanisms (DNS, ports, discovery).

Service Capability Set: a grouping of the service operations that remains sensible and coherent, and also provides a Service Provider with an ability to communicate to a Consumer its capability The specification of services is based on the expectation that different deployments require different levels of complexity and functionality from a service. To this end a given service may be implementable at one of several distinct levels, corresponding to the inclusion of one or more capability sets.

Service Connection (connection): a communications connection between a Consumed Service Interface and a Provided Service Interface over a specific Binding. When a component consumes the services of a provider component, this link is known as a Service Connection (connection).
Service Extension: addition of capabilities to a base Service. A Service may extend the capabilities of another Service with additional operations. An extended Service is indistinguishable from the base Service to consumers such that consumers of the base Service can also be consumers of the extended Service without modification.

Protocol Stack: the stack of Protocol Layers required for communication.

Protocol Layer: the implementation of a specific Protocol. It provides a Protocol Service Access Point to layers above and uses the Protocol Service Access Point of the layer below.

Protocol Service Access Point (SAP): the point at which one layer’s functions are provided to the layer above. A layer may provide protocol services to one or more higher layers and use the protocol services of one or more lower layers. A SAP defines unambiguously the interface for a protocol that may be used as part of a Service Interface Binding specification.

Protocol: the set of rules and formats (semantic and syntactic) used to determine the communication behaviour of a Protocol Layer in the performance of the layer functions. The state machines that operate and the protocol data units that are exchanged specify a protocol.

Service directory: an entity that provides publish and lookup facilities to service providers and consumers.

NOTE
–
Strictly speaking, a directory is not required if a well-known service is to be used; however, in most circumstances a directory provides required flexibility in the location of services. Service location can be statically configured, dynamically discovered through a service directory, or a combination of the two; this is an implementation choice. The service directory is itself, by definition, a service.

1.5 Conventions

1.5.1 NOMENCLATURE

The following conventions apply for the normative specifications in this Recommended Standard:

a) the words ‘shall’ and ‘must’ imply a binding and verifiable specification;

b) the word ‘should’ implies an optional, but desirable, specification;

c) the word ‘may’ implies an optional specification;

d) the words ‘is’, ‘are’, and ‘will’ imply statements of fact.

NOTE
–
These conventions do not imply constraints on diction in text that is clearly informative in nature.

1.5.2 Informative Text

In the normative sections of this document sections (3-6), informative text is set off from the normative specifications either in notes or under one of the following subsection headings:

· Overview;

· Background;

· Rationale;

· Discussion.

1.5.3 Drawing Conventions

In figures illustrating this document, UML modelling diagrams are used. (See reference [1] for further information regarding diagrams types and their meaning.)
1.6 References

The following documents contain provisions which, through reference in this text, constitute provisions of this Recommended Standard. At the time of publication, the editions indicated were valid. All documents are subject to revision, and users of this Recommended Standard are encouraged to investigate the possibility of applying the most recent editions of the documents indicated below. The CCSDS Secretariat maintains a register of currently valid CCSDS Recommended Standards.

[1]
Mission Operations Reference Model. Recommendation for Space Data System Standards, CCSDS 520.1-M-1. Magenta Book. Issue 1. Washington, D.C.: CCSDS, July 2010.
[2]
Mission Operations Message Abstraction Layer. Recommendation for Space Data System Standards, CCSDS 521.0-B-2. Blue Book. Issue 2. Washington, D.C.: CCSDS, May 2012.
NOTE
–
Informative references are listed in annex C.

2 Overview

2.1 General

This document contains the formal specification for the Common Object Model (COM). The COM provides a standard service template for MO Services to utilise. The following diagram presents the set of standards documentation in support of the Mission Operations Services Concept. The COM belongs to the Specifications documentation.

[image: image2.wmf]Mission Operations Services

Technology

Mappings

Specifications

MO

Concept

Reference

Model

Common

Object Model

Application

Profile

Java MAL

API

Service

Specifications

MAL

Encoding

Service Specific

Encoding

(optional)

Green Book

Blue Book

Magenta Book

Language

Mappings

Message

Abstraction

Layer (MAL)

Figure 2‑12 TC \f G "-1
Mission Operations Services Concept Document Set"
: Mission Operations Services Concept Document Set

(For further information about the MO Concept, see reference [C1], and for the Reference Model, see reference [1].)
The COM Specification is split into two parts. The first specifies the COM service template, and the second specifies the standard COM support services.

2.2 COM Service Template

2.2.1 General

The COM provides a standard service template for MO Services to utilise. Whereas the MAL provides the building blocks that can be used to define the operations of a MO service, the COM provides a template for specification of services. This builds upon the MAL to define a standard data model for an MO service.

The service template defines an entity model that MO Services extend and an associated set of operations for the management and observation of that model. Defining this standard service entity model allows not only the specification of standard operations but also the definition of a standard historical archive and the associated services that support the archive.

The service and structures are defined in terms of the MAL so it is possible to deploy them over any supported protocol and message transport.

2.2.2 Common Model Entity

Each service that utilises the COM must first define the entity that is the basis of the service.

An entity may be defined as a thing which is recognised as being capable of an independent existence and which can be uniquely identified. An entity may be a physical object such as a spacecraft or a ground station, an event such as an eclipse, or a concept such as telemetry parameter.

2.2.3 Common Model Entity Structure

Services that utilise the COM must adhere to the basic structure that is shown in figure 2‑2. This model is composed of four conceptual objects of the entity, of which three (Definition, Occurrence, and Status) are represented in COM operations:

[image: image3.emf]Identity Definition Occurrence Status

1 0..* 1 0..* 1 0..*

Figure 2‑22 TC \f G "-2
COM Structure"
: COM Structure

a) The first conceptual object is the identity of the entity. The entity identity exists throughout the history of the archive and cannot change. For example, for a telemetered parameter, that would be the parameter name.

b) The second conceptual object is the definition of the entity. The definition of an entity may evolve over time, so there is a one-to-many relationship between the entity identity and its definition. For example, this would be the definition of the parameter containing information such as type and description.

c) The third conceptual object is the occurrence of the entity. The occurrence object holds attributes of the entity that exist at creation. There may be many occurrences for each definition of an entity, but each occurrence can have only one definition, so there exists a one-to-many relationship between definition and occurrence. For some types of entity there may only ever be one occurrence for each definition, which is the case with telemetered parameters. This does not violate the relationship, but it must be noted during the specification of the relevant service. For other types of entity there may be many occurrences concurrently for a definition. For example, with an operation, each invocation of that operation (based on a specific definition) is an occurrence of that operation and is distinct from other occurrences. The occurrence would contain such information as the argument values of the operation.

d) The final conceptual object is the status of the entity. There may be many status updates for each occurrence of an entity, but each status is related to only a single occurrence, so there exists a one-to-many relationship between occurrence and status. There are two types of status, a traditional evolving status and a single instance time stamped event. For example, the current value of a parameter or the current execution state of an operation occurrence is an evolving status, but a change in execution state may be reported as an event. For some types of entities there may not actually be a status. This does not violate the relationship, but it must be noted during the specification of the relevant service.

e) At any one point in time an entity can have zero to n active definitions, each definition may have zero to n occurrences, and each occurrence has zero to one active status.

The actual Definition, Occurrence and Status objects of a service are service specific and represented using placeholder types in the COM operations. A service specification must specify the concrete structures it uses for these placeholders for it to be possible to use the COM operations. The type defined in a service specification for one aspect of the COM is referred to as the ‘object type’ from this point onwards.
There is also a placeholder type for Events, but as an Event cannot have updates applied to it (they exist at only a single point in time) only an object placeholder type is required.
2.2.4 Common Model Entity Identification

The identity of an entity is composed of two parts, specific fields from the message header and then an entity key.

The domain, session type and name, area, service, and operation identifiers of the message header form the first part of the Entity identification; the network identifier is ignored and does not form part of the Entity Identification.

Each of the four conceptual objects of the Entity (Identity, Definition, Occurrence, and Status) is uniquely keyed.

Each of these object keys is used to form a compound key to uniquely identify the specific aspect of the Entity. For example, to retrieve a specific status of an Entity would require the Entity identifier, the Definition identifier, the Occurrence identifier, and the Status identifier.

The combination of the message header fields and the Entity key in a message forms the complete Entity identification.

2.2.5 Common Object Model Updates

Changes to the model are communicated to clients by the publication of updates using the MAL Publish Subscribe interaction. A COM compliant service specifies the type of the update (referred to as the ‘publish type’ from this point onwards so as to distinguish it from the MAL UpdateType enumeration), one for each component of the model, that it uses to distribute updates to consumers.
a) The publish type must extend the base type for that COM aspect, for example for the COM Definition aspect it should extend Definition.
b) The object type for a service must extend, or be the same as, the publish type for that service. This means that a complete copy of the object for that service can also be considered an update (i.e. a full update).
c)
d) Updates to the COM are either full, where a new copy of the object is sent, or partial, where just part of the object is sent.

e)
f) Partial updates are service-specific structures containing just the changed information. It is a service-specific detail how this is defined and what each partial update actually modifies.

g) Updates are to be idempotent. This means that applying the update multiple times will result in the same value being set.
h) Each update also includes an ExternalReference structure that allows the details of the source entity to be included. The source entity is the one that caused this update to be generated. For example, if modifying an Occurrence on one service caused a change to the object of another service then the ExternalReference of the update of the second service would point to the update of the object of the first service.

The basic details of the update are held in the UpdateHeader structure distributed as part of the MAL PubSub pattern and therefore are not required to be part of the publish type structure itself. Each COM monitor PubSub operation includes the ExternalReference directly so this is also not required to be included in the publish type structure.
2.2.6 Common Model Archive structure

Services that utilise the COM must adhere to a basic pattern. This pattern allows the concept of a common archive structure for the provision of historic retrieval and replay services. The COM defines a set of operations for the provision of a standard archive interface.
Each deployment of a service may implement these archive retrieval operations and provide historic archive information to consumers.
As stated in 2.2.3, the Definition and Occurrence objects are represented as placeholder structures in the COM. A service specification must replace these placeholder structures so that the COM retrieval operations can be fully defined.

As changes are made during the lifetime of the entities this information is distributed to consumers using the COM operations and the normal MAL interaction patterns. These updates can also be stored in a COM compliant archive.

By storing these updates in an archive, any historical replay/retrieval operations can correctly reflect the history of the items.
It is also possible to develop a generic COM archive, where a provider supports retrieval operations for multiple services.
2.3 Retrieval operations
The retrieval operations provides a consumer with the ability to request historical information from the service archive in bulk. There are three different retrieval scenarios that an MO consumer function may use for historical archive access:

Catalogue
A list of items existing at a given point or range in time is extracted in a single transaction.

Snapshot
A snapshot of items existing at a given point in time is extracted in a single transaction.

Retrieval
A block of item updates covering a period of time is extracted in a single transaction. If no updates exist for an item in the time period no value is returned for that item.

The catalogue operation returns the set of entity identifiers that satisfy the request criteria, the bulk retrieval returns the COM updates that satisfy the selection criteria, and the snapshot operation returns the entity items that satisfy the selection criteria at a single point in time.

2.4 Activity service

2.4.1 General

The Activity service provides the ability to monitor the progress of Activities. The basic service provides the ability to monitor MAL operations, but it is expected to be used for other processes where appropriate. It defines a notification model that supports the monitoring of activities from the initial consumer request, tracking its progress across a transport link, to reception by the provider and execution in that provider.

The notification model can be extended as appropriate for the monitoring of activities other than MAL operations, for example, procedures in an Automation service.

The service uses the MAL Publish-Subscribe pattern to support the concept of external monitoring where one component is able to monitor the Activities in the system without requiring knowledge of what components are active. This permits the implementation of a single component for the monitoring of activity in the system and also for the archive of this activity.

It also supports monitoring of activities that are passed via a chain of components to a provider; these intermediate components are referred to as relays in this document. For example, to control a Rover the chain in figure 2‑3 may be envisioned.
[image: image4.emf]Consumer

X

Provider

AMS/MTS

Gateway

X AMS/IP

Ground Station

AMS/IP AMS/DTN

Orbiter

AMS/DTNAMS/DTN

Rover

AMS/DTNAMS/MTS

Activity Activity Activity Activity Activity

Activity Activity Activity Activity Activity

Figure 2‑32 TC \f G "-3
Activity Relay Example"
: Activity Relay Example

Each component passes the operation message from the consumer to the provider with the Activity service providing notification of the current location of the message in the chain, where it is expected to move next, and when. This passing of messages from a consumer to a provider via relays is referred to as multi-hop in this document.

NOTE
–
Rather than fixing the activity notifications in the service specification or delegating the decision to the component that issued the operation, it is a deployment decision whether a component generates the Activity notifications. This allows for reporting to be configured depending on network topology or any other criteria deemed suitable.

2.4.2 Activity Notifications

The Activity service defines a standard set of notifications for the transport of activities from the consumer to the provider and also for execution in the provider.

Four transport notification stages are defined:

· release is release from source consumer;
· reception is reception by an intermediate relay;
· forward is release from an intermediate relay;
· acceptance is reception by destination provider;
where Reception and Forward notification stages are only used in a multi-hop situation.

In regular expression notation the transport pattern is then:

(Release (Reception Forward)* Acceptance)

Each notification has a fixed structure and provides positive as well as negative notifications for the transfer of the activity from consumer to provider (optionally via intermediate relays).

Once the activity has arrived successfully in the provider the execution progress of it is reported using a single notification stage that may be reported many times depending on the activity:

· Execution is used to report a stage in the execution of the activity.

2.4.2.1 MAL operations

The standard COM Activity service defines an Activity reporting model for the monitoring of MAL operations. It defines how the Execution notification shall be mapped to the standard MAL interaction pattern stages:

Table 2‑12 TC \f T "-1
MAL Interaction Activity Mapping"
: MAL Interaction Activity Mapping

	Activity

Notification
	MAL Interaction Pattern

	
	SEND
	SUBMIT
	REQUEST
	INVOKE
	PROGRESS

	Release
	Yes
	Yes
	Yes
	Yes
	Yes

	Reception*
	Yes
	Yes
	Yes
	Yes
	Yes

	Forward*
	Yes
	Yes
	Yes
	Yes
	Yes

	Acceptance
	Yes
	Yes
	Yes
	Yes
	Yes

	Execution†
	
	Yes for ACK stage
	Yes for RESPONSE stage
	Yes for ACK and RESPONSE stage
	Yes for ACK, PROGRESS and RESPONSE stages

	* -- Reception and Forward notification stages are only used in a multi-hop situation.

† -- Execution notifications generated are dependent on the MAL Interaction Pattern.

NOTE
–
The transport notifications will not be returned to the initiating application through the MAL interaction, because as far as the MAL is concerned they are different interactions.

If a negative notification is being generated by one of the relays, then that relay is also required to fail the MAL interaction that the consumer initiated.

2.4.3 Single hop Activity example

The Consumer is calling an INVOKE operation on the Provider application, there is a third element (Monitor Application) that is providing a system activity monitor role (activity history). The publish-subscribe broker is shown also to illustrate how the monitoring application does not need to be aware of which components are present in the system to receive the Activity notifications (see figure 2‑4).
[image: image5.emf]Consumer

Protocol

Provider

Protocol

Monitoring

Application

Protocol

PubSub Broker

Protocol

Activity

Activity

INVOKE

Activity

INVOKE

PubSub

Figure 2‑42 TC \f G "-4
Activity Single-Hop Example"
: Activity Single-Hop Example

For the Activity service the sequence would be:

· Consumer creates two MAL messages, one for the INVOKE message as normal, but also an Activity occurrence message, which is the RELEASE notification.

· Provider receives the INVOKE message as normal from the MAL and immediately publishes an Activity Status notification of type ACCEPTANCE.

· Provider returns the INVOKE ACK message to the Consumer and also publishes an Activity Status notification of type EXECUTION.

· Provider returns the INVOKE RESPONSE message to the Consumer and also publishes an Activity Status notification of type EXECUTION.

· Consumer receives the INVOKE RESPONSE message and publishes an update to the Activity occurrence.

NOTE
–
The notifications in the applications are published to the Activity PubSub channel as are any errors. The Monitor application receives all of the notifications through a subscription to the channel. To monitor all notification stages a subscription for Occurrence and Status is required. A standard COM history/archive could be implemented using this mechanism.

2.4.4 Multi-hop ActivitY Example

The Consumer is calling an INVOKE operation on the Provider application; there is a third element (Monitor Application) that is providing a system activity monitor role (activity history). The publish-subscribe broker is shown also to illustrate how the monitoring application does not need to be aware of which components are present in the system to receive the Activity notifications.

In this example the Consumer and Provider are separated by two other relays, a Gateway and Ground Station (GS) relay, which are used to bridge between the three separate networks present (see figure 2‑5).
[image: image6.emf]Space Network GS Network MCS Network

Consumer

Protocol

Provider

AMS/DTN

Monitoring

Application

Protocol

PubSub Broker

Protocol

Gateway

Protocol AMS/IP

Ground Station

AMS/IP AMS/DTN

Activity

Activity

INVOKE

PubSub

Activity

INVOKE

Activity

INVOKE

Activity

INVOKE

Activity

INVOKE

Activity

INVOKE

Figure 2‑52 TC \f G "-5
Activity Multi-Hop Example"
: Activity Multi-Hop Example

In the MCS network there is a true publish-subscribe broker for the distribution of Pub-Sub updates; in the GS and Space Networks, however, the relevant preceding component has subscribed directly with the next component to receive updates. So, for example, the Gateway knows which Ground Station it is using and therefore connects directly to it for the Activity updates.

For the Activity service the sequence would be:

· Consumer creates two MAL messages, one for the INVOKE message as normal, but also an Activity occurrence message.

· Gateway receives the INVOKE message and publishes an Activity Status notification of type RECEPTION on the MCS network.

· Gateway transmits INVOKE message to GS and publishes an Activity Status notification of type FORWARD on the MCS network.

· GS receives the INVOKE message and publishes an Activity Status notification of type RECEPTION on the GS network.

· Gateway receives the notification message on the GS network and PUBLISHES it on the MCS network.

· GS transmits INVOKE message to Provider and publishes an Activity Status notification of type FORWARD on the GS network.

· Gateway receives the notification message on the GS network and PUBLISHES it on the MCS network.

· Provider receives the INVOKE message as normal and publishes an Activity Status notification of type ACCEPTANCE on the Space network.

· GS receives the notification message on the Space network and PUBLISHES it on the GS network.

· Gateway receives the notification message on the GS network and PUBLISHES it on the MCS network.

· Provider returns the INVOKE ACK message to the GS and also publishes an Activity Status notification of type EXECUTION on the Space network.

· GS receives the notification message on the Space network and PUBLISHES it on the GS network.

· Gateway receives the notification message on the GS network and PUBLISHES it on the MCS network.

· GS receives the INVOKE_ACK message and transmits it to the Gateway.

· Gateway receives the INVOKE_ACK message and transmits it to the Consumer.

· Provider returns the INVOKE RESPONSE message to the GS and also publishes an Activity Status notification of type EXECUTION on the Space network.

· GS receives the notification message on the Space network and PUBLISHES it on the GS network.

· Gateway receives the notification message on the GS network and PUBLISHES it on the MCS network.

· GS receives the INVOKE_RESPONSE message and transmits it to the Gateway.

· Gateway receives the INVOKE_RESPONSE message and transmits it to the Consumer.

· Consumer receives the INVOKE_RESPONSE message and publishes an update to the Activity occurrence.

NOTE
–
The notifications in the applications are published to the Activity PubSub channel as are any errors. The Monitor application receives all of the notifications through a subscription to the channel on the MCS network. A standard COM history/archive could be implemented using this mechanism.

2.5 COM Service Specifications

2.5.1 General

To aid comprehension, several tables are included for the service and each operation definition. The formats are fully described in sections 4 and 5 of reference [2].

The text below provides an overview of the tables:

· Service overview: A service comprises a set of operations. The tables in the following subsections specify the operations in terms of the Interaction Patterns.

· Service Common Object Model component usage: Where a service complies with the COM it must define the types it uses to represent the components of the COM. For this document it is used to detail how other services are to use this template.
· Service COM identifier usage: Where a service complies with the COM it must define the meaning and relationship between the four keys used to identify the conceptual objects of the Entity.

· Structures: The specification of the service will also detail the structures passed as the message bodies and message returns. If these structures are MAL types they will have the prefix ‘MAL::’ and be specified in reference [2]; otherwise they are specified in section 4 of this document.

· Common Model Updates: The specification of the service will list what COM updates will be published by the provider in the case of successful execution of the operation.

· Errors: The specification of the service will also detail the errors that can be raised over and above the standard set of communications errors defined in the MAL.

3 Specification: COM

3.1 General

This section details the Common Object Model service template; the structures used by the service are detailed in section 4. The service and structures are defined in terms of the MO Message Abstraction Layer (MAL), so it is possible to deploy them over any supported protocol and message transport.

3.2 Service: COM

3.2.1 General

The COM service template provides standard operation definitions that services compliant to the model can use. The COM operations simplify the definitions and implementation of specific services by allowing common operations to be specified once, here, and also for generic infrastructure such as a Common History archive to be utilised where the retrieval operations can be used to obtain historical values of the COM components.

Each service specification states its compliance to the model and which operations it incorporates, as not all may be appropriate for a specific service. The service that is being defined in terms of the COM operations and structures is called the originating service in this section.

Services that use the COM should be careful not to overlap the operation and capability set numbers used by the COM; to this end all services that use the COM should start their operations and capability set numbering at 100.

Each service specification also states its use of the COM structures. The service specification defines the structures it uses to hold the definition, occurrence, status, and event parts of the COM model and the types of updates that can be made to the model.

In the COM operations placeholder types are given which are replaced by the correct ones in the actual service specifications. There exists a placeholder object type for each aspect of the COM model, namely DEFINITION for the Definition, OCCURRENCE for the Occurrence, STATUS for the Status, and EVENT for Event. There are also placeholders for the publish types, namely DEFINITION_UPDATE for the Definition, OCCURRENCE_UPDATE for the Occurrence, and STATUS_UPDATE for the Status. There is no publish type for Events as they cannot be updated once published.

For example, if a service defines a type called 'FooDefinition' and states that it is the definition type for that service, then in all the COM operations that reference a type called 'DEFINITION' that holder type would be replaced with the 'FooDefinition' type.

For the updates there is an ExternalReference field. This field is to be populated with the details of the entity which caused this update to be generated. For example, if an operation of Service 'X' causes an Event to be generated then the external reference of the Event would contain the domain/network of the Service 'X' provider, area/service/operation of the relevant operation that was invoked of Service 'X', and the entity key of the Service 'X' object that was being modified by the operation (if applicable).

The Event operations provide a simple mechanism for reporting asynchronous events to a consumer. A service defines the set of Events that it may raise during its lifetime.

The Event definitions are fixed in the originating service specification and cannot be modified without changing the service specification.

If an operation is defined in a Service that has error codes, these can be marked as Event error codes in the XML, in this case an associated Event shall be published concurrently.

The COM operations to list and request Event information are optional for implementations and are only required to return information about recent Events if they are provided. For historical information the retrieval operations should be used.

The COM XML Schema contains extra elements in the service area that lists the set of Events that a service defines.

The retrieval operations allow a consumer to request blocks of historical data from a specific domain and service. Two sets of operations are provided, the first where full service specific structures are used to pass information and a compact mode where only the data values and the timestamps are passed. It also allows the requesting of bulk (or block) data of historical items , a snapshot of items in existence at a point in time, and it also allows other service components to store service updates in the archive.

Two possible deployments of the retrieval service are expected, the first is where each service provider implements the retrieval operations for that specific service and deployment, and the second is where a generic retrieval service provider is deployed that implements the retrieval operations (using the Definition, Occurrence, Status, and Event base types for the holder types) and supports multiple services.

It is recommended that providers of these retrieval operations support the Activity service operation cancelActivity to enable the cancelling of large retrieval requests.

The service does not support selection of data by session as the session is implicit to the request from the consumer. Data from one session is not permitted to be transmitted in another session.

Domain selection is only allowed to the domain of the service provider or a sub-domain thereof.

Finally, the retrieval operation capability sets are not expected to be listed in service specifications as they are more deployment than specification.

Table 1‑11tc \f T "-1COM Service Operations"
: COM Service Operations

	Area Identifier
	Service Identifier
	Area Number
	Service Number
	Service Version

	COM
	COM
	2
	1
	1

	Interaction Pattern
	Operation Name
	Operation Number
	Support in replay
	Capability Set

	REQUEST
	listDefinition
	0
	Yes
	1

	REQUEST
	requestDefinition
	1
	Yes
	

	PUBLISH-SUBSCRIBE
	monitorDefinition
	2
	Yes
	2

	REQUEST
	addDefinition
	3
	No
	3

	SUBMIT
	modifyDefinition
	4
	No
	4

	SUBMIT
	deleteDefinition
	5
	No
	

	SUBMIT
	deleteAllDefinitions
	6
	No
	

	REQUEST
	listOccurrence
	7
	Yes
	5

	REQUEST
	requestOccurrence
	8
	Yes
	

	PUBLISH-SUBSCRIBE
	monitorOccurrence
	9
	Yes
	6

	REQUEST
	addOccurrence
	10
	No
	7

	SUBMIT
	modifyOccurrence
	11
	No
	8

	SUBMIT
	deleteOccurrence
	12
	No
	

	SUBMIT
	deleteAllOccurrences
	13
	No
	

	REQUEST
	listStatus
	14
	Yes
	9

	REQUEST
	requestStatus
	15
	Yes
	

	PUBLISH-SUBSCRIBE
	monitorStatus
	16
	Yes
	10

	REQUEST
	listEvent
	17
	Yes
	11

	REQUEST
	requestEvent
	18
	Yes
	

	PUBLISH-SUBSCRIBE
	monitorEvent
	19
	Yes
	12

	PROGRESS
	catalogueDefinition
	20
	Yes
	13

	PROGRESS
	catalogueOccurrence
	21
	Yes
	

	PROGRESS
	catalogueStatus
	22
	Yes
	

	PROGRESS
	catalogueEvent
	23
	No
	

	PROGRESS
	retrieveDefinition
	24
	Yes
	14

	PROGRESS
	retrieveOccurrence
	25
	Yes
	

	PROGRESS
	retrieveStatus
	26
	Yes
	

	PROGRESS
	retrieveEvent
	27
	No
	

	PROGRESS
	snapshotDefinition
	28
	Yes
	

	PROGRESS
	snapshotOccurrence
	29
	Yes
	

	PROGRESS
	snapshotStatus
	30
	Yes
	

	PROGRESS
	snapshotEvent
	31
	No
	

	PROGRESS
	compactRetrieveDefinition
	32
	Yes
	15

	PROGRESS
	compactRetrieveOccurrence
	33
	Yes
	

	PROGRESS
	compactRetrieveStatus
	34
	Yes
	

	PROGRESS
	compactRetrieveEvent
	35
	No
	

	PROGRESS
	compactSnapshotDefinition
	36
	Yes
	

	PROGRESS
	compactSnapshotOccurrence
	37
	Yes
	

	PROGRESS
	compactSnapshotStatus
	38
	Yes
	

	PROGRESS
	compactSnapshotEvent
	39
	No
	

	INVOKE
	storeDefinition
	40
	No
	16

	INVOKE
	storeOccurrence
	41
	No
	

	INVOKE
	storeStatus
	42
	No
	

	INVOKE
	storeEvent
	43
	No
	

	INVOKE
	compactStoreDefinition
	44
	No
	17

	INVOKE
	compactStoreOccurrence
	45
	No
	

	INVOKE
	compactStoreStatus
	46
	No
	

	INVOKE
	compactStoreEvent
	47
	No
	

3.2.2 Common Model Usage

a) In the message header the area identifier shall be taken from the originating service not the COM service except when implementing a generic archive component.

b) In the message header the service identifier shall be taken from the originating service not the COM service except when implementing a generic archive component.

c) In the message header the service version shall be taken from the originating service not the COM service except when implementing a generic archive component.

d) In the message header the operation identifier shall be taken from the COM service not the originating service.

e) Services that use the COM shall start their operations and capability set numbering at 100.

f) Service specific Definition composites must extend the base COM Definition composite.

g) If the Service uses the COM Definition aspect, the service shall specify a type to represent its definition that must extend the base COM Definition composite.

h) The type specified for the service Definition type may be abstract.

i) If the Service uses the COM Definition aspect, the service shall specify a publish type to represent updates to its definition that must extend the base COM Definition composite.

j) The type specified for the service Definition publish type may be abstract.

k) The type specified for the service Definition type must either be the same as, or extend, the type specified for the service Definition publish type. This means that the service Definition type can also be used for an update (i.e. a complete update of the Definition).

l) In the COM operations, where the holder type of DEFINITION is given, the service specific Definition type shall be used instead in the actual operation.

m) In the COM operations, where the holder type of DEFINITION_UPDATE is given, the service specific Definition publish type shall be used instead in the actual operation.

n) Service specific Occurrence composites must extend the base COM Occurrence composite.

o) If the Service uses the COM Occurrence aspect, the service shall specify a type to represent its occurrence that must extend the base COM Occurrence composite.

p) The type specified for the service Occurrence type may be abstract.

q) If the Service uses the COM Occurrence aspect, the service shall specify a publish type to represent updates to its occurrence that must extend the base COM Occurrence composite.

r) The type specified for the service Occurrence publish type may be abstract.

s) The type specified for the service Occurrence type must either be the same as, or extend, the type specified for the service Occurrence publish type. This means that the service Occurrence type can also be used for an update (i.e. a complete update of the Occurrence).

t) In the COM operations, where the holder type of OCCURRENCE is given, the service specific Occurrence type shall be used instead in the actual operation.

u) In the COM operations, where the holder type of OCCURRENCE_UPDATE is given, the service specific Occurrence publish type shall be used instead in the actual operation.

v) Service specific Status composites must extend the base COM Status composite.

w) If the Service uses the COM Status aspect, the service shall specify a type to represent its status that must extend the base COM Status composite.

x) The type specified for the service Status type may be abstract.

y) If the Service uses the COM Status aspect, the service shall specify a publish type to represent updates to its status that must extend the base COM Status composite.

z) The type specified for the service Status publish type may be abstract.

aa) The type specified for the service Status type must either be the same as, or extend, the type specified for the service Status publish type. This means that the service Status type can also be used for an update (i.e. a complete update of the Status).

ab) In the COM operations, where the holder type of STATUS is given, the service specific Status type shall be used instead in the actual operation.

ac) In the COM operations, where the holder type of STATUS_UPDATE is given, the service specific Status publish type shall be used instead in the actual operation.

ad) Status updates shall always have an update type of either Update or Modification.

ae) The update interval of status updates shall be implementation specific, it is not something that can be altered, except by service specific extensions.

af) Service specific Event composites must extend the base COM Event composite.

ag) If the Service uses the COM Event aspect the service shall specify a type to represent its events that must extend the base COM Event composite.

ah) The type specified for the service Event type may be abstract.

ai) In the COM operations, where the holder type of EVENT is given, the service specific Event type shall be used instead in the actual operation.

aj) Event updates shall always have a MAL update type of Deletion.

3.2.3 OPERATION: listDefinition

3.2.3.1 General

The listDefinition operation returns to a consumer the latest, non-deleted, definition key of a number of service entities. It provides basic catalogue information without returning the complete entities, just the keys.

	Operation Name
	listDefinition

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	List<MAL::Identifier>

	OUT
	Response
	List<DefinitionKey>

3.2.3.2 Structures

a) The Identifier List holds one or more entity identifiers.

b) Each entry must not be NULL or empty (an INVALID error shall be returned in this case).

c) If an entry contains the wildcard value '*' then all entities shall be matched.

d) The returned list shall contain an entry for each matched entity that has a definition that is not deleted.

e) The order of the returned entries is not specified, it shall be implementation specific.

f) If a definition matches more than one request key then it shall only be returned once.

g) If a value does not currently exist for a requested entity, then no entry shall be returned for that entity.

3.2.3.3 Common Model Updates

Not applicable.

3.2.3.4 Errors

The operation may return the following errors:

3.2.3.4.1 ERROR: INVALID

a) One or more of the requests contain invalid values.

b) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.4 OPERATION: requestDefinition

3.2.4.1 General

The requestDefinition operation returns to a consumer the definition of a number of service entities.

	Operation Name
	requestDefinition

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	List<DefinitionKey>

	OUT
	Response
	List<DefinitionHeader>

List<DEFINITION>

3.2.4.2 Structures

a) The DefinitionKey List holds one or more definition match requests.

b) The entityId field must not be NULL or empty (an INVALID error shall be returned in this case).

c) If the entityId field contains the wildcard value '*' then all definitions shall be matched.

d) The definitionId field may be NULL in which case it shall match the latest definition of any matched entity. The wildcard value '0' is not permitted.

e) If the request specifies a definitionId that does not match the latest definition of an entity then the provider shall return that definition if it has access to an archive.

f) If the provider does not have access to an archive and it is able to determine that a request is for a historic definition then it shall return the HISTORIC error otherwise it shall ignore the request.

g) The returned lists shall contain an entry for each matched entity.

h) The order of the returned entries is not specified, it is implementation specific, however the order of the two lists shall match each other.

i) The DEFINITION type shall be replaced by the relevant service specific definition type.

j) If a definition matches more than one request definition key then it shall only be returned once.

k) If a value does not currently exist for a requested entity, then no entry shall be returned for that entity.

3.2.4.3 Common Model Updates

Not applicable.

3.2.4.4 Errors

The operation may return the following errors:

3.2.4.4.1 ERROR: INVALID

a) One or more of the requests contain invalid values.

b) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.4.4.2 ERROR: HISTORIC

a) One or more of the requested entities are only available via Historic Retrieval service.

b) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	HISTORIC
	No
	70006
	List<MAL::Integer>

3.2.5 OPERATION: monitorDefinition

3.2.5.1 General

The monitorDefinition operation allows a consumer to subscribe for definition updates.

	Operation Name
	monitorDefinition

	Interaction Pattern
	PUBLISH-SUBSCRIBE

	IP Sequence
	Message
	Field Type

	OUT
	Publish/Notify
	ExternalReference

DEFINITION_UPDATE

3.2.5.2 Structures

a) The first field of the key in the EntityRequest of the subscription (in the register) shall contain the entityId.

b) The second field of the key in the EntityRequest shall contain the definitionId.

c) The '*' identifier may be used in the entityId to indicate that updates are required for all entities.

d) The '0' identifier may be used in the definitionId to indicate that updates are required for all definitions for a specific entity.

e) The ExternalReference holds all information required to identify the source of an update. This is normally expected to point to a LoginOccurrence but may also point to future service objects such as Automation etc. and provides traceability of objects back to their triggering source.

f) The DEFINITION_UPDATE placeholder shall be replaced by the relevant service specific publish type.

g) The DEFINITION_UPDATE shall be used to report the updates to a definition.

3.2.5.3 Common Model Updates

a) The service-specific provider shall publish updates using a structure that extends Definition.

b) The timestamp in the MessageHeader shall be the time that the message is sent from the provider.

c) The timestamp in the UpdateHeader structure shall be the time that the update was created. This may be different to the MessageHeader because a single message can contain several updates.

d) The timestamp in the UpdateHeader structure shall be used to correctly order the partial updates.

3.2.5.4 Errors

The operation does not return any errors.

3.2.6 OPERATION: addDefinition

3.2.6.1 General

The addDefinition operation allows a consumer to define one or more entities that do not currently exist or to add a new definition to an entity that has had its definition deleted.

	Operation Name
	addDefinition

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	List<DefinitionHeader>

List<DEFINITION>

	OUT
	Response
	List<DefinitionKey>

3.2.6.2 Structures

a) The lists shall hold the definitions to be added.

b) The entityId field must not be NULL, the wildcard '*', or empty (an INVALID error shall be returned in this case).

c) If a non-deleted definition already exists for an entity then a REFERENCED error shall be raised.

d) The definitionId field must not be the wildcard '0' (an INVALID error shall be returned in this case).

e) For each entity the definitionId field of the key may be NULL, in which case the provider shall generate a unique definition identifier, or use the definitionId specified in the submission.

f) If the definitionId is provided by the consumer, it shall not conflict with any existing definition identifiers used for that entity. The depth of this check is deployment specific.

g) If a consumer supplied definitionId conflicts with an existing definition identifier for that entity a DUPLICATE error shall be raised.

h) The DEFINITION type shall be replaced by the relevant service specific definition type.

i) The INVALID error may be returned as a result of a service specific data check.

j) The error extraInformation field may contain information related to the service specific check and will be detailed in the service specification.

k) The response shall contain the list of definition keys for the new definitions.

l) The returned list of keys shall maintain the same order as the submitted definitions.

3.2.6.3 Common Model Updates

The service-specific definition structure shall be archived and distributed using a MAL::UpdateType of Creation.

3.2.6.4 Errors

The operation may return the following errors:

3.2.6.4.1 ERROR: INVALID

a) One or more of the entities specified in the operation contain invalid values.

b) The entity is composed of both an entry from the Header list and from the object type list.

c) As the lists must be ordered identically, the index in the extra information field refers to both lists. In which part of the entity the error is contained is outside of the scope of this error message.

d) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.6.4.2 ERROR: DUPLICATE

a) One or more of the provided definitions uses an existing definition identifier for an entity.

b) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	DUPLICATE
	No
	70001
	List<MAL::Integer>

3.2.6.4.3 ERROR: REFERENCED

a) Definition already exists for requested entity.

b) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	REFERENCED
	No
	70002
	List<MAL::Integer>

3.2.7 OPERATION: modifyDefinition

3.2.7.1 General

The modifyDefinition operation allows a consumer to modify a definition for one or more entities without needing to delete the existing definition first. It should be noted that there can only ever be one non-deleted definition for an entity.

This differs from deleting an existing definition and adding a new definition in the fact that the definition identifier is not changed between the two definitions therefore it is only expected to be used for minor modifications such as descriptions, however it is service specific how it is to be used.

	Operation Name
	modifyDefinition

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	List<DefinitionHeader>

List<DEFINITION_UPDATE>

3.2.7.2 Structures

a) The submitted lists shall hold the definitions to be modified.

b) The entityId shall not be NULL, an INVALID error shall be raised in this case.

c) The entityId shall match an existing entity for this service, an UNKNOWN error shall be raised if this is not the case.

d) The definitionId shall match the latest non-deleted definition of any matched entity for this service, an INVALID error shall be raised if this is not the case.

e) The definitionId may be NULL, in which case the provider shall match the latest non-deleted definition.

f) If no non-deleted definition exists for a matched entity then an INVALID error shall be returned.

g) The DEFINITION_UPDATE type shall be replaced by the relevant service specific definition publish type.

h) The INVALID error may be returned as a result of a service specific data check.

i) The error extraInformation field may contain information related to the service specific check and will be detailed in the service specification.

3.2.7.3 Common Model Updates

The service-specific definition publish type shall be archived and distributed using a MAL::UpdateType of Modification.

3.2.7.4 Errors

The operation may return the following errors:

3.2.7.4.1 ERROR: UNKNOWN

a) One or more of the definitions specified in the operation do not exist and therefore cannot be modified.

b) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	UNKNOWN
	No
	Defined in MAL
	List<MAL::Integer>

3.2.7.4.2 ERROR: INVALID

a) One or more of the entities specified in the operation contain invalid values.

b) The entity is composed of both an entry from the Header list and from the object type list.

c) As the lists must be ordered identically, the index in the extra information field refers to both lists. In which part of the entity the error is contained is outside of the scope of this error message.

d) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.8 OPERATION: deleteDefinition

3.2.8.1 General

The deleteDefinition operation allows a consumer to mark one or more definitions as deleted.

	Operation Name
	deleteDefinition

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	List<DefinitionKey>

3.2.8.2 Structures

a) The key list holds the keys of the definitions to be marked as deleted.

b) The entityId and definitionId fields shall not be NULL, an INVALID error shall be raised in this case.

c) The entityId and definitionId fields may contain the wildcard value.

d) If a provided definition key does not include a wildcard and does not match a definition then this operation shall fail with an UNKNOWN error.

e) If a provided definition key matches a definition already marked as deleted then this operation shall fail with an INVALID error.

f) If a definition matches multiple keys then it shall not cause an UNKNOWN error to be raised through multiple deletion attempts.

g) If a matched definition is referenced by another service or entity then this operation shall fail with a REFERENCED error. It is implementation specific whether this check is actually performed.

h) If a matched definition is referenced by a non deleted occurrence then this operation shall not fail.

i) Definitions marked as deleted still exist but shall not be allowed to be referenced by new occurrences.

j) It is permitted for an occurrence that is still active to reference a definition marked as deleted because the deleted mark means that the definition shall not be used for new occurrences.

k) The operation shall either completely succeed or fail, in the case of a fail no definitions shall be deleted.

3.2.8.3 Common Model Updates

a) The definitions shall be marked as deleted by distributing and archiving an update using a MAL::UpdateType of Deletion for each matched entry.

b) The update shall include a NULL in place of the definition to indicate that it is being deleted.

3.2.8.4 Errors

The operation may return the following errors:

3.2.8.4.1 ERROR: UNKNOWN

a) One or more of the definitions specified in the operation do not exist and therefore cannot be deleted.

b) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	UNKNOWN
	No
	Defined in MAL
	List<MAL::Integer>

3.2.8.4.2 ERROR: INVALID

a) One or more of the definition key values contained invalid values.

b) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.8.4.3 ERROR: REFERENCED

a) One or more of the definitions specified in the operation are referenced by other service definitions.

b) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	REFERENCED
	No
	70002
	List<MAL::Integer>

3.2.9 OPERATION: deleteAllDefinitions

3.2.9.1 General

The deleteAllDefinitions operation allows a consumer to mark all definitions in the service as deleted. It should be noted that this operation shall mark all definitions for a service regardless of whether they were created by the addDefinition operation or not.

	Operation Name
	deleteAllDefinitions

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	

3.2.9.2 Structures

a) No message body is passed.

b) If a definition is referenced by another service or entity then this operation shall not fail but will not mark that definition as deleted.

3.2.9.3 Common Model Updates

a) The definitions shall be marked as deleted by distributing and archiving an update using a MAL::UpdateType of Deletion for each matched entry.

b) The update shall include a NULL in place of the definition to indicate that it is being deleted.

3.2.9.4 Errors

The operation does not return any errors.

3.2.10 OPERATION: listOccurrence

3.2.10.1 General

The listOccurrence operation returns to a consumer the non-deleted occurrence keys of a number of service entities. It provides basic catalogue information without returning the complete entities, just the keys.

	Operation Name
	listOccurrence

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	List<DefinitionKey>

	OUT
	Response
	List<OccurrenceKey>

3.2.10.2 Structures

a) The DefinitionKey List shall hold one or more match requests.

b) The entityId field must not be NULL or empty (an INVALID error shall be returned in this case).

c) The entityId field may contain the wildcard value '*', in which case it shall match all entities.

d) The definitionId field may be NULL in which case it shall match the latest definition of the matched entity.

e) The definitionId field may contain the wildcard value '0' in which case it shall match all definitions for the matched entity.

f) If definition is not used by the service then definitionId should be set to '0' in the DefinitionKey list.

g) The returned list shall contain an entry for each matched entity.

h) The order of the returned entries is not specified, it shall be implementation specific.

i) If an occurrence matches more than one request then it shall only be returned once.

j) If a value does not currently exist for a requested entity, then no entry shall be returned for that entity.

3.2.10.3 Common Model Updates

Not applicable.

3.2.10.4 Errors

The operation may return the following errors:

3.2.10.4.1 ERROR: INVALID

a) One or more of the requests contain invalid values.

b) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.11 OPERATION: requestOccurrence

3.2.11.1 General

The requestOccurrence operation allows a consumer to obtain the occurrences of a number of service entities.

	Operation Name
	requestOccurrence

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	List<OccurrenceKey>

	OUT
	Response
	List<OccurrenceHeader>

List<OCCURRENCE>

3.2.11.2 Structures

a) The OccurrenceKey list holds one or more occurrence match requests.

b) The entityId field must not be NULL or empty (an INVALID error shall be returned in this case).

c) If the entityId field contains the wildcard value '*' then occurrences for all entities is required.

d) The definitionId field may be NULL in which case it shall match the latest definition of the matched entity.

e) The definitionId field may contain the wildcard value '0' in which case it shall match all definitions for the matched entity.

f) If definition is not used by the service then definitionId should be set to '0' in the OccurrenceKey list.

g) The occurrenceId field may be NULL in which case it shall match the latest occurrence of the matched entity.

h) The occurrenceId field may contain the wildcard value '0' in which case it shall match all occurrences for the matched entity and definition that have not had their occurrence marked as deleted (MAL::UpdateType of Deletion).

i) If the request specifies an occurrenceId that does not match a current occurrence of an entity then the provider shall return that occurrence if it has access to an archive.

j) If the provider does not have access to an archive and it is able to determine that a request is for a historic occurrence then it shall return the HISTORIC error otherwise it shall ignore the request.

k) The returned lists shall contain an entry for each matched occurrence.

l) The order of the returned entries is not specified, it is implementation specific, however the order of the two lists shall match.

m) The OCCURRENCE type shall be replaced by the relevant service specific occurrence type.

n) If an occurrence matches more than one request then it shall only be returned once.

o) If a value does not currently exist for a requested entity, then no entry shall be returned for that entity.

3.2.11.3 Common Model Updates

Not applicable.

3.2.11.4 Errors

The operation may return the following errors:

3.2.11.4.1 ERROR: INVALID

a) One or more of the requests contain invalid values.

b) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.11.4.2 ERROR: HISTORIC

a) One or more of the requested entities are only available via Historic Retrieval service.

b) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	HISTORIC
	No
	70006
	List<MAL::Integer>

3.2.12 OPERATION: monitorOccurrence

3.2.12.1 General

The monitorOccurrence operation allows a consumer to subscribe for occurrence updates.

	Operation Name
	monitorOccurrence

	Interaction Pattern
	PUBLISH-SUBSCRIBE

	IP Sequence
	Message
	Field Type

	OUT
	Publish/Notify
	ExternalReference

OCCURRENCE_UPDATE

3.2.12.2 Structures

a) The first field of the key in the EntityRequest of the subscription (in the register) shall contain the entityId.

b) The second field of the key in the EntityRequest shall contain the definitionId.

c) The third field of the key in the EntityRequest shall contain the occurrenceId.

d) The '*' identifier may be used in the entityId to indicate that updates are required for all entities.

e) The '0' value may be used in the definitionId to indicate that updates are required for all definitions for a specific entity.

f) The '0' value may be used in the occurrenceId to indicate that updates are required for all occurrences for a specific entity.

g) The ExternalReference holds all information required to identify the source of an update. This is normally expected to point to a LoginOccurrence but may also point to future service objects such as Automation etc. Provides traceability of objects back to their triggering source.

h) The OCCURRENCE_UPDATE placeholder shall be replaced by the relevant service specific occurrence publish type.

3.2.12.3 Common Model Updates

a) The service-specific provider shall publish updates using a structure that extends Occurrence.

b) The timestamp in the MessageHeader shall be the time that the message is sent from the provider.

c) The timestamp in the UpdateHeader structure shall be the time that the update was created. This may be different to the MessageHeader because a single message can contain several updates.

d) The timestamp in the UpdateHeader structure shall be used to correctly order the partial updates.

3.2.12.4 Errors

The operation does not return any errors.

3.2.13 OPERATION: addOccurrence

3.2.13.1 General

The addOccurrence operation allows a consumer to create occurrences for one or more entities.

	Operation Name
	addOccurrence

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	List<OccurrenceHeader>

List<OCCURRENCE>

	OUT
	Response
	List<OccurrenceKey>

3.2.13.2 Structures

a) The provided lists shall hold the occurrences to be added.

b) The entityId field must not be NULL, the wildcard '*', or empty (an INVALID error shall be returned in this case).

c) The entityId must match an existing entity, an INVALID error shall be returned if it does not.

d) The definitionId field must not be the wildcard '0' (an INVALID error shall be returned in this case).

e) The definitionId field of the key may be NULL, in which case the provider shall use the latest definitionId.

f) If the definitionId is not NULL then it must match a non-deleted definition otherwise an INVALID error shall be returned.

g) The occurrenceId field of the key may be NULL, in which case the provider shall generate a unique identifier.

h) If a supplied occurrenceId already exists (even if the occurrence has been marked as deleted) this operation shall fail with a DUPLICATE error.

i) The OCCURRENCE type shall be replaced by the relevant service specific occurrence type.

j) The INVALID error may be returned as a result of a service specific data check.

k) The error extraInformation field may contain information related to the service specific check and will be detailed in the service specification.

l) The returned list shall contain the new occurrence keys.

m) The returned list of keys shall maintain the same order as the submitted occurrences.

3.2.13.3 Common Model Updates

The service-specific occurrence structure shall be archived and distributed using a MAL::UpdateType of Creation.

3.2.13.4 Errors

The operation may return the following errors:

3.2.13.4.1 ERROR: INVALID

a) One or more of the entities specified in the operation contain invalid values.

b) The entity is composed of both an entry from the Header list and from the object type list.

c) As the lists must be ordered identically, the index in the extra information field refers to both lists. In which part of the entity the error is contained is outside of the scope of this error message.

d) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.13.4.2 ERROR: DUPLICATE

a) One or more of the entities specified in the operation already exist.

b) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	DUPLICATE
	No
	70001
	List<MAL::Integer>

3.2.14 OPERATION: modifyOccurrence

3.2.14.1 General

The modifyOccurrence operation allows a consumer to update a non-deleted occurrence for one or more entities.

	Operation Name
	modifyOccurrence

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	List<OccurrenceHeader>

List<OCCURRENCE_UPDATE>

3.2.14.2 Structures

a) The submitted list shall hold the occurrences to be modified.

b) The entityId, definitionId and occurrenceId fields shall not be NULL, an INVALID error shall be raised in this case.

c) The entityId, definitionId and occurrenceId fields shall match an existing entity for this service, an UNKNOWN error shall be raised if this is not the case.

d) The definitionId of the occurrence may be marked as deleted, this is permitted and shall not cause an error to be returned as definitions marked as deleted are only invalid for new occurrences.

e) If no non-deleted occurrences exist for a matched entity then an INVALID error shall be returned.

f) The OCCURRENCE_UPDATE type shall be replaced by the relevant service specific occurrence publish type.

g) The INVALID error may be returned as a result of a service specific data check.

h) The error extraInformation field may contain information related to the service specific check and will be detailed in the service specification.

3.2.14.3 Common Model Updates

The service-specific occurrence publish type shall be archived and distributed using a MAL::UpdateType of Modification.

3.2.14.4 Errors

The operation may return the following errors:

3.2.14.4.1 ERROR: UNKNOWN

a) One or more of the occurrences specified in the operation do not exist and therefore cannot be modified.

b) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	UNKNOWN
	No
	Defined in MAL
	List<MAL::Integer>

3.2.14.4.2 ERROR: INVALID

a) One or more of the entities specified in the operation contain invalid values.

b) The entity is composed of both an entry from the Header list and from the object type list.

c) As the lists must be ordered identically, the index in the extra information field refers to both lists. In which part of the entity the error is contained is outside of the scope of this error message.

d) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.15 OPERATION: deleteOccurrence

3.2.15.1 General

The deleteOccurrence operation allows a consumer to delete one or more occurrences.

	Operation Name
	deleteOccurrence

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	List<OccurrenceKey>

3.2.15.2 Structures

a) The key list holds the keys of the occurrences to be deleted.

b) The entityId, definitionId and occurrenceId fields shall not be NULL (an INVALID error shall be returned in this case).

c) The entityId, definitionId and occurrenceId fields may contain the wildcard value.

d) If a matched occurrence is referenced by another service or entity then this operation shall fail with a REFERENCED error. It is implementation specific whether this check is actually performed.

e) If a provided occurrence key does not include a wildcard and does not match any existing occurrence then this operation shall fail with an UNKNOWN error.

f) If an occurrence matches multiple keys then it shall not cause an UNKNOWN error to be raised through multiple deletion attempts.

g) The operation shall either completely succeed or fail, in the case of a fail no occurrences shall be deleted.

3.2.15.3 Common Model Updates

a) The occurrences shall be marked as deleted by distributing and archiving an update using a MAL::UpdateType of Deletion for each matched entry.

b) The update shall include a NULL in place of the occurrence to indicate that it is being deleted.

3.2.15.4 Errors

The operation may return the following errors:

3.2.15.4.1 ERROR: UNKNOWN

a) One or more of the occurrences specified in the operation do not exist and therefore cannot be deleted.

b) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	UNKNOWN
	No
	Defined in MAL
	List<MAL::Integer>

3.2.15.4.2 ERROR: INVALID

a) One or more of the occurrence key values contained invalid NULL values.

b) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.15.4.3 ERROR: REFERENCED

a) One or more of the occurrences specified in the operation are referenced by other services.

b) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	REFERENCED
	No
	70002
	List<MAL::Integer>

3.2.16 OPERATION: deleteAllOccurrences

3.2.16.1 General

The deleteAllOccurrences operation allows a consumer to delete all non-deleted occurrences in the service. It should be noted that this operation deletes all occurrences for a service regardless of whether they were created by the addOccurrence operation or not.

	Operation Name
	deleteAllOccurrences

	Interaction Pattern
	SUBMIT

	IP Sequence
	Message
	Field Type

	IN
	Submit
	

3.2.16.2 Structures

a) No message body is passed.

b) If an occurrence is referenced by another service or entity then this operation shall not fail but will not delete that occurrence.

3.2.16.3 Common Model Updates

a) The occurrences shall be marked as deleted by distributing and archiving an update using a MAL::UpdateType of Deletion for each matched entry.

b) The update shall include a NULL in place of the occurrence to indicate that it is being deleted.

3.2.16.4 Errors

The operation does not return any errors.

3.2.17 OPERATION: listStatus

3.2.17.1 General

The listStatus operation allows a consumer to obtain the list of status aspects of a number of service entities. It provides basic catalogue information without returning the complete entities, just the keys.

	Operation Name
	listStatus

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	List<OccurrenceKey>

	OUT
	Response
	List<StatusKey>

3.2.17.2 Structures

a) The OccurrenceKey list shall hold one or more status match requests.

b) The entityId field must not be NULL or empty (an INVALID error shall be returned in this case).

c) If the entityId field contains the wildcard value '*' then status for all entities is required.

d) The definitionId field may be NULL in which case it shall match the latest definition of the matched entity.

e) The definitionId field may contain the wildcard value '0' in which case it shall match all definitions for the matched entity.

f) If definition is not used by the service then definitionId should be set to '0' in the OccurrenceKey list.

g) The occurrenceId field may be NULL in which case it shall match the latest occurrence of the matched entity.

h) The occurrenceId field may contain the wildcard value '0' in which case it shall match all occurrences for the matched entity and definition.

i) If occurrence is not used by the service then occurrenceId should be set to '0' in the OccurrenceKey list.

j) The returned list shall contain an entry for each matched entity.

k) The order of the returned entries is not specified, it shall be implementation specific.

l) If a status matches more than one request then it shall only be returned once.

m) If a value does not currently exist for a requested entity, then no entry shall be returned for that entity.

3.2.17.3 Common Model Updates

Not applicable.

3.2.17.4 Errors

The operation may return the following errors:

3.2.17.4.1 ERROR: INVALID

a) One or more of the requests contain invalid values.

b) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.18 OPERATION: requestStatus

3.2.18.1 General

The requestStatus operation allows a consumer to obtain the latest status aspects of a number of service entities.

	Operation Name
	requestStatus

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	List<StatusKey>

	OUT
	Response
	List<StatusHeader>

List<STATUS>

3.2.18.2 Structures

a) The StatusKey list shall hold one or more status match requests.

b) The entityId field must not be NULL or empty (an INVALID error shall be returned in this case).

c) If the entityId field contains the wildcard value '*' then status for all entities is required.

d) The definitionId field may be NULL in which case it shall match the latest definition of the matched entity.

e) The definitionId field may contain the wildcard value '0' in which case it shall match all definitions for the matched entity.

f) If definition is not used by the service then definitionId should be set to '0' in the StatusKey list.

g) The occurrenceId field may be NULL in which case it shall match the latest occurrence of the matched entity.

h) The occurrenceId field may contain the wildcard value '0' in which case it shall match all occurrences for the matched entity and definition.

i) If occurrence is not used by the service then occurrenceId should be set to '0' in the StatusKey list.

j) The statusId field may be NULL in which case it shall match the latest status of the matched entity.

k) The statusId field may contain the wildcard value '0' in which case it shall match all statuses for the matched entity, definition, and occurrence that are not marked as deleted (MAL::UpdateType of Deletion).

l) If the request specifies a statusId that does not match a status of an entity then the provider shall return an UNKNOWN error.

m) The returned lists shall contain an entry for each matched entity.

n) The order of the returned entries is not specified, it is implementation specific, however the order of the two lists shall match each other.

o) The STATUS type shall be replaced by the relevant service specific status type.

p) If a status matches more than one request then it shall only be returned once.

q) If a value does not currently exist for a requested entity, then no entry shall be returned for that entity.

3.2.18.3 Common Model Updates

Not applicable.

3.2.18.4 Errors

The operation may return the following errors:

3.2.18.4.1 ERROR: UNKNOWN

a) The requested status aspect is unknown.

b) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	UNKNOWN
	No
	Defined in MAL
	List<MAL::Integer>

3.2.18.4.2 ERROR: INVALID

a) One or more of the requests contain invalid values.

b) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.19 OPERATION: monitorStatus

3.2.19.1 General

The monitorStatus operation allows a consumer to subscribe for the status of one or more entities.

	Operation Name
	monitorStatus

	Interaction Pattern
	PUBLISH-SUBSCRIBE

	IP Sequence
	Message
	Field Type

	OUT
	Publish/Notify
	ExternalReference

STATUS_UPDATE

3.2.19.2 Structures

a) The first field of the key in the EntityRequest of the subscription (in the register) shall contain the entityId.

b) The second field of the key in the EntityRequest shall contain the definitionId.

c) The third field of the key in the EntityRequest shall contain the occurrenceId.

d) The fourth field of the key in the EntityRequest shall contain the statusId.

e) The '*' identifier may be used in the entityId to indicate that updates are required for all entities.

f) The '0' identifier may be used in the definitionId to indicate that updates are required for all definitions for a specific entity.

g) The '0' identifier may be used in the occurrenceId to indicate that updates are required for all occurrences for a specific entity.

h) The '0' identifier may be used in the statusId to indicate that updates are required for all status aspects for a specific entity.

i) The ExternalReference holds all information required to identify the source of an update. This is normally expected to point to a LoginOccurrence but may also point to future service objects such as Automation etc. Provides traceability of objects back to their triggering source.

j) The STATUS_UPDATE placeholder shall be replaced by the relevant service specific status publish type.

3.2.19.3 Common Model Updates

a) The service-specific provider shall publish updates using a structure that extends Status.

b) The timestamp in the MessageHeader shall be the time that the message is sent from the provider.

c) The timestamp in the UpdateHeader structure shall be the time that the update was created. This may be different to the MessageHeader because a single message can contain several updates.

d) The timestamp in the UpdateHeader structure shall be used to correctly order the partial updates.

3.2.19.4 Errors

The operation does not return any errors.

3.2.20 OPERATION: listEvent

3.2.20.1 General

The listEvent operation allows a consumer to obtain the list of possible events of a service. The events of a service are defined in the service specification and cannot be changed without modify the specification. This is a convenience operation that provides basic catalogue information without returning the complete entities, just the keys.

	Operation Name
	listEvent

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	

	OUT
	Response
	List<EventKey>

3.2.20.2 Structures

a) The returned list shall contain an entry for each possible event defined in the service.

b) The order of the returned entries is not specified, it shall be implementation specific.

3.2.20.3 Common Model Updates

Not applicable.

3.2.20.4 Errors

The operation does not return any errors.

3.2.21 OPERATION: requestEvent

3.2.21.1 General

The requestEvent operation allows a consumer to obtain the latest events of a number of service entities.

	Operation Name
	requestEvent

	Interaction Pattern
	REQUEST

	IP Sequence
	Message
	Field Type

	IN
	Request
	List<EventKey>

	OUT
	Response
	List<EventHeader>

List<EVENT>

3.2.21.2 Structures

a) The EventKey list shall hold one or more event match requests.

b) The entityId field must not be NULL or empty (an INVALID error shall be returned in this case).

c) If the entityId field contains the wildcard value '*' then events for all entities is required.

d) The definitionId field may be NULL in which case it shall match the latest definition of the matched entity.

e) The definitionId field may contain the wildcard value '0' in which case it shall match all definitions for the matched entity.

f) If definition is not used by the service then definitionId should be set to '0' in the EventKey list.

g) The occurrenceId field may be NULL in which case it shall match the latest occurrence of the matched entity.

h) The occurrenceId field may contain the wildcard value '0' in which case it shall match all occurrences for the matched entity and definition.

i) If occurrence is not used by the service then occurrenceId should be set to '0' in the EventKey list.

j) The eventId field must not be NULL (an INVALID error shall be returned in this case).

k) The eventId field may contain the wildcard value '0' in which case it shall match all events for the matched entity, definition, and occurrence that are not marked as deleted (MAL::UpdateType of Deletion).

l) If the request specifies an eventId that does not match an event of the service then the provider shall return an UNKNOWN error.

m) The returned list shall contain an entry for each matched entity.

n) The order of the returned entries is not specified, it is implementation specific, however the order of the two lists shall match each other.

o) The EVENT type shall be replaced by the relevant service specific event type.

p) The operation shall return the latest value for each matched event.

q) If an event matches more than one request then it shall only be returned once.

r) If a value does not currently exist for a requested entity, then no entry shall be returned for that entity.

3.2.21.3 Common Model Updates

Not applicable.

3.2.21.4 Errors

The operation may return the following errors:

3.2.21.4.1 ERROR: UNKNOWN

a) The requested event is unknown.

b) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	UNKNOWN
	No
	Defined in MAL
	List<MAL::Integer>

3.2.21.4.2 ERROR: INVALID

a) One or more of the requests contain invalid values.

b) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.22 OPERATION: monitorEvent

3.2.22.1 General

The monitorEvent operation allows a consumer to subscribe for the events of one or more entities.

	Operation Name
	monitorEvent

	Interaction Pattern
	PUBLISH-SUBSCRIBE

	IP Sequence
	Message
	Field Type

	OUT
	Publish/Notify
	ExternalReference

EVENT

3.2.22.2 Structures

a) The first field of the key in the EntityRequest of the subscription (in the register) shall contain the entityId.

b) The second field of the key in the EntityRequest shall contain the definitionId.

c) The third field of the key in the EntityRequest shall contain the occurrenceId.

d) The fourth field of the key in the EntityRequest shall contain the eventId.

e) The '*' identifier may be used in the entityId to indicate that updates are required for all entities.

f) The '0' identifier may be used in the definitionId to indicate that updates are required for all definitions for a specific entity.

g) The '0' identifier may be used in the occurrenceId to indicate that updates are required for all occurrences for a specific entity.

h) The '0' identifier may be used in the eventId to indicate that updates are required for all events for a specific entity.

i) The ExternalReference holds all information required to identify the source of an update. This is normally expected to point to a LoginOccurrence but may also point to future service objects such as Automation etc. Provides traceability of objects back to their triggering source.

j) The EVENT placeholder shall be replaced by the relevant service specific event type.

3.2.22.3 Common Model Updates

a) The service-specific provider shall publish updates using a structure that extends Event.

b) The timestamp in the MessageHeader shall be the time that the message is sent from the provider.

c) The timestamp in the UpdateHeader structure shall be the time that the update was created. This may be different to the MessageHeader because a single message can contain several updates.

d) The MAL::UpdateType shall always be Deletion.

3.2.22.4 Errors

The operation does not return any errors.

3.2.23 OPERATION: catalogueDefinition

3.2.23.1 General

The catalogueDefinition operation retrieves from an archive a count of the number of service definition updates that match a specific set of criteria.

A PROGRESS pattern is used so that the returned counts may be delivered as soon as they are calculated rather than waiting for the request to complete. This enables a more responsive operation, delivering data as it is available, when large numbers of selection criteria have been submitted.

	Operation Name
	catalogueDefinition

	Interaction Pattern
	PROGRESS

	IP Sequence
	Message
	Field Type

	IN
	Progress
	MAL::Duration

List<SelectionCriteria>

	OUT
	Ack
	MAL::Duration

	OUT
	Update
	List<ArchiveCatalogue>

	OUT
	Response
	List<ArchiveCatalogue>

3.2.23.2 Structures

a) A duration is provided as part of the request that defines the maximum amount of time permitted before delivery of the response shall start.

b) A duration of '0' or NULL shall be interpreted as meaning no delivery timeout.

c) The provider shall return a TIMEDOUT error if delivery of the response cannot start in the time specified in the duration.

d) The operation shall take a SelectionCriteria list structure detailing the match criteria.

e) For the selection criteria, if the final identifier of the domain is the wildcard '*', then all sub-domains shall be searched for matches.

f) The wildcard shall only be used for the final component of the domain; for more advanced retrievals the custom retrieval fields must be used.

g) The start time must be before the end time, an INVALID error shall be returned if the time range is incorrect.

h) The end time may be in the future in which case it shall be interpreted as meaning an end time of 'now'.

i) The acknowledgement message shall return an estimated duration if no problems are detected during the execution of the request.

j) The duration estimate is for guidance only and the actual operation may take less or more time.

k) It shall return one or more ArchiveCatalogue list structures.

l) An ArchiveCatalogue structure shall be returned for each submitted SelectionCriteria.

m) The order of the ArchiveCatalogue structures in the list shall match exactly that of the SelectionCriteria list.

n) Each returned ArchiveCatalogue shall contain the count of definition updates that matched the corresponding SelectionCriteria.

o) The returned ArchiveCatalogue list shall contain all matched entries that were contained by the provider.

p) If no updates exist in the specified time range for a specific entity then a count of zero is returned for that entity.

3.2.23.3 Common Model Updates

Not applicable.

3.2.23.4 Errors

The operation may return the following errors:

3.2.23.4.1 ERROR: INVALID

a) One or more of the SelectionCriteria specified in the operation contain invalid values.

b) In which part of the SelectionCriteria the error is contained is outside of the scope of this error message.

c) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.23.4.2 ERROR: TIMEDOUT

Delivery of the response was not able to start inside the requested timeout.

	Error
	COM Event
	Error #
	ExtraInfo Type

	TIMEDOUT
	No
	70003
	Not Used

3.2.24 OPERATION: catalogueOccurrence

3.2.24.1 General

The catalogueOccurrence operation retrieves from an archive a count of the number of service occurrence updates that match a specific set of criteria.

A PROGRESS pattern is used so that the returned counts may be delivered as soon as they are calculated rather than waiting for the request to complete. This enables a more responsive operation, delivering data as it is available, when large numbers of selection criteria have been submitted.

	Operation Name
	catalogueOccurrence

	Interaction Pattern
	PROGRESS

	IP Sequence
	Message
	Field Type

	IN
	Progress
	MAL::Duration

List<SelectionCriteria>

	OUT
	Ack
	MAL::Duration

	OUT
	Update
	List<ArchiveCatalogue>

	OUT
	Response
	List<ArchiveCatalogue>

3.2.24.2 Structures

a) A duration is provided as part of the request that defines the maximum amount of time permitted before delivery of the response shall start.

b) A duration of '0' or NULL shall be interpreted as meaning no delivery timeout.

c) The provider shall return a TIMEDOUT error if delivery of the response cannot start in the time specified in the duration.

d) The operation shall take a SelectionCriteria list structure detailing the match criteria.

e) For the selection criteria, if the final identifier of the domain is the wildcard '*', then all sub-domains shall be searched for matches.

f) The wildcard shall only be used for the final component of the domain; for more advanced retrievals the custom retrieval fields must be used.

g) The start time must be before the end time, an INVALID error shall be returned if the time range is incorrect.

h) The end time may be in the future in which case it shall be interpreted as meaning an end time of 'now'.

i) The acknowledgement message shall return an estimated duration if no problems are detected during the execution of the request.

j) The duration estimate is for guidance only and the actual operation may take less or more time.

k) It shall return one or more ArchiveCatalogue list structures.

l) An ArchiveCatalogue structure shall be returned for each submitted SelectionCriteria.

m) The order of the ArchiveCatalogue structures in the list shall match exactly that of the SelectionCriteria list.

n) Each returned ArchiveCatalogue shall contain the count of occurrence updates that matched the corresponding SelectionCriteria.

o) The returned ArchiveCatalogue list shall contain all matched entries that were contained by the provider.

p) If no updates exist in the specified time range for a specific entity then a count of zero is returned for that entity.

3.2.24.3 Common Model Updates

Not applicable.

3.2.24.4 Errors

The operation may return the following errors:

3.2.24.4.1 ERROR: INVALID

a) One or more of the SelectionCriteria specified in the operation contain invalid values.

b) In which part of the SelectionCriteria the error is contained is outside of the scope of this error message.

c) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.24.4.2 ERROR: TIMEDOUT

Delivery of the response was not able to start inside the requested timeout.

	Error
	COM Event
	Error #
	ExtraInfo Type

	TIMEDOUT
	No
	70003
	Not Used

3.2.25 OPERATION: catalogueStatus

3.2.25.1 General

The catalogueStatus operation retrieves from an archive a count of the number of service status updates that match a specific set of criteria.

A PROGRESS pattern is used so that the returned counts may be delivered as soon as they are calculated rather than waiting for the request to complete. This enables a more responsive operation, delivering data as it is available, when large numbers of selection criteria have been submitted.

	Operation Name
	catalogueStatus

	Interaction Pattern
	PROGRESS

	IP Sequence
	Message
	Field Type

	IN
	Progress
	MAL::Duration

List<SelectionCriteria>

	OUT
	Ack
	MAL::Duration

	OUT
	Update
	List<ArchiveCatalogue>

	OUT
	Response
	List<ArchiveCatalogue>

3.2.25.2 Structures

a) A duration is provided as part of the request that defines the maximum amount of time permitted before delivery of the response shall start.

b) A duration of '0' or NULL shall be interpreted as meaning no delivery timeout.

c) The provider shall return a TIMEDOUT error if delivery of the response cannot start in the time specified in the duration.

d) The operation shall take a SelectionCriteria list structure detailing the match criteria.

e) For the selection criteria, if the final identifier of the domain is the wildcard '*', then all sub-domains shall be searched for matches.

f) The wildcard shall only be used for the final component of the domain; for more advanced retrievals the custom retrieval fields must be used.

g) The start time must be before the end time, an INVALID error shall be returned if the time range is incorrect.

h) The end time may be in the future in which case it shall be interpreted as meaning an end time of 'now'.

i) The acknowledgement message shall return an estimated duration if no problems are detected during the execution of the request.

j) The duration estimate is for guidance only and the actual operation may take less or more time.

k) It shall return one or more ArchiveCatalogue list structures.

l) An ArchiveCatalogue structure shall be returned for each submitted SelectionCriteria.

m) The order of the ArchiveCatalogue structures in the list shall match exactly that of the SelectionCriteria list.

n) Each returned ArchiveCatalogue shall contain the count of status updates that matched the corresponding SelectionCriteria.

o) The returned ArchiveCatalogue list shall contain all matched entries that were contained by the provider.

p) If no updates exist in the specified time range for a specific entity then a count of zero is returned for that entity.

3.2.25.3 Common Model Updates

Not applicable.

3.2.25.4 Errors

The operation may return the following errors:

3.2.25.4.1 ERROR: INVALID

a) One or more of the SelectionCriteria specified in the operation contain invalid values.

b) In which part of the SelectionCriteria the error is contained is outside of the scope of this error message.

c) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.25.4.2 ERROR: TIMEDOUT

Delivery of the response was not able to start inside the requested timeout.

	Error
	COM Event
	Error #
	ExtraInfo Type

	TIMEDOUT
	No
	70003
	Not Used

3.2.26 OPERATION: catalogueEvent

3.2.26.1 General

The catalogueEvent operation retrieves from an archive a count of the number of service event updates that match a specific set of criteria.

A PROGRESS pattern is used so that the returned counts may be delivered as soon as they are calculated rather than waiting for the request to complete. This enables a more responsive operation, delivering data as it is available, when large numbers of selection criteria have been submitted.

	Operation Name
	catalogueEvent

	Interaction Pattern
	PROGRESS

	IP Sequence
	Message
	Field Type

	IN
	Progress
	MAL::Duration

List<SelectionCriteria>

	OUT
	Ack
	MAL::Duration

	OUT
	Update
	List<ArchiveCatalogue>

	OUT
	Response
	List<ArchiveCatalogue>

3.2.26.2 Structures

a) A duration is provided as part of the request that defines the maximum amount of time permitted before delivery of the response shall start.

b) A duration of '0' or NULL shall be interpreted as meaning no delivery timeout.

c) The provider shall return a TIMEDOUT error if delivery of the response cannot start in the time specified in the duration.

d) The operation shall take a SelectionCriteria list structure detailing the match criteria.

e) For the selection criteria, if the final identifier of the domain is the wildcard '*', then all sub-domains shall be searched for matches.

f) The wildcard shall only be used for the final component of the domain; for more advanced retrievals the custom retrieval fields must be used.

g) The start time must be before the end time, an INVALID error shall be returned if the time range is incorrect.

h) The end time may be in the future in which case it shall be interpreted as meaning an end time of 'now'.

i) The acknowledgement message shall return an estimated duration if no problems are detected during the execution of the request.

j) The duration estimate is for guidance only and the actual operation may take less or more time.

k) It shall return one or more ArchiveCatalogue list structures.

l) An ArchiveCatalogue structure shall be returned for each submitted SelectionCriteria.

m) The order of the ArchiveCatalogue structures in the list shall match exactly that of the SelectionCriteria list.

n) Each returned ArchiveCatalogue shall contain the count of event updates that matched the corresponding SelectionCriteria.

o) The returned ArchiveCatalogue list shall contain all matched entries that were contained by the provider.

p) If no updates exist in the specified time range for a specific entity then a count of zero is returned for that entity.

3.2.26.3 Common Model Updates

Not applicable.

3.2.26.4 Errors

The operation may return the following errors:

3.2.26.4.1 ERROR: INVALID

a) One or more of the SelectionCriteria specified in the operation contain invalid values.

b) In which part of the SelectionCriteria the error is contained is outside of the scope of this error message.

c) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.26.4.2 ERROR: TIMEDOUT

Delivery of the response was not able to start inside the requested timeout.

	Error
	COM Event
	Error #
	ExtraInfo Type

	TIMEDOUT
	No
	70003
	Not Used

3.2.27 OPERATION: retrieveDefinition

3.2.27.1 General

The retrieveDefinition operation retrieves from an archive a report of a packaged 'block' of service definition updates that match a specific set of criteria.

If an initial value for an entity is required then the snapshot operation should be used.

A PROGRESS pattern is used so that the returned data may be delivered in chunks, ordered by time, to reduce the load on the provider and transport in case of a large data request.

	Operation Name
	retrieveDefinition

	Interaction Pattern
	PROGRESS

	IP Sequence
	Message
	Field Type

	IN
	Progress
	MAL::Duration

List<SelectionCriteria>

	OUT
	Ack
	MAL::Duration

	OUT
	Update
	ArchiveHeader

List<DEFINITION_UPDATE>

	OUT
	Response
	ArchiveHeader

List<DEFINITION_UPDATE>

3.2.27.2 Structures

a) A duration is provided as part of the request that defines the maximum amount of time permitted before delivery of the response shall start.

b) A duration of '0' or NULL shall be interpreted as meaning no delivery timeout.

c) The provider shall return a TIMEDOUT error if delivery of the response cannot start in the time specified in the duration.

d) The SelectionCriteria list structure shall detail the retrieval request.

e) For the selection criteria, if the final identifier of the domain is the wildcard '*', then all sub-domains shall be searched for matches.

f) The wildcard shall only be used for the final component of the domain; for more advanced retrievals the custom retrieval field must be used.

g) The start time must be before the end time, an INVALID error shall be returned if the time range is incorrect.

h) The end time may be in the future in which case it shall be interpreted as meaning an end time of 'now'.

i) The acknowledgement message shall return an estimated duration if no problems are detected during the execution of the request.

j) The duration estimate is for guidance only and the actual operation may take less or more time.

k) The returned list shall contain all matched entries that were contained by the provider.

l) The DEFINITION_UPDATE type shall be replaced by the relevant service specific COM publish type.

m) If no updates exist in the specified time range for a specific entity then no updates/values are returned for that entity.

3.2.27.3 Common Model Updates

Not applicable.

3.2.27.4 Errors

The operation may return the following errors:

3.2.27.4.1 ERROR: INVALID

a) One or more of the SelectionCriteria specified in the operation contain invalid values.

b) In which part of the SelectionCriteria the error is contained is outside of the scope of this error message.

c) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.27.4.2 ERROR: TIMEDOUT

Delivery of the response was not able to start inside the requested timeout.

	Error
	COM Event
	Error #
	ExtraInfo Type

	TIMEDOUT
	No
	70003
	Not Used

3.2.28 OPERATION: retrieveOccurrence

3.2.28.1 General

The retrieveOccurrence operation retrieves from an archive a report of a packaged 'block' of service occurrence updates that match a specific set of criteria.

If an initial value for an entity is required then the snapshot operation should be used.

A PROGRESS pattern is used so that the returned data may be delivered in chunks, ordered by time, to reduce the load on the provider and transport in case of a large data request.

	Operation Name
	retrieveOccurrence

	Interaction Pattern
	PROGRESS

	IP Sequence
	Message
	Field Type

	IN
	Progress
	MAL::Duration

List<SelectionCriteria>

	OUT
	Ack
	MAL::Duration

	OUT
	Update
	ArchiveHeader

List<OCCURRENCE_UPDATE>

	OUT
	Response
	ArchiveHeader

List<OCCURRENCE_UPDATE>

3.2.28.2 Structures

a) A duration is provided as part of the request that defines the maximum amount of time permitted before delivery of the response shall start.

b) A duration of '0' or NULL shall be interpreted as meaning no delivery timeout.

c) The provider shall return a TIMEDOUT error if delivery of the response cannot start in the time specified in the duration.

d) The SelectionCriteria list structure shall detail the retrieval request.

e) For the selection criteria, if the final identifier of the domain is the wildcard '*', then all sub-domains shall be searched for matches.

f) The wildcard shall only be used for the final component of the domain; for more advanced retrievals the custom retrieval field must be used.

g) The start time must be before the end time, an INVALID error shall be returned if the time range is incorrect.

h) The end time may be in the future in which case it shall be interpreted as meaning an end time of 'now'.

i) The acknowledgement message shall return an estimated duration if no problems are detected during the execution of the request.

j) The duration estimate is for guidance only and the actual operation may take less or more time.

k) The returned list shall contain all matched entries that were contained by the provider.

l) The OCCURRENCE_UPDATE type shall be replaced by the relevant service specific COM publish type.

m) If no updates exist in the specified time range for a specific entity then no updates/values are returned for that entity.

3.2.28.3 Common Model Updates

Not applicable.

3.2.28.4 Errors

The operation may return the following errors:

3.2.28.4.1 ERROR: INVALID

a) One or more of the SelectionCriteria specified in the operation contain invalid values.

b) In which part of the SelectionCriteria the error is contained is outside of the scope of this error message.

c) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.28.4.2 ERROR: TIMEDOUT

Delivery of the response was not able to start inside the requested timeout.

	Error
	COM Event
	Error #
	ExtraInfo Type

	TIMEDOUT
	No
	70003
	Not Used

3.2.29 OPERATION: retrieveStatus

3.2.29.1 General

The retrieveStatus operation retrieves from an archive a report of a packaged 'block' of service status updates that match a specific set of criteria.

If an initial value for an entity is required then the snapshot operation should be used.

A PROGRESS pattern is used so that the returned data may be delivered in chunks, ordered by time, to reduce the load on the provider and transport in case of a large data request.

	Operation Name
	retrieveStatus

	Interaction Pattern
	PROGRESS

	IP Sequence
	Message
	Field Type

	IN
	Progress
	MAL::Duration

List<SelectionCriteria>

	OUT
	Ack
	MAL::Duration

	OUT
	Update
	ArchiveHeader

List<STATUS_UPDATE>

	OUT
	Response
	ArchiveHeader

List<STATUS_UPDATE>

3.2.29.2 Structures

a) A duration is provided as part of the request that defines the maximum amount of time permitted before delivery of the response shall start.

b) A duration of '0' or NULL shall be interpreted as meaning no delivery timeout.

c) The provider shall return a TIMEDOUT error if delivery of the response cannot start in the time specified in the duration.

d) The SelectionCriteria list structure shall detail the retrieval request.

e) For the selection criteria, if the final identifier of the domain is the wildcard '*', then all sub-domains shall be searched for matches.

f) The wildcard shall only be used for the final component of the domain; for more advanced retrievals the custom retrieval field must be used.

g) The start time must be before the end time, an INVALID error shall be returned if the time range is incorrect.

h) The end time may be in the future in which case it shall be interpreted as meaning an end time of 'now'.

i) The acknowledgement message shall return an estimated duration if no problems are detected during the execution of the request.

j) The duration estimate is for guidance only and the actual operation may take less or more time.

k) The returned list shall contain all matched entries that were contained by the provider.

l) The STATUS_UPDATE type shall be replaced by the relevant service specific COM publish type.

m) If no updates exist in the specified time range for a specific entity then no updates/values are returned for that entity.

3.2.29.3 Common Model Updates

Not applicable.

3.2.29.4 Errors

The operation may return the following errors:

3.2.29.4.1 ERROR: INVALID

a) One or more of the SelectionCriteria specified in the operation contain invalid values.

b) In which part of the SelectionCriteria the error is contained is outside of the scope of this error message.

c) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.29.4.2 ERROR: TIMEDOUT

Delivery of the response was not able to start inside the requested timeout.

	Error
	COM Event
	Error #
	ExtraInfo Type

	TIMEDOUT
	No
	70003
	Not Used

3.2.30 OPERATION: retrieveEvent

3.2.30.1 General

The retrieveEvent operation retrieves from an archive a report of a packaged 'block' of service event updates that match a specific set of criteria.

If an initial value for an entity is required then the snapshot operation should be used.

A PROGRESS pattern is used so that the returned data may be delivered in chunks, ordered by time, to reduce the load on the provider and transport in case of a large data request.

	Operation Name
	retrieveEvent

	Interaction Pattern
	PROGRESS

	IP Sequence
	Message
	Field Type

	IN
	Progress
	MAL::Duration

List<SelectionCriteria>

	OUT
	Ack
	MAL::Duration

	OUT
	Update
	ArchiveHeader

List<EVENT>

	OUT
	Response
	ArchiveHeader

List<EVENT>

3.2.30.2 Structures

a) A duration is provided as part of the request that defines the maximum amount of time permitted before delivery of the response shall start.

b) A duration of '0' or NULL shall be interpreted as meaning no delivery timeout.

c) The provider shall return a TIMEDOUT error if delivery of the response cannot start in the time specified in the duration.

d) The SelectionCriteria list structure shall detail the retrieval request.

e) For the selection criteria, if the final identifier of the domain is the wildcard '*', then all sub-domains shall be searched for matches.

f) The wildcard shall only be used for the final component of the domain; for more advanced retrievals the custom retrieval field must be used.

g) The start time must be before the end time, an INVALID error shall be returned if the time range is incorrect.

h) The end time may be in the future in which case it shall be interpreted as meaning an end time of 'now'.

i) The acknowledgement message shall return an estimated duration if no problems are detected during the execution of the request.

j) The duration estimate is for guidance only and the actual operation may take less or more time.

k) The returned list shall contain all matched entries that were contained by the provider.

l) The EVENT type shall be replaced by the relevant service specific COM event type.

m) If no updates exist in the specified time range for a specific entity then no updates/values are returned for that entity.

3.2.30.3 Common Model Updates

Not applicable.

3.2.30.4 Errors

The operation may return the following errors:

3.2.30.4.1 ERROR: INVALID

a) One or more of the SelectionCriteria specified in the operation contain invalid values.

b) In which part of the SelectionCriteria the error is contained is outside of the scope of this error message.

c) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.30.4.2 ERROR: TIMEDOUT

Delivery of the response was not able to start inside the requested timeout.

	Error
	COM Event
	Error #
	ExtraInfo Type

	TIMEDOUT
	No
	70003
	Not Used

3.2.31 OPERATION: snapshotDefinition

3.2.31.1 General

The snapshotDefinition operation returns from an archive a snapshot report of a packaged 'block' of service items that were in existence at the requested time and that match a specific set of criteria.

A PROGRESS pattern is used so that the returned data may be delivered in chunks, in no specified order, to reduce the load on the provider and transport in case of a large data request.

	Operation Name
	snapshotDefinition

	Interaction Pattern
	PROGRESS

	IP Sequence
	Message
	Field Type

	IN
	Progress
	MAL::Duration

List<SelectionCriteria>

	OUT
	Ack
	MAL::Duration

	OUT
	Update
	ArchiveHeader

List<DEFINITION_UPDATE>

	OUT
	Response
	ArchiveHeader

List<DEFINITION_UPDATE>

3.2.31.2 Structures

a) A duration is provided as part of the request that defines the maximum amount of time permitted before delivery of the response shall start.

b) A duration of '0' or NULL shall be interpreted as meaning no delivery timeout.

c) The provider shall return a TIMEDOUT error if delivery of the response cannot start in the time specified in the duration.

d) The SelectionCriteria list structure shall detail the snapshot request.

e) For the selection criteria, if the final identifier of the domain is the wildcard '*', then all sub-domains shall be searched for matches.

f) The wildcard shall only be used for the final component of the domain; for more advanced retrievals the custom retrieval must be used.

g) Only the start time is used, the end time shall be ignored.

h) The start time may be in the future in which case it shall be interpreted as meaning a time of 'now'.

i) The acknowledgement message shall return an estimated duration if no problems are detected during the execution of the request.

j) The duration estimate is for guidance only and the actual operation may take less or more time.

k) The returned list shall contain all matched entries that were contained by the provider.

l) The DEFINITION_UPDATE type shall be replaced by the relevant service specific COM publish type.

m) If no updates exist at the specified time for a specific entity then no updates/values are returned for that entity.

n) The returned data for a specific item may contain more than one update. This is when the provider is not able to reconstruct the complete state of the component and therefore is forced to return the last complete update followed by any partial updates.

3.2.31.3 Common Model Updates

Not applicable.

3.2.31.4 Errors

The operation may return the following errors:

3.2.31.4.1 ERROR: INVALID

a) One or more of the SelectionCriteria specified in the operation contain invalid values.

b) In which part of the SelectionCriteria the error is contained is outside of the scope of this error message.

c) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.31.4.2 ERROR: TIMEDOUT

Delivery of the response was not able to start inside the requested timeout.

	Error
	COM Event
	Error #
	ExtraInfo Type

	TIMEDOUT
	No
	70003
	Not Used

3.2.32 OPERATION: snapshotOccurrence

3.2.32.1 General

The snapshotOccurrence operation returns from an archive a snapshot report of a packaged 'block' of service items that were in existence at the requested time and that match a specific set of criteria.

A PROGRESS pattern is used so that the returned data may be delivered in chunks, in no specified order, to reduce the load on the provider and transport in case of a large data request.

	Operation Name
	snapshotOccurrence

	Interaction Pattern
	PROGRESS

	IP Sequence
	Message
	Field Type

	IN
	Progress
	MAL::Duration

List<SelectionCriteria>

	OUT
	Ack
	MAL::Duration

	OUT
	Update
	ArchiveHeader

List<OCCURRENCE_UPDATE>

	OUT
	Response
	ArchiveHeader

List<OCCURRENCE_UPDATE>

3.2.32.2 Structures

a) A duration is provided as part of the request that defines the maximum amount of time permitted before delivery of the response shall start.

b) A duration of '0' or NULL shall be interpreted as meaning no delivery timeout.

c) The provider shall return a TIMEDOUT error if delivery of the response cannot start in the time specified in the duration.

d) The SelectionCriteria list structure shall detail the snapshot request.

e) For the selection criteria, if the final identifier of the domain is the wildcard '*', then all sub-domains shall be searched for matches.

f) The wildcard shall only be used for the final component of the domain; for more advanced retrievals the custom retrieval must be used.

g) Only the start time is used, the end time shall be ignored.

h) The start time may be in the future in which case it shall be interpreted as meaning a time of 'now'.

i) The acknowledgement message shall return an estimated duration if no problems are detected during the execution of the request.

j) The duration estimate is for guidance only and the actual operation may take less or more time.

k) The returned list shall contain all matched entries that were contained by the provider.

l) The OCCURRENCE_UPDATE type shall be replaced by the relevant service specific COM publish type.

m) If no updates exist at the specified time for a specific entity then no updates/values are returned for that entity.

n) The returned data for a specific item may contain more than one update. This is when the provider is not able to reconstruct the complete state of the component and therefore is forced to return the last complete update followed by any partial updates.

3.2.32.3 Common Model Updates

Not applicable.

3.2.32.4 Errors

The operation may return the following errors:

3.2.32.4.1 ERROR: INVALID

a) One or more of the SelectionCriteria specified in the operation contain invalid values.

b) In which part of the SelectionCriteria the error is contained is outside of the scope of this error message.

c) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.32.4.2 ERROR: TIMEDOUT

Delivery of the response was not able to start inside the requested timeout.

	Error
	COM Event
	Error #
	ExtraInfo Type

	TIMEDOUT
	No
	70003
	Not Used

3.2.33 OPERATION: snapshotStatus

3.2.33.1 General

The snapshotStatus operation returns from an archive a snapshot report of a packaged 'block' of service items that were in existence at the requested time and that match a specific set of criteria.

A PROGRESS pattern is used so that the returned data may be delivered in chunks, in no specified order, to reduce the load on the provider and transport in case of a large data request.

	Operation Name
	snapshotStatus

	Interaction Pattern
	PROGRESS

	IP Sequence
	Message
	Field Type

	IN
	Progress
	MAL::Duration

List<SelectionCriteria>

	OUT
	Ack
	MAL::Duration

	OUT
	Update
	ArchiveHeader

List<STATUS_UPDATE>

	OUT
	Response
	ArchiveHeader

List<STATUS_UPDATE>

3.2.33.2 Structures

a) A duration is provided as part of the request that defines the maximum amount of time permitted before delivery of the response shall start.

b) A duration of '0' or NULL shall be interpreted as meaning no delivery timeout.

c) The provider shall return a TIMEDOUT error if delivery of the response cannot start in the time specified in the duration.

d) The SelectionCriteria list structure shall detail the snapshot request.

e) For the selection criteria, if the final identifier of the domain is the wildcard '*', then all sub-domains shall be searched for matches.

f) The wildcard shall only be used for the final component of the domain; for more advanced retrievals the custom retrieval must be used.

g) Only the start time is used, the end time shall be ignored.

h) The start time may be in the future in which case it shall be interpreted as meaning a time of 'now'.

i) The acknowledgement message shall return an estimated duration if no problems are detected during the execution of the request.

j) The duration estimate is for guidance only and the actual operation may take less or more time.

k) The returned list shall contain all matched entries that were contained by the provider.

l) The STATUS_UPDATE type shall be replaced by the relevant service specific COM publish type.

m) If no updates exist at the specified time for a specific entity then no updates/values are returned for that entity.

n) The returned data for a specific item may contain more than one update. This is when the provider is not able to reconstruct the complete state of the component and therefore is forced to return the last complete update followed by any partial updates.

3.2.33.3 Common Model Updates

Not applicable.

3.2.33.4 Errors

The operation may return the following errors:

3.2.33.4.1 ERROR: INVALID

a) One or more of the SelectionCriteria specified in the operation contain invalid values.

b) In which part of the SelectionCriteria the error is contained is outside of the scope of this error message.

c) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.33.4.2 ERROR: TIMEDOUT

Delivery of the response was not able to start inside the requested timeout.

	Error
	COM Event
	Error #
	ExtraInfo Type

	TIMEDOUT
	No
	70003
	Not Used

3.2.34 OPERATION: snapshotEvent

3.2.34.1 General

The snapshotEvent operation returns from an archive a snapshot report of a packaged 'block' of service items that were in existence at the requested time and that match a specific set of criteria.

A PROGRESS pattern is used so that the returned data may be delivered in chunks, in no specified order, to reduce the load on the provider and transport in case of a large data request.

	Operation Name
	snapshotEvent

	Interaction Pattern
	PROGRESS

	IP Sequence
	Message
	Field Type

	IN
	Progress
	MAL::Duration

List<SelectionCriteria>

	OUT
	Ack
	MAL::Duration

	OUT
	Update
	ArchiveHeader

List<EVENT>

	OUT
	Response
	ArchiveHeader

List<EVENT>

3.2.34.2 Structures

a) A duration is provided as part of the request that defines the maximum amount of time permitted before delivery of the response shall start.

b) A duration of '0' or NULL shall be interpreted as meaning no delivery timeout.

c) The provider shall return a TIMEDOUT error if delivery of the response cannot start in the time specified in the duration.

d) The SelectionCriteria list structure shall detail the snapshot request.

e) For the selection criteria, if the final identifier of the domain is the wildcard '*', then all sub-domains shall be searched for matches.

f) The wildcard shall only be used for the final component of the domain; for more advanced retrievals the custom retrieval must be used.

g) Only the start time is used, the end time shall be ignored.

h) The start time may be in the future in which case it shall be interpreted as meaning a time of 'now'.

i) The acknowledgement message shall return an estimated duration if no problems are detected during the execution of the request.

j) The duration estimate is for guidance only and the actual operation may take less or more time.

k) The returned list shall contain all matched entries that were contained by the provider.

l) The EVENT type shall be replaced by the relevant service specific COM event type.

m) If no updates exist at the specified time for a specific entity then no updates/values are returned for that entity.

n) The returned data for a specific item may contain more than one update. This is when the provider is not able to reconstruct the complete state of the component and therefore is forced to return the last complete update followed by any update and modification updates.

3.2.34.3 Common Model Updates

Not applicable.

3.2.34.4 Errors

The operation may return the following errors:

3.2.34.4.1 ERROR: INVALID

a) One or more of the SelectionCriteria specified in the operation contain invalid values.

b) In which part of the SelectionCriteria the error is contained is outside of the scope of this error message.

c) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.34.4.2 ERROR: TIMEDOUT

Delivery of the response was not able to start inside the requested timeout.

	Error
	COM Event
	Error #
	ExtraInfo Type

	TIMEDOUT
	No
	70003
	Not Used

3.2.35 OPERATION: compactRetrieveDefinition

3.2.35.1 General

The compactRetrieveDefinition operation retrieves from an archive a report of a packaged 'block' of service definition updates that match a specific set of criteria.

It differs from the retrieveDefinition operation in that it returns data in a compact form where only the entity value and a timestamp is provided and not the full COM structure.

If an initial value for an entity is required then the compactSnapshotDefinition operation should be used.

A PROGRESS pattern is used so that the returned data may be delivered in chunks, ordered by time, to reduce the load on the provider and transport in case of a large data request.

	Operation Name
	compactRetrieveDefinition

	Interaction Pattern
	PROGRESS

	IP Sequence
	Message
	Field Type

	IN
	Progress
	MAL::Duration

List<SelectionCriteria>

	OUT
	Ack
	MAL::Duration

	OUT
	Update
	CompactArchiveHeader

List<DEFINITION_UPDATE>

	OUT
	Response
	CompactArchiveHeader

List<DEFINITION_UPDATE>

3.2.35.2 Structures

a) A duration is provided as part of the request that defines the maximum amount of time permitted before delivery of the response shall start.

b) A duration of '0' or NULL shall be interpreted as meaning no delivery timeout.

c) The provider shall return a TIMEDOUT error if delivery of the response cannot start in the time specified in the duration.

d) The SelectionCriteria list structure shall detail the retrieval request.

e) For the selection criteria, if the final identifier of the domain is the wildcard '*', then all sub-domains shall be searched for matches.

f) The wildcard shall only be used for the final component of the domain; for more advanced retrievals the custom retrieval field must be used.

g) The start time must be before the end time, an INVALID error shall be returned if the time range is incorrect.

h) The end time may be in the future in which case it shall be interpreted as meaning an end time of 'now'.

i) The acknowledgement message shall return an estimated duration if no problems are detected during the execution of the request.

j) The duration estimate is for guidance only and the actual operation may take less or more time.

k) The returned list shall contain all matched entries that were contained by the provider.

l) The DEFINITION_UPDATE type shall be replaced by the relevant service specific COM publish type.

m) If no updates exist in the specified time range for a specific entity then no updates/values are returned for that entity.

3.2.35.3 Common Model Updates

Not applicable.

3.2.35.4 Errors

The operation may return the following errors:

3.2.35.4.1 ERROR: INVALID

a) One or more of the SelectionCriteria specified in the operation contain invalid values.

b) In which part of the SelectionCriteria the error is contained is outside of the scope of this error message.

c) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.35.4.2 ERROR: TIMEDOUT

Delivery of the response was not able to start inside the requested timeout.

	Error
	COM Event
	Error #
	ExtraInfo Type

	TIMEDOUT
	No
	70003
	Not Used

3.2.36 OPERATION: compactRetrieveOccurrence

3.2.36.1 General

The compactRetrieveOccurrence operation retrieves from an archive a report of a packaged 'block' of service occurrence updates that match a specific set of criteria.

It differs from the retrieveOccurrence operation in that it returns data in a compact form where only the entity value and a timestamp is provided and not the full COM structure.

If an initial value for an entity is required then the compactSnapshotOccurrence operation should be used.

A PROGRESS pattern is used so that the returned data may be delivered in chunks, ordered by time, to reduce the load on the provider and transport in case of a large data request.

	Operation Name
	compactRetrieveOccurrence

	Interaction Pattern
	PROGRESS

	IP Sequence
	Message
	Field Type

	IN
	Progress
	MAL::Duration

List<SelectionCriteria>

	OUT
	Ack
	MAL::Duration

	OUT
	Update
	CompactArchiveHeader

List<OCCURRENCE_UPDATE>

	OUT
	Response
	CompactArchiveHeader

List<OCCURRENCE_UPDATE>

3.2.36.2 Structures

a) A duration is provided as part of the request that defines the maximum amount of time permitted before delivery of the response shall start.

b) A duration of '0' or NULL shall be interpreted as meaning no delivery timeout.

c) The provider shall return a TIMEDOUT error if delivery of the response cannot start in the time specified in the duration.

d) The SelectionCriteria list structure shall detail the retrieval request.

e) For the selection criteria, if the final identifier of the domain is the wildcard '*', then all sub-domains shall be searched for matches.

f) The wildcard shall only be used for the final component of the domain; for more advanced retrievals the custom retrieval field must be used.

g) The start time must be before the end time, an INVALID error shall be returned if the time range is incorrect.

h) The end time may be in the future in which case it shall be interpreted as meaning an end time of 'now'.

i) The acknowledgement message shall return an estimated duration if no problems are detected during the execution of the request.

j) The duration estimate is for guidance only and the actual operation may take less or more time.

k) The returned list shall contain all matched entries that were contained by the provider.

l) The OCCURRENCE_UPDATE type shall be replaced by the relevant service specific COM publish type.

m) If no updates exist in the specified time range for a specific entity then no updates/values are returned for that entity.

3.2.36.3 Common Model Updates

Not applicable.

3.2.36.4 Errors

The operation may return the following errors:

3.2.36.4.1 ERROR: INVALID

a) One or more of the SelectionCriteria specified in the operation contain invalid values.

b) In which part of the SelectionCriteria the error is contained is outside of the scope of this error message.

c) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.36.4.2 ERROR: TIMEDOUT

Delivery of the response was not able to start inside the requested timeout.

	Error
	COM Event
	Error #
	ExtraInfo Type

	TIMEDOUT
	No
	70003
	Not Used

3.2.37 OPERATION: compactRetrieveStatus

3.2.37.1 General

The compactRetrieveStatus operation retrieves from an archive a report of a packaged 'block' of service status updates that match a specific set of criteria.

It differs from the retrieveStatus operation in that it returns data in a compact form where only the entity value and a timestamp is provided and not the full COM structure.

If an initial value for an entity is required then the compactSnapshotStatus operation should be used.

A PROGRESS pattern is used so that the returned data may be delivered in chunks, ordered by time, to reduce the load on the provider and transport in case of a large data request.

	Operation Name
	compactRetrieveStatus

	Interaction Pattern
	PROGRESS

	IP Sequence
	Message
	Field Type

	IN
	Progress
	MAL::Duration

List<SelectionCriteria>

	OUT
	Ack
	MAL::Duration

	OUT
	Update
	CompactArchiveHeader

List<STATUS_UPDATE>

	OUT
	Response
	CompactArchiveHeader

List<STATUS_UPDATE>

3.2.37.2 Structures

a) A duration is provided as part of the request that defines the maximum amount of time permitted before delivery of the response shall start.

b) A duration of '0' or NULL shall be interpreted as meaning no delivery timeout.

c) The provider shall return a TIMEDOUT error if delivery of the response cannot start in the time specified in the duration.

d) The SelectionCriteria list structure shall detail the retrieval request.

e) For the selection criteria, if the final identifier of the domain is the wildcard '*', then all sub-domains shall be searched for matches.

f) The wildcard shall only be used for the final component of the domain; for more advanced retrievals the custom retrieval field must be used.

g) The start time must be before the end time, an INVALID error shall be returned if the time range is incorrect.

h) The end time may be in the future in which case it shall be interpreted as meaning an end time of 'now'.

i) The acknowledgement message shall return an estimated duration if no problems are detected during the execution of the request.

j) The duration estimate is for guidance only and the actual operation may take less or more time.

k) The returned list shall contain all matched entries that were contained by the provider.

l) The STATUS_UPDATE type shall be replaced by the relevant service specific COM publish type.

m) If no updates exist in the specified time range for a specific entity then no updates/values are returned for that entity.

3.2.37.3 Common Model Updates

Not applicable.

3.2.37.4 Errors

The operation may return the following errors:

3.2.37.4.1 ERROR: INVALID

a) One or more of the SelectionCriteria specified in the operation contain invalid values.

b) In which part of the SelectionCriteria the error is contained is outside of the scope of this error message.

c) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.37.4.2 ERROR: TIMEDOUT

Delivery of the response was not able to start inside the requested timeout.

	Error
	COM Event
	Error #
	ExtraInfo Type

	TIMEDOUT
	No
	70003
	Not Used

3.2.38 OPERATION: compactRetrieveEvent

3.2.38.1 General

The compactRetrieveEvent operation retrieves from an archive a report of a packaged 'block' of service event updates that match a specific set of criteria.

It differs from the retrieveEvent operation in that it returns data in a compact form where only the entity value and a timestamp is provided and not the full COM structure.

If an initial value for an entity is required then the compactSnapshotEvent operation should be used.

A PROGRESS pattern is used so that the returned data may be delivered in chunks, ordered by time, to reduce the load on the provider and transport in case of a large data request.

	Operation Name
	compactRetrieveEvent

	Interaction Pattern
	PROGRESS

	IP Sequence
	Message
	Field Type

	IN
	Progress
	MAL::Duration

List<SelectionCriteria>

	OUT
	Ack
	MAL::Duration

	OUT
	Update
	CompactArchiveHeader

List<EVENT>

	OUT
	Response
	CompactArchiveHeader

List<EVENT>

3.2.38.2 Structures

a) A duration is provided as part of the request that defines the maximum amount of time permitted before delivery of the response shall start.

b) A duration of '0' or NULL shall be interpreted as meaning no delivery timeout.

c) The provider shall return a TIMEDOUT error if delivery of the response cannot start in the time specified in the duration.

d) The SelectionCriteria list structure shall detail the retrieval request.

e) For the selection criteria, if the final identifier of the domain is the wildcard '*', then all sub-domains shall be searched for matches.

f) The wildcard shall only be used for the final component of the domain; for more advanced retrievals the custom retrieval field must be used.

g) The start time must be before the end time, an INVALID error shall be returned if the time range is incorrect.

h) The end time may be in the future in which case it shall be interpreted as meaning an end time of 'now'.

i) The acknowledgement message shall return an estimated duration if no problems are detected during the execution of the request.

j) The duration estimate is for guidance only and the actual operation may take less or more time.

k) The returned list shall contain all matched entries that were contained by the provider.

l) The EVENT type shall be replaced by the relevant service specific COM event type.

m) If no updates exist in the specified time range for a specific entity then no updates/values are returned for that entity.

3.2.38.3 Common Model Updates

Not applicable.

3.2.38.4 Errors

The operation may return the following errors:

3.2.38.4.1 ERROR: INVALID

a) One or more of the SelectionCriteria specified in the operation contain invalid values.

b) In which part of the SelectionCriteria the error is contained is outside of the scope of this error message.

c) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.38.4.2 ERROR: TIMEDOUT

Delivery of the response was not able to start inside the requested timeout.

	Error
	COM Event
	Error #
	ExtraInfo Type

	TIMEDOUT
	No
	70003
	Not Used

3.2.39 OPERATION: compactSnapshotDefinition

3.2.39.1 General

The compactSnapshotDefinition operation returns from an archive a snapshot report of a packaged 'block' of service items that were in existence at the requested time and that match a specific set of criteria.

It differs from the snapshotDefinition operation in that it returns data in a compact form where only the entity value and a timestamp is provided and not the full COM Update structure.

A PROGRESS pattern is used so that the returned data may be delivered in chunks, in no specified order, to reduce the load on the provider and transport in case of a large data request.

	Operation Name
	compactSnapshotDefinition

	Interaction Pattern
	PROGRESS

	IP Sequence
	Message
	Field Type

	IN
	Progress
	MAL::Duration

List<SelectionCriteria>

	OUT
	Ack
	MAL::Duration

	OUT
	Update
	CompactArchiveHeader

List<DEFINITION_UPDATE>

	OUT
	Response
	CompactArchiveHeader

List<DEFINITION_UPDATE>

3.2.39.2 Structures

a) A duration is provided as part of the request that defines the maximum amount of time permitted before delivery of the response shall start.

b) A duration of '0' or NULL shall be interpreted as meaning no delivery timeout.

c) The provider shall return a TIMEDOUT error if delivery of the response cannot start in the time specified in the duration.

d) The SelectionCriteria list structure shall detail the snapshot request.

e) For the selection criteria, if the final identifier of the domain is the wildcard '*', then all sub-domains shall be searched for matches.

f) The wildcard shall only be used for the final component of the domain; for more advanced retrievals the custom retrieval must be used.

g) Only the start time is used, the end time shall be ignored.

h) The start time may be in the future in which case it shall be interpreted as meaning a time of 'now'.

i) The acknowledgement message shall return an estimated duration if no problems are detected during the execution of the request.

j) The duration estimate is for guidance only and the actual operation may take less or more time.

k) The returned list shall contain all matched entries that were contained by the provider.

l) The DEFINITION_UPDATE type shall be replaced by the relevant service specific COM publish type.

m) If no updates exist at the specified time for a specific entity then no updates/values are returned for that entity.

n) The returned data for a specific item may contain more than one update. This is when the provider is not able to reconstruct the complete state of the component and therefore is forced to return the last complete update followed by any partial updates.

3.2.39.3 Common Model Updates

Not applicable.

3.2.39.4 Errors

The operation may return the following errors:

3.2.39.4.1 ERROR: INVALID

a) One or more of the SelectionCriteria specified in the operation contain invalid values.

b) In which part of the SelectionCriteria the error is contained is outside of the scope of this error message.

c) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.39.4.2 ERROR: TIMEDOUT

Delivery of the response was not able to start inside the requested timeout.

	Error
	COM Event
	Error #
	ExtraInfo Type

	TIMEDOUT
	No
	70003
	Not Used

3.2.40 OPERATION: compactSnapshotOccurrence

3.2.40.1 General

The compactSnapshotOccurrence operation returns from an archive a snapshot report of a packaged 'block' of service items that were in existence at the requested time and that match a specific set of criteria.

It differs from the snapshotOccurrence operation in that it returns data in a compact form where only the entity value and a timestamp is provided and not the full COM Update structure.

A PROGRESS pattern is used so that the returned data may be delivered in chunks, in no specified order, to reduce the load on the provider and transport in case of a large data request.

	Operation Name
	compactSnapshotOccurrence

	Interaction Pattern
	PROGRESS

	IP Sequence
	Message
	Field Type

	IN
	Progress
	MAL::Duration

List<SelectionCriteria>

	OUT
	Ack
	MAL::Duration

	OUT
	Update
	CompactArchiveHeader

List<OCCURRENCE_UPDATE>

	OUT
	Response
	CompactArchiveHeader

List<OCCURRENCE_UPDATE>

3.2.40.2 Structures

a) A duration is provided as part of the request that defines the maximum amount of time permitted before delivery of the response shall start.

b) A duration of '0' or NULL shall be interpreted as meaning no delivery timeout.

c) The provider shall return a TIMEDOUT error if delivery of the response cannot start in the time specified in the duration.

d) The SelectionCriteria list structure shall detail the snapshot request.

e) For the selection criteria, if the final identifier of the domain is the wildcard '*', then all sub-domains shall be searched for matches.

f) The wildcard shall only be used for the final component of the domain; for more advanced retrievals the custom retrieval must be used.

g) Only the start time is used, the end time shall be ignored.

h) The start time may be in the future in which case it shall be interpreted as meaning a time of 'now'.

i) The acknowledgement message shall return an estimated duration if no problems are detected during the execution of the request.

j) The duration estimate is for guidance only and the actual operation may take less or more time.

k) The returned list shall contain all matched entries that were contained by the provider.

l) The OCCURRENCE_UPDATE type shall be replaced by the relevant service specific COM publish type.

m) If no updates exist at the specified time for a specific entity then no updates/values are returned for that entity.

n) The returned data for a specific item may contain more than one update. This is when the provider is not able to reconstruct the complete state of the component and therefore is forced to return the last complete update followed by any partial updates.

3.2.40.3 Common Model Updates

Not applicable.

3.2.40.4 Errors

The operation may return the following errors:

3.2.40.4.1 ERROR: INVALID

a) One or more of the SelectionCriteria specified in the operation contain invalid values.

b) In which part of the SelectionCriteria the error is contained is outside of the scope of this error message.

c) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.40.4.2 ERROR: TIMEDOUT

Delivery of the response was not able to start inside the requested timeout.

	Error
	COM Event
	Error #
	ExtraInfo Type

	TIMEDOUT
	No
	70003
	Not Used

3.2.41 OPERATION: compactSnapshotStatus

3.2.41.1 General

The compactSnapshotStatus operation returns from an archive a snapshot report of a packaged 'block' of service items that were in existence at the requested time and that match a specific set of criteria.

It differs from the snapshotStatus operation in that it returns data in a compact form where only the entity value and a timestamp is provided and not the full COM Update structure.

A PROGRESS pattern is used so that the returned data may be delivered in chunks, in no specified order, to reduce the load on the provider and transport in case of a large data request.

	Operation Name
	compactSnapshotStatus

	Interaction Pattern
	PROGRESS

	IP Sequence
	Message
	Field Type

	IN
	Progress
	MAL::Duration

List<SelectionCriteria>

	OUT
	Ack
	MAL::Duration

	OUT
	Update
	CompactArchiveHeader

List<STATUS_UPDATE>

	OUT
	Response
	CompactArchiveHeader

List<STATUS_UPDATE>

3.2.41.2 Structures

a) A duration is provided as part of the request that defines the maximum amount of time permitted before delivery of the response shall start.

b) A duration of '0' or NULL shall be interpreted as meaning no delivery timeout.

c) The provider shall return a TIMEDOUT error if delivery of the response cannot start in the time specified in the duration.

d) The SelectionCriteria list structure shall detail the snapshot request.

e) For the selection criteria, if the final identifier of the domain is the wildcard '*', then all sub-domains shall be searched for matches.

f) The wildcard shall only be used for the final component of the domain; for more advanced retrievals the custom retrieval must be used.

g) Only the start time is used, the end time shall be ignored.

h) The start time may be in the future in which case it shall be interpreted as meaning a time of 'now'.

i) The acknowledgement message shall return an estimated duration if no problems are detected during the execution of the request.

j) The duration estimate is for guidance only and the actual operation may take less or more time.

k) The returned list shall contain all matched entries that were contained by the provider.

l) The STATUS_UPDATE type shall be replaced by the relevant service specific COM publish type.

m) If no updates exist at the specified time for a specific entity then no updates/values are returned for that entity.

n) The returned data for a specific item may contain more than one update. This is when the provider is not able to reconstruct the complete state of the component and therefore is forced to return the last complete update followed by any partial updates.

3.2.41.3 Common Model Updates

Not applicable.

3.2.41.4 Errors

The operation may return the following errors:

3.2.41.4.1 ERROR: INVALID

a) One or more of the SelectionCriteria specified in the operation contain invalid values.

b) In which part of the SelectionCriteria the error is contained is outside of the scope of this error message.

c) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.41.4.2 ERROR: TIMEDOUT

Delivery of the response was not able to start inside the requested timeout.

	Error
	COM Event
	Error #
	ExtraInfo Type

	TIMEDOUT
	No
	70003
	Not Used

3.2.42 OPERATION: compactSnapshotEvent

3.2.42.1 General

The compactSnapshotEvent operation returns from an archive a snapshot report of a packaged 'block' of service items that were in existence at the requested time and that match a specific set of criteria.

It differs from the snapshotEvent operation in that it returns data in a compact form where only the entity value and a timestamp is provided and not the full COM Update structure.

A PROGRESS pattern is used so that the returned data may be delivered in chunks, in no specified order, to reduce the load on the provider and transport in case of a large data request.

	Operation Name
	compactSnapshotEvent

	Interaction Pattern
	PROGRESS

	IP Sequence
	Message
	Field Type

	IN
	Progress
	MAL::Duration

List<SelectionCriteria>

	OUT
	Ack
	MAL::Duration

	OUT
	Update
	CompactArchiveHeader

List<EVENT>

	OUT
	Response
	CompactArchiveHeader

List<EVENT>

3.2.42.2 Structures

a) A duration is provided as part of the request that defines the maximum amount of time permitted before delivery of the response shall start.

b) A duration of '0' or NULL shall be interpreted as meaning no delivery timeout.

c) The provider shall return a TIMEDOUT error if delivery of the response cannot start in the time specified in the duration.

d) The SelectionCriteria list structure shall detail the snapshot request.

e) For the selection criteria, if the final identifier of the domain is the wildcard '*', then all sub-domains shall be searched for matches.

f) The wildcard shall only be used for the final component of the domain; for more advanced retrievals the custom retrieval must be used.

g) Only the start time is used, the end time shall be ignored.

h) The start time may be in the future in which case it shall be interpreted as meaning a time of 'now'.

i) The acknowledgement message shall return an estimated duration if no problems are detected during the execution of the request.

j) The duration estimate is for guidance only and the actual operation may take less or more time.

k) The returned list shall contain all matched entries that were contained by the provider.

l) The EVENT type shall be replaced by the relevant service specific COM event type.

m) If no updates exist at the specified time for a specific entity then no updates/values are returned for that entity.

n) The returned data for a specific item may contain more than one update. This is when the provider is not able to reconstruct the complete state of the component and therefore is forced to return the last complete update followed by any update and modification updates.

3.2.42.3 Common Model Updates

Not applicable.

3.2.42.4 Errors

The operation may return the following errors:

3.2.42.4.1 ERROR: INVALID

a) One or more of the SelectionCriteria specified in the operation contain invalid values.

b) In which part of the SelectionCriteria the error is contained is outside of the scope of this error message.

c) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.42.4.2 ERROR: TIMEDOUT

Delivery of the response was not able to start inside the requested timeout.

	Error
	COM Event
	Error #
	ExtraInfo Type

	TIMEDOUT
	No
	70003
	Not Used

3.2.43 OPERATION: storeDefinition

3.2.43.1 General

The storeDefinition operation takes a list of definition updates to store in an archive. The submission can specify whether to overwrite any existing matched items, leave the original matched items or return an error in the submission.

	Operation Name
	storeDefinition

	Interaction Pattern
	INVOKE

	IP Sequence
	Message
	Field Type

	IN
	Invoke
	ArchiveSubmission

List<DEFINITION_UPDATE>

	OUT
	Ack
	MAL::Duration

	OUT
	Response
	

3.2.43.2 Structures

a) The list of updates to store in the archive shall be provided in the invoke message.

b) Each ArchiveHeader in the list contained in the supplied ArchiveSubmission may contain many UpdateHeaders and ExternalReferences.

c) A single update is composed of an UpdateHeader, an ExternalReference and a single DEFINITION_UPDATE.

d) The DEFINITION_UPDATE type shall be replaced by the relevant service specific COM publish type.

e) The lists contained in the ArchiveHeader shall maintain the same ordering so that the correct UpdateHeader and ExternalReference may be matched.

f) The matching DEFINITION_UPDATEs to the headers contained in the ArchiveHeaders shall be held in the same list order in the DEFINITION_UPDATE list.

g) The DEFINITION_UPDATEs of second ArchiveHeader shall be held in the list directly after those of the first ArchiveHeader, and so on for each supplied ArchiveHeader.

h) The submission shall specify whether to overwrite any existing matched items, leave the original matched items or return a DUPLICATE error in the submission.

i) If a DUPLICATE error is raised no updates shall be stored (the archive should 'roll back' the archive to the state previous to the start of this operation).

j) Items shall be matched on their relevant key, timestamps, and update types.

k) If multiple partial updates exist at the same timestamp then these updates shall not be considered duplicates.

l) If any submitted aspect is not correct, then the complete operation shall fail with an INVALID error and no updates from this operation shall be stored.

m) The acknowledgement message shall return an estimated execution duration if no problems are detected during the execution of the request.

n) The duration estimate is for guidance only and the actual operation may take less or more time.

o) The response message shall not be sent until the store operation has completed.

3.2.43.3 Common Model Updates

Not applicable.

3.2.43.4 Errors

The operation may return the following errors:

3.2.43.4.1 ERROR: INVALID

a) One or more of the entities specified in the operation contain invalid values.

b) The supplied index refers to the DEFINITION_UPDATE list.

c) The entity is composed of an UpdateHeader, an ExternalReference and a single entry from the object update list. In which part of the entity the error is contained is outside of the scope of this error message.

d) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.43.4.2 ERROR: DUPLICATE

a) Duplicate data has been detected.

b) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	DUPLICATE
	No
	70001
	List<MAL::Integer>

3.2.44 OPERATION: storeOccurrence

3.2.44.1 General

The storeOccurrence operation takes a list of occurrence updates to store in an archive. The submission can specify whether to overwrite any existing matched items, leave the original matched items or return an error in the submission.

	Operation Name
	storeOccurrence

	Interaction Pattern
	INVOKE

	IP Sequence
	Message
	Field Type

	IN
	Invoke
	ArchiveSubmission

List<OCCURRENCE_UPDATE>

	OUT
	Ack
	MAL::Duration

	OUT
	Response
	

3.2.44.2 Structures

a) The list of updates to store in the archive shall be provided in the invoke message.

b) Each ArchiveHeader in the list contained in the supplied ArchiveSubmission may contain many UpdateHeaders and ExternalReferences.

c) A single update is composed of an UpdateHeader, an ExternalReference and a single OCCURRENCE_UPDATE.

d) The OCCURRENCE_UPDATE type shall be replaced by the relevant service specific COM publish type.

e) The lists contained in the ArchiveHeader shall maintain the same ordering so that the correct UpdateHeader and ExternalReference may be matched.

f) The matching OCCURRENCE_UPDATEs to the headers contained in the ArchiveHeaders shall be held in the same list order in the OCCURRENCE_UPDATE list.

g) The OCCURRENCE_UPDATEs of second ArchiveHeader shall be held in the list directly after those of the first ArchiveHeader, and so on for each supplied ArchiveHeader.

h) The submission shall specify whether to overwrite any existing matched items, leave the original matched items or return a DUPLICATE error in the submission.

i) If a DUPLICATE error is raised no updates shall be stored (the archive should 'roll back' the archive to the state previous to the start of this operation).

j) Items shall be matched on their relevant key, timestamps, and update types.

k) If multiple partial updates exist at the same timestamp then these updates shall not be considered duplicates.

l) If any submitted aspect is not correct, then the complete operation shall fail with an INVALID error and no updates from this operation shall be stored.

m) The acknowledgement message shall return an estimated execution duration if no problems are detected during the execution of the request.

n) The duration estimate is for guidance only and the actual operation may take less or more time.

o) The response message shall not be sent until the store operation has completed.

3.2.44.3 Common Model Updates

Not applicable.

3.2.44.4 Errors

The operation may return the following errors:

3.2.44.4.1 ERROR: INVALID

a) One or more of the entities specified in the operation contain invalid values.

b) The supplied index refers to the OCCURRENCE_UPDATE list.

c) The entity is composed of an UpdateHeader, an ExternalReference and a single entry from the object update list. In which part of the entity the error is contained is outside of the scope of this error message.

d) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.44.4.2 ERROR: DUPLICATE

a) Duplicate data has been detected.

b) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	DUPLICATE
	No
	70001
	List<MAL::Integer>

3.2.45 OPERATION: storeStatus

3.2.45.1 General

The storeStatus operation takes a list of status updates to store in an archive. The submission can specify whether to overwrite any existing matched items, leave the original matched items or return an error in the submission.

	Operation Name
	storeStatus

	Interaction Pattern
	INVOKE

	IP Sequence
	Message
	Field Type

	IN
	Invoke
	ArchiveSubmission

List<STATUS_UPDATE>

	OUT
	Ack
	MAL::Duration

	OUT
	Response
	

3.2.45.2 Structures

a) The list of updates to store in the archive shall be provided in the invoke message.

b) Each ArchiveHeader in the list contained in the supplied ArchiveSubmission may contain many UpdateHeaders and ExternalReferences.

c) A single update is composed of an UpdateHeader, an ExternalReference and a single STATUS_UPDATE.

d) The STATUS_UPDATE type shall be replaced by the relevant service specific COM publish type.

e) The lists contained in the ArchiveHeader shall maintain the same ordering so that the correct UpdateHeader and ExternalReference may be matched.

f) The matching STATUS_UPDATEs to the headers contained in the ArchiveHeaders shall be held in the same list order in the STATUS_UPDATE list.

g) The STATUS_UPDATEs of second ArchiveHeader shall be held in the list directly after those of the first ArchiveHeader, and so on for each supplied ArchiveHeader.

h) The submission shall specify whether to overwrite any existing matched items, leave the original matched items or return a DUPLICATE error in the submission.

i) If a DUPLICATE error is raised no updates shall be stored (the archive should 'roll back' the archive to the state previous to the start of this operation).

j) Items shall be matched on their relevant key, timestamps, and update types.

k) If multiple partial updates exist at the same timestamp then these updates shall not be considered duplicates.

l) If any submitted aspect is not correct, then the complete operation shall fail with an INVALID error and no updates from this operation shall be stored.

m) The acknowledgement message shall return an estimated execution duration if no problems are detected during the execution of the request.

n) The duration estimate is for guidance only and the actual operation may take less or more time.

o) The response message shall not be sent until the store operation has completed.

3.2.45.3 Common Model Updates

Not applicable.

3.2.45.4 Errors

The operation may return the following errors:

3.2.45.4.1 ERROR: INVALID

a) One or more of the entities specified in the operation contain invalid values.

b) The supplied index refers to the STATUS_UPDATE list.

c) The entity is composed of an UpdateHeader, an ExternalReference and a single entry from the object update list. In which part of the entity the error is contained is outside of the scope of this error message.

d) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.45.4.2 ERROR: DUPLICATE

a) Duplicate data has been detected.

b) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	DUPLICATE
	No
	70001
	List<MAL::Integer>

3.2.46 OPERATION: storeEvent

3.2.46.1 General

The storeEvent operation takes a list of event updates to store in an archive. The submission can specify whether to overwrite any existing matched items, leave the original matched items or return an error in the submission.

	Operation Name
	storeEvent

	Interaction Pattern
	INVOKE

	IP Sequence
	Message
	Field Type

	IN
	Invoke
	ArchiveSubmission

List<EVENT>

	OUT
	Ack
	MAL::Duration

	OUT
	Response
	

3.2.46.2 Structures

a) The list of updates to store in the archive shall be provided in the invoke message.

b) Each ArchiveHeader in the list contained in the supplied ArchiveSubmission may contain many UpdateHeaders and ExternalReferences.

c) A single update is composed of an UpdateHeader, an ExternalReference and a single EVENT.

d) The EVENT type shall be replaced by the relevant service specific COM event type.

e) The lists contained in the ArchiveHeader shall maintain the same ordering so that the correct UpdateHeader and ExternalReference may be matched.

f) The matching EVENTs to the headers contained in the ArchiveHeaders shall be held in the same list order in the EVENT list.

g) The EVENTs of second ArchiveHeader shall be held in the list directly after those of the first ArchiveHeader, and so on for each supplied ArchiveHeader.

h) The submission shall specify whether to overwrite any existing matched items, leave the original matched items or return a DUPLICATE error in the submission.

i) If a DUPLICATE error is raised no updates shall be stored (the archive should 'roll back' the archive to the state previous to the start of this operation).

j) Items shall be matched on their relevant key, timestamps, and update types.

k) If any submitted aspect is not correct, then the complete operation shall fail with an INVALID error and no updates from this operation shall be stored.

l) The acknowledgement message shall return an estimated execution duration if no problems are detected during the execution of the request.

m) The duration estimate is for guidance only and the actual operation may take less or more time.

n) The response message shall not be sent until the store operation has completed.

3.2.46.3 Common Model Updates

Not applicable.

3.2.46.4 Errors

The operation may return the following errors:

3.2.46.4.1 ERROR: INVALID

a) One or more of the entities specified in the operation contain invalid values.

b) The supplied index refers to the EVENT list.

c) The entity is composed of an UpdateHeader, an ExternalReference and a single entry from the object list. In which part of the entity the error is contained is outside of the scope of this error message.

d) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.46.4.2 ERROR: DUPLICATE

a) Duplicate data has been detected.

b) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	DUPLICATE
	No
	70001
	List<MAL::Integer>

3.2.47 OPERATION: compactStoreDefinition

3.2.47.1 General

The operation takes a list of compact definition updates to store in an archive. The compact updates reorganise the update information to remove duplication when large sets of updates to the same entities are made. The submission can specify whether to overwrite any existing matched items, leave the original matched items or return an error in the submission.

	Operation Name
	compactStoreDefinition

	Interaction Pattern
	INVOKE

	IP Sequence
	Message
	Field Type

	IN
	Invoke
	CompactArchiveSubmission

List<DEFINITION_UPDATE>

	OUT
	Ack
	MAL::Duration

	OUT
	Response
	

3.2.47.2 Structures

a) The list of updates to store in the archive shall be provided in the invoke message.

b) Each CompactArchiveHeader in the list contained in the supplied CompactArchiveSubmission may contain many CompactUpdateHeaders.

c) A single update is composed of a CompactUpdateHeader, its contained ExternalReference and a single DEFINITION_UPDATE.

d) The DEFINITION_UPDATE type shall be replaced by the relevant service specific COM publish type.

e) The matching DEFINITION_UPDATEs to the headers contained in the CompactArchiveHeaders shall be held in the same list order in the DEFINITION_UPDATE list.

f) The DEFINITION_UPDATEs of second CompactArchiveHeader shall be held in the list directly after those of the first CompactArchiveHeader, and so on for each supplied CompactArchiveHeader.

g) The submission shall specify whether to overwrite any existing matched items, leave the original matched items or return a DUPLICATE error in the submission.

h) If a DUPLICATE error is raised no updates shall be stored (the archive should 'roll back' the archive to the state previous to the start of this operation).

i) Items shall be matched on their relevant key, timestamps, and update types.

j) If multiple partial updates exist at the same timestamp then these updates shall not be considered duplicates.

k) If any submitted aspect is not correct, then the complete operation shall fail with an INVALID error and no updates from this operation shall be stored.

l) The acknowledgement message shall return an estimated execution duration if no problems are detected during the execution of the request.

m) The duration estimate is for guidance only and the actual operation may take less or more time.

n) The response message shall not be sent until the compactStore operation has completed.

3.2.47.3 Common Model Updates

Not applicable.

3.2.47.4 Errors

The operation may return the following errors:

3.2.47.4.1 ERROR: INVALID

a) One or more of the entities specified in the operation contain invalid values.

b) The supplied index refers to the DEFINITION_UPDATE list.

c) The entity is composed of an UpdateHeader, an ExternalReference and a single entry from the object update list. In which part of the entity the error is contained is outside of the scope of this error message.

d) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.47.4.2 ERROR: DUPLICATE

a) Duplicate data has been detected.

b) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	DUPLICATE
	No
	70001
	List<MAL::Integer>

3.2.48 OPERATION: compactStoreOccurrence

3.2.48.1 General

The operation takes a list of compact occurrence updates to store in an archive. The compact updates reorganise the update information to remove duplication when large sets of updates to the same entities are made. The submission can specify whether to overwrite any existing matched items, leave the original matched items or return an error in the submission.

	Operation Name
	compactStoreOccurrence

	Interaction Pattern
	INVOKE

	IP Sequence
	Message
	Field Type

	IN
	Invoke
	CompactArchiveSubmission

List<OCCURRENCE_UPDATE>

	OUT
	Ack
	MAL::Duration

	OUT
	Response
	

3.2.48.2 Structures

a) The list of updates to store in the archive shall be provided in the invoke message.

b) Each CompactArchiveHeader in the list contained in the supplied CompactArchiveSubmission may contain many CompactUpdateHeaders.

c) A single update is composed of a CompactUpdateHeader, its contained ExternalReference and a single OCCURRENCE_UPDATE.

d) The OCCURRENCE_UPDATE type shall be replaced by the relevant service specific COM publish type.

e) The matching OCCURRENCE_UPDATEs to the headers contained in the CompactArchiveHeaders shall be held in the same list order in the OCCURRENCE_UPDATE list.

f) The OCCURRENCE_UPDATEs of second CompactArchiveHeader shall be held in the list directly after those of the first CompactArchiveHeader, and so on for each supplied CompactArchiveHeader.

g) The submission shall specify whether to overwrite any existing matched items, leave the original matched items or return a DUPLICATE error in the submission.

h) If a DUPLICATE error is raised no updates shall be stored (the archive should 'roll back' the archive to the state previous to the start of this operation).

i) Items shall be matched on their relevant key, timestamps, and update types.

j) If multiple partial updates exist at the same timestamp then these updates shall not be considered duplicates.

k) If any submitted aspect is not correct, then the complete operation shall fail with an INVALID error and no updates from this operation shall be stored.

l) The acknowledgement message shall return an estimated execution duration if no problems are detected during the execution of the request.

m) The duration estimate is for guidance only and the actual operation may take less or more time.

n) The response message shall not be sent until the compactStore operation has completed.

3.2.48.3 Common Model Updates

Not applicable.

3.2.48.4 Errors

The operation may return the following errors:

3.2.48.4.1 ERROR: INVALID

a) One or more of the entities specified in the operation contain invalid values.

b) The supplied index refers to the OCCURRENCE_UPDATE list.

c) The entity is composed of an UpdateHeader, an ExternalReference and a single entry from the object update list. In which part of the entity the error is contained is outside of the scope of this error message.

d) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.48.4.2 ERROR: DUPLICATE

a) Duplicate data has been detected.

b) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	DUPLICATE
	No
	70001
	List<MAL::Integer>

3.2.49 OPERATION: compactStoreStatus

3.2.49.1 General

The operation takes a list of compact status updates to store in an archive. The compact updates reorganise the update information to remove duplication when large sets of updates to the same entities are made. The submission can specify whether to overwrite any existing matched items, leave the original matched items or return an error in the submission.

	Operation Name
	compactStoreStatus

	Interaction Pattern
	INVOKE

	IP Sequence
	Message
	Field Type

	IN
	Invoke
	CompactArchiveSubmission

List<STATUS_UPDATE>

	OUT
	Ack
	MAL::Duration

	OUT
	Response
	

3.2.49.2 Structures

a) The list of updates to store in the archive shall be provided in the invoke message.

b) Each CompactArchiveHeader in the list contained in the supplied CompactArchiveSubmission may contain many CompactUpdateHeaders.

c) A single update is composed of a CompactUpdateHeader, its contained ExternalReference and a single STATUS_UPDATE.

d) The STATUS_UPDATE type shall be replaced by the relevant service specific COM publish type.

e) The matching STATUS_UPDATEs to the headers contained in the CompactArchiveHeaders shall be held in the same list order in the STATUS_UPDATE list.

f) The STATUS_UPDATEs of second CompactArchiveHeader shall be held in the list directly after those of the first CompactArchiveHeader, and so on for each supplied CompactArchiveHeader.

g) The submission shall specify whether to overwrite any existing matched items, leave the original matched items or return a DUPLICATE error in the submission.

h) If a DUPLICATE error is raised no updates shall be stored (the archive should 'roll back' the archive to the state previous to the start of this operation).

i) Items shall be matched on their relevant key, timestamps, and update types.

j) If multiple partial updates exist at the same timestamp then these updates shall not be considered duplicates.

k) If any submitted aspect is not correct, then the complete operation shall fail with an INVALID error and no updates from this operation shall be stored.

l) The acknowledgement message shall return an estimated execution duration if no problems are detected during the execution of the request.

m) The duration estimate is for guidance only and the actual operation may take less or more time.

n) The response message shall not be sent until the compactStore operation has completed.

3.2.49.3 Common Model Updates

Not applicable.

3.2.49.4 Errors

The operation may return the following errors:

3.2.49.4.1 ERROR: INVALID

a) One or more of the entities specified in the operation contain invalid values.

b) The supplied index refers to the STATUS_UPDATE list.

c) The entity is composed of an UpdateHeader, an ExternalReference and a single entry from the object update list. In which part of the entity the error is contained is outside of the scope of this error message.

d) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.49.4.2 ERROR: DUPLICATE

a) Duplicate data has been detected.

b) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	DUPLICATE
	No
	70001
	List<MAL::Integer>

3.2.50 OPERATION: compactStoreEvent

3.2.50.1 General

The operation takes a list of compact event updates to store in an archive. The compact updates reorganise the update information to remove duplication when large sets of updates to the same entities are made. The submission can specify whether to overwrite any existing matched items, leave the original matched items or return an error in the submission.

	Operation Name
	compactStoreEvent

	Interaction Pattern
	INVOKE

	IP Sequence
	Message
	Field Type

	IN
	Invoke
	CompactArchiveSubmission

List<EVENT>

	OUT
	Ack
	MAL::Duration

	OUT
	Response
	

3.2.50.2 Structures

a) The list of updates to store in the archive shall be provided in the invoke message.

b) Each CompactArchiveHeader in the list contained in the supplied CompactArchiveSubmission may contain many CompactUpdateHeaders.

c) A single update is composed of a CompactUpdateHeader, its contained ExternalReference and a single EVENT.

d) The EVENT type shall be replaced by the relevant service specific COM event type.

e) The matching EVENTs to the headers contained in the CompactArchiveHeaders shall be held in the same list order in the EVENT list.

f) The EVENTs of second CompactArchiveHeader shall be held in the list directly after those of the first CompactArchiveHeader, and so on for each supplied CompactArchiveHeader.

g) The submission shall specify whether to overwrite any existing matched items, leave the original matched items or return a DUPLICATE error in the submission.

h) If a DUPLICATE error is raised no updates shall be stored (the archive should 'roll back' the archive to the state previous to the start of this operation).

i) Items shall be matched on their relevant key, timestamps, and update types.

j) If any submitted aspect is not correct, then the complete operation shall fail with an INVALID error and no updates from this operation shall be stored.

k) The acknowledgement message shall return an estimated execution duration if no problems are detected during the execution of the request.

l) The duration estimate is for guidance only and the actual operation may take less or more time.

m) The response message shall not be sent until the compactStore operation has completed.

3.2.50.3 Common Model Updates

Not applicable.

3.2.50.4 Errors

The operation may return the following errors:

3.2.50.4.1 ERROR: INVALID

a) One or more of the entities specified in the operation contain invalid values.

b) The supplied index refers to the EVENT list.

c) The entity is composed of an UpdateHeader, an ExternalReference and a single entry from the object list. In which part of the entity the error is contained is outside of the scope of this error message.

d) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.2.50.4.2 ERROR: DUPLICATE

a) Duplicate data has been detected.

b) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	DUPLICATE
	No
	70001
	List<MAL::Integer>

3.3 Service: Activity

3.3.1 General

The Activity service provides a facility for the monitoring of the progress of operations in the 'system'. It defines a reporting model for the progress of activities from the consumer to the provider and during the execution in a provider.

The Activity service implementation is distributed between the MO service consumer, provider and any component used to relay the operation from the consumer to the provider. This means that all communicating components are potential Activity update publishers.

The Activity service defines the reporting model, as in what stages reporting exists for each Interaction pattern, when they should be generated in the chains of communicating components, and also what information is to be reported.

Rather than fixing the reporting in the service specification or delegating the decision to the component that issued the operation, it is a deployment decision whether a component shall generate the Activity reports. This allows for reporting to be configured depending on network topology or any other criteria deemed suitable.

The Activity reporting data structures are expected to be extended by future services to support progress reporting of other types of Activities e.g. a future Automation service.

The COM operations to list and request Occurrence and Status information are optional for implementations of this service and are only required to return information about currently active Activities if they are provided. For historical information the COM retrieval operations should be used.

Table 1‑11tc \f T "-1Activity Service Operations"
: Activity Service Operations

	Area Identifier
	Service Identifier
	Area Number
	Service Number
	Service Version

	COM
	Activity
	2
	2
	1

	Interaction Pattern
	Operation Name
	Operation Number
	Support in replay
	Capability Set

	INVOKE
	cancelActivity
	100
	No
	100

	INVOKE
	rollbackActivity
	101
	No
	

3.3.2 Common Model Usage

The service complies with the COM as follows:

Table 1‑11tc \f T "-1Activity Service Common Model Component Usage"
: Activity Service Common Model Component Usage

	
	Definition
	Occurrence
	Status
	Event

	Object Types
	Not used
	ActivityOccurrence
	ActivityStatus
	Not used

	Publish Types
	Not used
	ActivityOccurrence
	ActivityStatus
	

Table 1‑11tc \f T "-1Activity Service Common Model Identifier Usage"
: Activity Service Common Model Identifier Usage

	Identifier Field
	Definition
	Occurrence
	Status

	entityId
	Not used
	<area><service><operation>
	<area><service><operation>

	definitionId
	Not used
	<service version>
	<service version>

	occurrenceId
	
	<transaction id>
	<transaction id>

	statusId
	
	
	<1>

a) The entityId shall be composed of the Area, Service, and Operation numbers from the originating message header, converted into uppercase hex with preceeding zeros, concatenated together left to right in area, service, and operation order. For example, if the area number is '3', the service number is '12' and the operation number is '102' then the entity id would be 0003000C0066.

b) The definitionId shall be the service version from the originating message header.

c) The occurrenceId shall be the transactionId field from the originating message header.

d) The URI of the consumer, as held in the URIfrom field of the originating message header, shall be used to distinguish between activity occurrences that use the same transactionId but are from different consumers and is placed into the appropriate field of the ActivityOccurrence and ActivityStatus composites.

e) For the consumer starting an interaction, if the deployment deems that an Activity report should be generated, once the interaction has been initiated, an OperationOccurrence structure shall be archived and distributed to the broker using a MAL::UpdateType of CREATION.

f) The OperationOccurrence shall represent the RELEASE stage of the Activity.

g) For the consumer, once the interaction has ended, an update structure shall be archived and distributed to the broker with the occurrence field set to NULL and a MAL::UpdateType of DELETION.

h) If an operation is being passed via a relay and if the deployment deems that an Activity report should be generated, two Status updates shall be made using an ActivityTransferStatus structure.

i) Upon reception of the interaction by the relay, the first status update shall have a MAL::UpdateType type of MODIFICATION and the isReception field shall be TRUE.

j) Upon transmission of the interaction to the next destination by the relay the second status update shall have a MAL::UpdateType type of MODIFICATION and the isReception field shall be FALSE.

k) If the relay is unable to transmit the operation to the next destination then the second status update shall have a MAL::UpdateType type of DELETION, the isReception field set to FALSE, and also fail the originating interaction with an appropriate MAL error code.

l) This pattern shall be repeated for each relay if the deployment deems that Activity reports should be generated by that relay.

m) Upon reception of the interaction by the provider and before the interaction is handled, if the deployment deems that an Activity report should be generated, an ActivityAcceptanceStatus structure shall be archived and distributed.

n) If the interaction pattern is SEND then the status update shall have a MAL::UpdateType type of DELETION else the update type shall be MODIFICATION.

o) For each stage of the interaction, if the deployment deems that an Activity report should be generated, an update shall be made using an OperationStatus structure.

p) If it is the final stage of the interaction (i.e. completed or an error is being returned) the MAL::UpdateType type shall be DELETION else it shall be MODIFICATION.

3.3.3 OPERATION: cancelActivity

3.3.3.1 General

The cancelActivity operation allows a consumer to request that selected currently active Activities be stopped. It is a deployment decision whether this operation is supported for a specific service.

	Operation Name
	cancelActivity

	Interaction Pattern
	INVOKE

	IP Sequence
	Message
	Field Type

	IN
	Invoke
	List<OccurrenceKey>

	OUT
	Ack
	List<OccurrenceKey>

	OUT
	Response
	List<OccurrenceKey>

3.3.3.2 Structures

a) The provided OccurrenceKey list contains the identifiers of the requested Activity and shall be used to identify the active Activities in the provider.

b) The values shall be populated as described in the Activity Service Common Model Identifier Usage table.

c) The entityId may contain the wildcard value '*' in which case it shall match all Activities of all services for that provider.

d) The definitionId may contain the wildcard value '0' in which case it shall match all versions of any matching Activities for that provider.

e) The occurrenceId may contain the wildcard value '0' in which case it shall match all Activity occurrences for any matched activities for that provider.

f) If the provider does not support the cancelActivity operation for the requested service/Activity then it shall return an INVALID error.

g) The operation shall either completely succeed or fail, in the case of a fail no Activities shall be cancelled.

h) The Acknowledgement message contains a list of matched Activity occurrence keys that shall be cancelled.

i) The Acknowledgment message shall be returned before the activities are cancelled.

j) Once the identified activities have been cancelled the Response message shall be returned.

k) The Response message contains the list of Activity occurrence keys that were cancelled.

l) The Activities that are cancelled shall have their interaction terminated with a CANCELLED error. The CANCELLED error is returned to the originator of the Activity NOT to the originator of the cancelActivity operation.

3.3.3.3 Common Model Updates

Not applicable.

3.3.3.4 Errors

The operation may return the following errors:

3.3.3.4.1 ERROR: INVALID

a) Requested Activity cannot be cancelled.

b) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

3.3.4 OPERATION: rollbackActivity

3.3.4.1 General

The rollbackActivity operation allows a consumer to request that selected currently active Activities be stopped and that the state of the provider be reset to a point as if the Activity has not been started. It is a deployment decision whether this operation is supported for a specific service.

	Operation Name
	rollbackActivity

	Interaction Pattern
	INVOKE

	IP Sequence
	Message
	Field Type

	IN
	Invoke
	List<OccurrenceKey>

	OUT
	Ack
	List<OccurrenceKey>

	OUT
	Response
	List<OccurrenceKey>

3.3.4.2 Structures

a) The provided OccurrenceKey list contains the identifiers of the requested Activities and shall be used to identify the active Activities in the provider.

b) The values shall be populated as described in the Activity Service Common Model Identifier Usage table.

c) The entityId may contain the wildcard value '*' in which case it shall match all Activities of all services for that provider.

d) The definitionId may contain the wildcard value '0' in which case it shall match all versions of any matching activities for that provider.

e) The occurrenceId may contain the wildcard value '0' in which case it shall match all Activity occurrences for any matched activities for that provider.

f) If the provider does not support the rollbackActivity operation for the requested service/Activity then it shall return an INVALID error.

g) The operation shall either completely succeed or fail, in the case of a fail no Activities shall be rolled back.

h) The Acknowledgement message contains a list of matched Activity occurrence keys that shall be rolled back.

i) The Acknowledgment message shall be returned before the activities are rolled back.

j) Once the identified activities have been rolled back the Response message shall be returned.

k) The Response message contains the list of Activity occurrence keys that were rolled back.

l) The operations that are rolled back shall have their interaction terminated with a CANCELLED error. The CANCELLED error is returned to the originator of the Activity NOT to the originator of the rollbackActivity operation.

3.3.4.3 Common Model Updates

Not applicable.

3.3.4.4 Errors

The operation may return the following errors:

3.3.4.4.1 ERROR: INVALID

a) Requested Activity cannot be rolled back.

b) The extra information field contains the indexes of the erroneous values from the originating request list.

	Error
	COM Event
	Error #
	ExtraInfo Type

	INVALID
	No
	70000
	List<MAL::Integer>

4 Data types

4.1 Service data types: COM

4.1.1 Composite: Event

The base composite that all event objects should extend.

	Structure Name
	Event

	Extends
	MAL::Composite

	Abstract

4.1.2 Composite: Definition

The base composite that all definition objects should extend.

	Structure Name
	Definition

	Extends
	MAL::Composite

	Abstract

4.1.3 Composite: Occurrence

The base composite that all occurrence objects should extend.

	Structure Name
	Occurrence

	Extends
	MAL::Composite

	Abstract

4.1.4 Composite: Status

The base composite that all status objects should extend.

	Structure Name
	Status

	Extends
	MAL::Composite

	Abstract

4.1.5 Composite: DefinitionKey

The DefinitionKey structure holds all information required by the Common Model to identify a definition.

	Structure Name
	DefinitionKey

	Extends
	MAL::Composite

	Short Form Part
	1

	Field
	Type
	Null?
	Comment

	entityId
	MAL::Identifier
	Yes
	The identifier of this entity.

	definitionId
	MAL::Integer
	Yes
	The identifier of this definition.

4.1.6 Composite: OccurrenceKey

The OccurrenceKey structure holds all information required by the Common Model to identify an occurrence.

	Structure Name
	OccurrenceKey

	Extends
	MAL::Composite

	Short Form Part
	2

	Field
	Type
	Null?
	Comment

	entityId
	MAL::Identifier
	Yes
	The identifier of this entity.

	definitionId
	MAL::Integer
	Yes
	The identifier of this definition.

	occurrenceId
	MAL::Integer
	Yes
	The identifier of this occurrence.

4.1.7 Composite: StatusKey

The StatusKey structure holds all information required by the Common Model to identify a status.

	Structure Name
	StatusKey

	Extends
	MAL::Composite

	Short Form Part
	3

	Field
	Type
	Null?
	Comment

	entityId
	MAL::Identifier
	Yes
	The identifier of this entity.

	definitionId
	MAL::Integer
	Yes
	The identifier of this definition.

	occurrenceId
	MAL::Integer
	Yes
	The identifier of this occurrence.

	statusId
	MAL::Integer
	Yes
	The identifier of this status.

4.1.8 Composite: EventKey

The EventKey structure holds all information required by the Common Model to identify an event.

	Structure Name
	EventKey

	Extends
	MAL::Composite

	Short Form Part
	4

	Field
	Type
	Null?
	Comment

	entityId
	MAL::Identifier
	Yes
	The identifier of this entity.

	definitionId
	MAL::Integer
	Yes
	The identifier of this definition.

	occurrenceId
	MAL::Integer
	Yes
	The identifier of this occurrence.

	eventId
	MAL::Integer
	Yes
	The identifier of this event.

4.1.9 Composite: DefinitionHeader

The DefinitionHeader composite holds a definition key and timestamp and is provided with a Definition to completely identify a conceptual definition.

	Structure Name
	DefinitionHeader

	Extends
	MAL::Composite

	Short Form Part
	5

	Field
	Type
	Null?
	Comment

	key
	DefinitionKey
	No
	The key for this definition.

	timestamp
	MAL::Time
	No
	The creation time of the definition.

4.1.10 Composite: OccurrenceHeader

The OccurrenceHeader composite holds an occurrence key and timestamp and is provided with an Occurrence to completely identify a conceptual occurrence.

	Structure Name
	OccurrenceHeader

	Extends
	MAL::Composite

	Short Form Part
	6

	Field
	Type
	Null?
	Comment

	key
	OccurrenceKey
	No
	The key for this occurrence.

	timestamp
	MAL::Time
	No
	The creation time of the occurrence.

4.1.11 Composite: StatusHeader

The StatusHeader composite holds a status key and timestamp and is provided with a Status to completely identify a conceptual status.

	Structure Name
	StatusHeader

	Extends
	MAL::Composite

	Short Form Part
	7

	Field
	Type
	Null?
	Comment

	key
	StatusKey
	No
	The key for this status.

	timestamp
	MAL::Time
	No
	The creation time of the status.

4.1.12 Composite: EventHeader

The EventHeader composite holds an event key and timestamp and is provided with an Event to completely identify a conceptual event.

	Structure Name
	EventHeader

	Extends
	MAL::Composite

	Short Form Part
	8

	Field
	Type
	Null?
	Comment

	key
	EventKey
	No
	

	timestamp
	MAL::Time
	No
	

4.1.13 Composite: ExternalReference

This structure holds all the required information to reference an occurrence or definition of another service.

	Structure Name
	ExternalReference

	Extends
	MAL::Composite

	Short Form Part
	9

	Field
	Type
	Null?
	Comment

	domain
	List<MAL::Identifier>
	Yes
	The Domain of the referenced entity, NULL if the same as the referring entity.

	networkZone
	MAL::Identifier
	Yes
	The Network Zone of the referenced entity, NULL if the same as the referring entity.

	area
	MAL::UShort
	Yes
	The number of the area of the referenced entity, NULL if the same as the referring entity.

	service
	MAL::UShort
	Yes
	The number of the service of the referenced entity, NULL if the same as the referring entity.

	operation
	MAL::UShort
	Yes
	The number of the operation of the referenced entity, NULL if the same as the referring entity or not applicable.

	sourceKey
	OccurrenceKey
	Yes
	The OccurrenceKey of the referenced entity. If a Definition is being referenced then the occurrenceId part shall be set to NULL.

4.1.14 Composite: SelectionCriteria

The SelectionCriteria structure provides the specification of a selection filter for the retrieval of archive data from a service archive. The filter contains two parts, the first part provides a simple boundary of start and end times and the domain and service to request archive data from. The second part defines the specific filtering of archive data, either via a COM filter or via a custom filter. One of the two filters must be provided.

	Structure Name
	SelectionCriteria

	Extends
	MAL::Composite

	Short Form Part
	10

	Field
	Type
	Null?
	Comment

	domain
	List<MAL::Identifier>
	No
	The domain to retrieve from.

	networkZones
	List<MAL::Identifier>
	Yes
	List of network zones to match on. If NULL then all network zones shall be matched.

	area
	MAL::UShort
	Yes
	The number of the area to retrieve from. If NULL then all areas shall be matched. Ignored if service specific archive.

	service
	MAL::UShort
	Yes
	The number of the service to retrieve from. If NULL then all services shall be matched. Ignored if service specific archive.

	version
	MAL::UOctet
	Yes
	The version of the service to retrieve from. If NULL then all versions shall be matched.

	startTime
	MAL::Time
	Yes
	The start time of the requested data. Data with a matching timestamp shall be included. If NULL then no start time restriction shall be applied.

	endTime
	MAL::Time
	Yes
	The end time of the requested data. Data with a matching timestamp shall NOT be included. Expected to be NULL if for a snapshot operation.

	comFilter
	SelectionCriteriaCOM
	Yes
	Contains a filter criteria based on COM identifiers. May be NULL in which case the customFilter shall be used.

	customFilter
	SelectionCriteriaCustom
	Yes
	Contains a filter criteria based on a custom mechanism. May be NULL in which case the comFilter shall be used.

4.1.15 Composite: SelectionCriteriaCOM

The SelectionCriteriaCOM structure provides the specification of a selection filter for the retrieval of Common Model archive data from a service archive.

	Structure Name
	SelectionCriteriaCOM

	Extends
	MAL::Composite

	Short Form Part
	11

	Field
	Type
	Null?
	Comment

	keys
	List<MAL::EntityKey>
	No
	The set of updates to retrieve.

4.1.16 Composite: SelectionCriteriaCustom

The SelectionCriteriaCustom structure allows more advanced implementations of the Retrieval service to filter the data using an implementation-dependent filter criteria.

	Structure Name
	SelectionCriteriaCustom

	Extends
	MAL::Composite

	Short Form Part
	12

	Field
	Type
	Null?
	Comment

	format
	MAL::String
	No
	String holding the format of the selection criteria string.

	criteria
	MAL::String
	No
	String holding the selection criteria. The format is unspecified to allow mission-specific referencing schemes to be utilised.

4.1.17 Composite: ArchiveCatalogue

The ArchiveCatalogue report structure contains a count of Common Model updates present in a Common Model archive.

	Structure Name
	ArchiveCatalogue

	Extends
	MAL::Composite

	Short Form Part
	13

	Field
	Type
	Null?
	Comment

	domain
	List<MAL::Identifier>
	No
	The domain for this set of updates.

	networkZone
	MAL::Identifier
	No
	The network zone for this set of updates.

	area
	MAL::UShort
	No
	The number of the area that this count of updates is of.

	service
	MAL::UShort
	No
	The number of the service that this count of updates is of.

	version
	MAL::UOctet
	No
	The version of the service that this count of updates is of.

	firstEntryTime
	MAL::Time
	No
	The timestamp of the first entry in the selection.

	lastEntryTime
	MAL::Time
	No
	The timestamp of the last entry in the selection.

	count
	MAL::Long
	No
	Number of updates in the selection.

4.1.18 Composite: ArchiveSubmission

The ArchiveSubmission structure contains the update data to be inserted into the archive.

	Structure Name
	ArchiveSubmission

	Extends
	MAL::Composite

	Short Form Part
	14

	Field
	Type
	Null?
	Comment

	overwriteExisting
	MAL::Boolean
	No
	If TRUE then any matches to existing records shall be replaced.

	errorOnMatch
	MAL::Boolean
	No
	If overwriteExisting is set to FALSE and this is set to TRUE then an error shall be returned if any of the submitted updates match existing archive data.

	updateHeader
	List<ArchiveHeader>
	No
	The set of updates to insert into the archive.

4.1.19 Composite: ArchiveHeader

The ArchiveHeader structure contains information common to a set of updates that have been retrieved from a common model archive.

	Structure Name
	ArchiveHeader

	Extends
	MAL::Composite

	Short Form Part
	15

	Field
	Type
	Null?
	Comment

	domain
	List<MAL::Identifier>
	No
	The domain for this set of updates.

	networkZone
	MAL::Identifier
	No
	The network zone for this set of updates.

	area
	MAL::UShort
	No
	The number of the area that this set of updates came from.

	service
	MAL::UShort
	No
	The number of the service that this set of updates came from.

	version
	MAL::UOctet
	No
	The version of the service that this set of updates came from.

	updateHeader
	List<MAL::UpdateHeader>
	No
	Set of update header information.

	updateSource
	List<ExternalReference>
	No
	Set of sources for the updates.

4.1.20 Composite: CompactArchiveSubmission

The structure contains the update data to be inserted into the archive.

	Structure Name
	CompactArchiveSubmission

	Extends
	MAL::Composite

	Short Form Part
	16

	Field
	Type
	Null?
	Comment

	overwriteExisting
	MAL::Boolean
	No
	If TRUE then any matches to existing records shall be replaced.

	errorOnMatch
	MAL::Boolean
	No
	If overwriteExisting is set to FALSE and this is set to TRUE then an error shall be returned if any of the submitted updates match existing archive data.

	updateHeader
	List<CompactArchiveHeader>
	No
	The set of overall header for the sets of updates to insert into the archive.

4.1.21 Composite: CompactArchiveHeader

The structure contains a set of common model updates that have been retrieved from a common model archive but using a more compact form.

	Structure Name
	CompactArchiveHeader

	Extends
	MAL::Composite

	Short Form Part
	17

	Field
	Type
	Null?
	Comment

	domain
	List<MAL::Identifier>
	Yes
	The domain for this set of updates. If set to NULL then is the same as the previous entry in the list.

	networkZone
	MAL::Identifier
	Yes
	The network zone for this set of updates. If set to NULL then is the same as the previous entry in the list.

	area
	MAL::UShort
	Yes
	The number of the area that this set of updates came from. If set to NULL then is the same as the previous entry in the list.

	service
	MAL::UShort
	Yes
	The number of the service that this set of updates came from. If set to NULL then is the same as the previous entry in the list.

	version
	MAL::UOctet
	Yes
	The version of the service that this set of updates came from. If set to NULL then is the same as the previous entry in the list.

	sourceURI
	MAL::URI
	Yes
	URI of the source of the update, usually a PUBSUB provider. If set to NULL then is the same as the previous entry in the list.

	key
	MAL::EntityKey
	Yes
	The key of the entity. If set to NULL then is the same as the previous entry in the list.

	updateHeaders
	List<CompactUpdateHeader>
	No
	The headers for the set of updates.

4.1.22 Composite: CompactUpdateHeader

The structure holds header information for a single compact update. The key for this structure is held elsewhere.

	Structure Name
	CompactUpdateHeader

	Extends
	MAL::Composite

	Short Form Part
	18

	Field
	Type
	Null?
	Comment

	timestamp
	MAL::Time
	No
	The timestamp of the update.

	updateType
	MAL::UpdateType
	Yes
	Type of update being reported. If set to NULL then is the same as the previous entry in the list.

	updateSource
	ExternalReference
	Yes
	Holds all information required to identify the source of an update. Provides traceability of objects back to their triggering source. If this value is the same as the previous entry in the list then it shall be set to NULL. To represent an actual NULL value then it shall contain an ExternalReference with each conatined field set to NULL.

4.2 Service data types: Activity

4.2.1 Composite: ActivityStatus

The ActivityStatus abstract structure represents the status of an activity.

	Structure Name
	ActivityStatus

	Extends
	Status

	Abstract

	Field
	Type
	Null?
	Comment

	URIfrom
	MAL::URI
	No
	The URIfrom of the originator of the activity.

	success
	MAL::Boolean
	No
	The success result of this stage, TRUE if successful, FALSE otherwise.

4.2.2 Composite: ActivityOccurrence

The ActivityOccurrence abstract structure represents the occurrence of an activity.

	Structure Name
	ActivityOccurrence

	Extends
	Occurrence

	Abstract

	Field
	Type
	Null?
	Comment

	URIfrom
	MAL::URI
	No
	The URIfrom of the originator of the activity.

	success
	MAL::Boolean
	No
	The result of the RELEASE of this Activity from the consumer, TRUE if successful, FALSE otherwise. If this is TRUE then the next two fields should be populated.

	estimateDuration
	MAL::Duration
	Yes
	The estimated amount of time it will take to be received by the next destination. May be NULL if unknown or cannot be calculated.

	nextDestination
	MAL::URI
	Yes
	This contains the URI of the next destination, either another relay or the provider. It is protocol specific how this value is derived.

4.2.3 Composite: ActivityExecutionStatus

The ActivityExecutionStatus structure is used to report the execution status of an Activity in the final destination.

	Structure Name
	ActivityExecutionStatus

	Extends
	ActivityStatus

	Abstract

4.2.4 Composite: OperationOccurrence

The OperationOccurrence structure contains the occurrence of an Operation activity.

	Structure Name
	OperationOccurrence

	Extends
	ActivityOccurrence

	Short Form Part
	1

	Field
	Type
	Null?
	Comment

	interactionType
	MAL::InteractionType
	No
	The interaction type of the original operation message header.

4.2.5 Composite: ActivityTransferStatus

The ActivityTransferStatus structure is used to report the transfer of an Activity via an intermediate destination.

	Structure Name
	ActivityTransferStatus

	Extends
	ActivityStatus

	Short Form Part
	2

	Field
	Type
	Null?
	Comment

	isReception
	MAL::Boolean
	No
	TRUE if this is a RECEPTION stage, otherwise FALSE for FORWARD stage

	estimateDuration
	MAL::Duration
	Yes
	For notification type of RECEPTION it should contain the estimated amount of time it will take to be forwarded by this relay. For notification type of FORWARD it should contain the estimated amount of time it will take to be received by the next destination. Shall be NULL if success field is false, may be NULL if unknown or cannot be calculated.

	nextDestination
	MAL::URI
	Yes
	For notification types of FORWARD this contains the URI of the next destination, either another relay or the provider, if the success field is TRUE. Shall be NULL in all other cases. It is protocol specific how this value is derived.

4.2.6 Composite: ActivityAcceptanceStatus

The ActivityAcceptanceStatus structure is used to report the acceptance of an Activity in the final destination.

	Structure Name
	ActivityAcceptanceStatus

	Extends
	ActivityStatus

	Short Form Part
	3

4.2.7 Composite: OperationStatus

The OperationStatus structure contains the status of an Operation activity.

	Structure Name
	OperationStatus

	Extends
	ActivityExecutionStatus

	Short Form Part
	4

	Field
	Type
	Null?
	Comment

	interactionType
	MAL::InteractionType
	No
	The interaction type of the operation, this field shall be populated if the following returnMessageHeader field is NULL, otherwise this field shall be NULL.

	interactionStage
	MAL::Octet
	No
	The interaction stage of the operation.

5 Error codes

The following table lists the errors defined in this specification:

Table 1‑11tc \f T "-1COM Error Codes"
: COM Error Codes

	Error
	Error #
	Comment

	INVALID
	70000
	Operation specific

	DUPLICATE
	70001
	Operation specific

	REFERENCED
	70002
	Operation specific

	TIMEDOUT
	70003
	Operation specific

	NOT_IN_REPLAY
	70004
	Operation is not supported in Replay

	CANCELLED
	70005
	The Operation has been cancelled by the Activity service

	HISTORIC
	70006
	Requested Common Model item is only available via Retrieval service

6 SERVICE SPECIFICATION XML

6.1 Overview
The following subsection defines the service in the XML notation as specified in reference [2].
This specification defines a normative XML schema for validating MO COM service specifications and is an extension of the MAL XML schema. The use of XML for service specification provides a machine readable format rather than the text based document format. The published specifications and XML Schemas are held in an online SANA registry, located:

[SANA Registry location]
The XML Schema that is used to validate the actual XML COM service specifications is located:

[SANA Registry location]
The normative XML for this specification, validated against the XML schemas, is located:

[SANA Registry location]
ANNEX A

Security, SANA, and Patent Considerations

(Informative)

A1 Security Considerations
[To be supplied.]

A2 SANA Considerations
[To be supplied.]

A3 Patent Considerations
[To be supplied.]

ANNEX B

Definition of Acronyms

(Informative)

API

Application Programming Interface

GS

Ground Station

IP

Interaction Pattern

MAL

Message Abstract Layer

MCS

Mission Control System

MO

Mission Operations

SANA

Space Assigned Numbers Authority
XML

eXtensible Markup Language

URI

Universal Resource Identifier

ANNEX C

Informative References

(Informative)

[C

 SEQ ref \s 8 * MERGEFORMAT 1]
Mission Operations Services Concept. Report Concerning Space Data System Standards, CCSDS 520.0-G-3. Green Book. Issue 3. Washington, D.C.: CCSDS, December 2010.
NOTE
–
Normative references are listed in 1.6.

